
Journal of Computer Science 10 (1): 138-142, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.138.142 Published Online 10 (1) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Thangavel Prem Jacob, Department of Computer Science and Engineering, Sathyabama University,
 Chennai, India

138 Science Publications

JCS

A NOVEL APPROACH FOR
TEST SUITE PRIORITIZATION

1Thangavel Prem Jacob and 2Thavasi Anandam Ravi

1Department of Computer Science and Engineering, Sathyabama University, Chennai, India
2Srinivasa Institute of Engineering and Technology, Chennai, India

Received 2013-09-10; Revised 2013-10-05; Accepted 2013-11-12

ABSTRACT

Software testing is an expensive, time consuming, important activity that controls the quality of the software
and important part of the software development and the maintenance. In testing the time is spent mainly for
generating test cases and to test them. Whenever the software product gets modified, a group of the test cases
has to be re-executed and the new output has to be compared with old one for avoiding the unwanted changes.
If there is a match then the modifications that are made in the software will not affect other parts of the
software. It is not practically possible to re execute all the test case in the program if any change has occurred.
This problem of selection of those test case in regression testing can be re-solved by prioritizing the test case.
This technique will reduce the testing effort. Different techniques were proposed in the past decades and still
require further improvement. Here we propose a clustering based prioritization of the test case. The results
achieved shows that prioritizing the test case has enhanced effectiveness of the test case.

Keywords: Regression Testing, Test Case, Genetic Algorithm, Test Suite

1. INTRODUCTION

Software developers frequently save the available test
suites in such a way if there is any modifications they
can able to reuse them. Software testing has a vast area
of applications that ranges from the subroutines to some
large application system which may have huge number
of statements. Many of the software development
organization have believed that the software which is
independently developed and its operation will
provide better testing and improved security (Arafeen
and Do, 2013). The main objective of testing is to
prevent the bugs. By designing the suitable test cases
will improve the software quality.

The test case designing will be the challenging task.
The testing process that uses some procedures that are
predefined and the outcomes are predictable. But can’t
judge whether the program that is under test passes the
specified test will be unpredictable. The testing process
has to be well planned, scheduled, designed and has to be
prioritized (El-Koka et al., 2013). The testing process

will show that the faults present in the code and design.
The testing process will prove the program failure. The test
automation will be achieved only in the design and
execution. The main objective of prioritization will be
minimizing the test suites. The prioritization of the test case
will schedule the test case in such a way that it maximizes
the objective function.

Since the testers schedule the test cases in such a way
that it achieves the maximum code coverage in the
possible faster rate. These minimization techniques will
lower the cost since it reduces the test suite. There are
different prioritization categories are constructed for those
test cases, in order to remove the bugs, test cases has to be
executed earlier before releasing the final software
product. The test cases can be executed if there is enough
time (Karnavel and Santhoshkumar, 2013). Before the
current product release, test cases will not be given
importance. Only after the current software is released it
will be tested. The test case will not be given importance
since the impact of the test case will be negligible.

Thangavel Prem Jacob and Thavasi Anandam Ravi / Journal of Computer Science 10 (1): 138-142, 2014

139 Science Publications

JCS

This priority scheme will ensure the test cases of
low priority will not create any problem for the
software. Some customers may demand all the features
in the software product has to be presented and tested at
the initial version of the software product. The
coverage criteria have to be met in the earlier stage of
the testing process (Di Nardo et al., 2013).

2. PRIORITIZATION OF THE TEST
CASE

Prioritization will schedule the test suites in
accordance with some criteria. If the test suites are
arranged in specific order then they meet the objective
rather they would not meet if grouped in any other order
(Jacob and Ravi, 2013a).

By prioritization of the test case we can able to
address some different variety of the objectives like fault
detection rate can be increased by the testers, faults with
higher risks can be detected earlier (Polo et al., 2013).
The regression errors possibility can be enhanced to a
faster rate and it can make the system reliable.

2.1. Prioritizing the Fault Detection Rate

Different prioritization techniques can be applied for
the test suites. The test case can be prioritized by the
failure rates or we can prioritize the test case by
increasing the cost-per-coverage in the requirement
features (Shaccour et al., 2013). In this approach the
possibility of revealing the faults have to be increased at
an earlier stage. Early feedback provides information of
the quality goals that are not met (Jacob and Ravi,
2013b). This process also allows the debuggers to begin
their allotted work at the earliest stage.

3. PRIORITIZATION BASED ON
CLUSTERING

3.1. The Motivation Process

The redundancy will make the pair wise
comparisons much robust but it will be expensive and
discourages it for applying it to prioritize the test case.
Total comparisons that are required for comparing
pair wise will be O (n2) number of comparisons. The
humans can able to make a maximum of 100
comparisons above this level significant growth of
inconsistency will reduce the effectiveness.

If there are less than 100 comparisons then those test
suites may contain no more than 15 test cases. The
scalability issue will be challenging task in the scenario

of the real world. For instance if there are 1000 number
of test cases that has to be prioritized then the total pair
wise comparisons required will be 499,640. But for this
human tester can provide the reliable responses to this
huge comparison.

This approach uses k-means prioritization based on
the cluster will reduce the total number of the
comparisons and will be much effective. Here clusters of
the test cases will be prioritized by using the techniques
like prioritization based on clustering.

3.2. Criteria Based on K-Means

By using the two methods in clustering like data that
are arranged as an individual group or in a group of
hierarchy. In the group cluster analysis the data objects
are grouped into clusters so that the objects that belongs
to same cluster will be similar, whereas objects that
belong to some different clusters will be dissimilar.
These clustering techniques are categorized as partitional
and hierarchical modes.

3.3. Partitional Mode

Given the set of database of objects the algorithm for
partitional clustering will construct the partition of data
and each cluster will optimize the clustering criteria so
that minimization of the squared distance sum from
mean that are within the clusters. The partitional
clustering will be more complex since it can enumerates
all possible groupings, it tries for finding the global
optimum. The partitions number will be huge even for a
tiny number of objects. For this problem the common
solution will start at the initial partition, proceed, random
with its own refinement.

If the partitional algorithm is well practiced will run
for different set in the initial points and will investigate
whether each solution will lead to those similar final
partition. These algorithms will try for improving some
certain criterion. First the similarity values are computed
and the results are ordered and selects the one which
optimizes these criteria. So the majority will be
considered like greedy algorithms.

3.4. Hierarchial Mode

These algorithms will create the hierarchal
decompositions with those objects, which will be
either bottom-up (anglomarative) or top-down
(divisive). The agglomerative algorithm that starts
with treating each object as a separate cluster and the
groups are merged successfully in accordance with
distance measure. This clustering will stop when all
the objects are gathered in a single group.

Thangavel Prem Jacob and Thavasi Anandam Ravi / Journal of Computer Science 10 (1): 138-142, 2014

140 Science Publications

JCS

This method follows the greedy bottom-up like
merging whereas the diverse algorithm start with the
single group of the entire object and the groups are split
into smaller groups, until each of the objects that falls
into any one of the clusters. This approach will divide
each of the data objects into disjoint groups in each step
and it follows the similar pattern until the entire objects
fall to a unique cluster. It will be similar to the divide-
and-conquer algorithm.

3.5. The Clustering k-Means Method

This method will produce clusters that are from the
set of the objects based on the objective function
squared-error:

2k

i ii 1
E p C p m

=
= ∈ −∑ ∑

ci - Clusters
p - Point of the cluster
mi - Mean of the cluster ci

The mean of the cluster is represented as a vector for
each of the attribute, mean values for the data in the
cluster, the input parameter will be the total number of
the clusters k. As the output of the algorithm will
return the means or centers for each cluster ci. The
distance is usually measured in Euclidean distance.
Proximity index and the optimization criteria have no
restrictions which can be represented according to
user preference or the application.

Algorithm

Step 1: The initial centres are selected as k objects
Step 2: Assign the data objects in the centre
Step 3: The centre of each cluster are recalculated
Step 4: Repeat the steps 2,3, unless the data object
distribution in the clusters is not changed

The algorithm will be relatively scalable.

4. THE EXPERIMENT

We have to analyze whether the clustering technique
can facilitate the test case prioritization for the test suites.
Whether the prioritization of the test case improve rate of
fault detected from those test suites.

4.1. Prioritization Measure Based on Clustering
and Efficacy

Once we apply the prioritization technique based on
clustering to the problem of quadratic equation. The co-
efficients are read and the roots are determined.

Procedure:

1. Initialize the co-efficients
2. Calculate the roots
3. If roots less than zero
4. Imaginary roots
5. If roots equals zero
6. Calculate Root1
 Assign root 2 equals root1
7. If root greater than zero
8. Calculate Root1, Root2
9. End

4.2. The Cyclomatic Complexity Measure

Flow graph is drawn as in Fig. 1 for the procedure to
find roots. The flow graph is used to evaluate the
cyclomatic complexity.

Cyclomatic complexity can be found in three ways:

V (G) =P+1

Cyclomatic complexity which equals the predicate
nodes plus one, where P represents the number of
predicate nodes:

V(G) = 3+1 = 4

Predicate nodes are the nodes that contain the
conditions whereas in the flow graph there are three
predicate nodes A, B, D.

Cyclomatic Complexity can be calculated by the
number of regions. Regions are the area that is
surrounded by the nodes and the edges:

V (G) = No of regions + 1
V (G) = 3+1 = 4

Cyclomatic Complexity can be calculated as the

number of edges minus the number of nodes plus 2:

V (G) = n-e+2
V (G) = 11-9+2 = 4

Hence the Cyclomatic complexity of the problem is

determined as 4.
Independent paths for the given problem is:

P1: 1 2 3 8
P2:1 2 4 5 8
P3: 1 2 4 6 7 8
P4: 1 2 4 6 1

Thangavel Prem Jacob and Thavasi Anandam Ravi / Journal of Computer Science 10 (1): 138-142, 2014

141 Science Publications

JCS

Fig. 1. The flow graph for quadratic equation problem

Fig. 2. Dendrogram for the test case

5. RESULTS

By applying the k-means clustering approach for the
quadratic problem, we use the independent paths. There
are four independent paths in this path based testing.
Two clusters are initially used as k-value, we calculate
the two clusters that have the combinations:

C1: P1, P2, P3
C2:P3

Clusters are prioritized in accordance with dendrogram

method. The order in which the test cases will be executed
is as follows, P2, P4, P1, P3, the path2 will get the highest
priority and the sequence will be followed.

We use an APFD method for calculating the effective
for calculating the effectiveness of this method by
applying the formula:

APFD = 1-((TF1 + TF2+ TF3+……..+TFM)/nm) + 1/2n

When the dendrogram method that are obtained without
the clustering method for the prioritization the value of
APFD will be 0.5 but when it is applied for
prioritization, value will be 0.625 as in Fig. 2.

6. CONCLUSION

The prioritization of the test case will schedule the
test case in a specific order which increases the
effectiveness to meet the performance goals. The APFD
will increase the fault detection rate in the testing life
cycle and which improves the software quality. We have
to use many techniques that address this issue. As we
know developing the test suite will be an expensive
process and the test suite cannot be run entirely since it
consumes huge time and resources. These issues are well
addressed successfully in this method.

7. REFERENCES

Arafeen, M.J. and H. Do, 2013. Test case prioritization
using requirements-based clustering. Proceedings of
the IEEE 6th International Conference on Software
Testing, Verification and Validation, (ICST) Mar.
18-22, IEEE Xplore Press, Luembourg, pp: 312-321.
DOI: 10.1109/ICST.2013.12

Thangavel Prem Jacob and Thavasi Anandam Ravi / Journal of Computer Science 10 (1): 138-142, 2014

142 Science Publications

JCS

Di Nardo, D., N. Alshahwan, L. Briand and Y. Labiche,
2013. Coverage-based test case prioritisation: An
industrial case study. Proceedings of the IEEE 6th
International Conference on Software Testing,
Verification and Validation (ICST), Mar. 18-22,
IEEE Xplore Press, Luembourg, pp: 302-311. DOI:
10.1109/ICST.2013.27

El-Koka, A., K.H. Cha and D.K. Kang, 2013.
Regularization parameter tuning optimization
approach in logistic regression. Proceedings of the
15th International Conference on Advanced
Communication Technology (ICACT), Jan. 27-30,
IEEE Xplore Press, PyeongChang, pp: 13-18.

Jacob, T.P. and T. Ravi, 2013a. Regression Testing:
Tabu search technique for code coverage. Indian J.
Comput. Sci. Eng., 4: 208-215.

Jacob, T.P. and T. Ravi, 2013b. Detecting of software
source code defects using test case prioritization
rules. Proceedings of the 2nd International
Conference on Latest Computational Technologies,
Jun. 17-18, London, UK., pp: 29-32.

Karnavel, K. and J. Santhoshkumar, 2013. Automated
software testing for application maintenance by
using Bee Colony Optimization algorithms (BCO).
Proceedings of the International Conference on
Information Communication and Embedded
Systems (ICICES), Feb. 21-22, IEEE Xplore Press,
Chennai, pp: 327-330. DOI:
10.1109/ICICES.2013.6508211

Polo, M., P. Reales, M. Piattini and C. Ebert, 2013. Test
automation. IEEE Software, 30: 84-89. DOI:
10.1109/MS.2013.15.

Shaccour, E., F. Zaraket and W. Masri, 2013. Coverage
specification for test case intent preservation in
regression suites. Proceedings of the IEEE 6th
International Conference on Software Testing,
Verification and Validation Workshops, (ICSTW),
Mar. 18-22, IEEE Xplore Press, Luxembourg, pp:
392-395. DOI: 10.1109/ICSTW.2013.50

