
Journal of Computer Science 10 (7): 1186-1196, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1186.1196 Published Online 10 (7) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Rajkumar, N., Department of CSE, Vel Tech Dr. RR and SR Technical University, Avadi, India

1186 Science Publications

JCS

AN EFFICIENT HYBRID ALGORITHM TO
REDUCE LATENCY IN AD-HOC AGGREGATION

Rajkumar, N., N.K. Senthil Kumar, P. Subha and R. Kavitha

Department of CSE, Vel Tech Dr. RR and SR Technical University, Avadi, India

Received; 2013-11-16 Received; 2013-11-29, Accepted; 2014-02-18

ABSTRACT

A data warehouse is a collection of data gathered and organized so that it can easily be analyzed, extracted,
synthesized and also be used for the purpose of further understanding data. Peer to Peer networks are used
for distribution and sharing of documents. In traditional techniques, when aggregate functions like average,
sum and count are encountered, the aggregate operation is performed by considering all the nodes and
tuples, which reduces the efficiency of the query processing system. Exact solutions can be time consuming
and difficult to implement, given the distributed and dynamic nature of P2P networks. The problem is
overcome in this project by selecting random peers and random tuples from P2P networks and then
performing the aggregation operation, thus the speed is increased and latency is reduced. Though accuracy
is compromised to small extent, efficiency is achieved. Thus, this kind of approximate query processing will
be beneficial to the areas where efficiency plays a main role than accuracy. Adaptive Hybrid approach
based on random walk is used to achieve the efficiency in the performance of aggregation operation.

Keywords: Aggregate Function, Peer to Peer Networks, Distributed Databases, Distributed Database

Query Processing and Gossiping

1. INTRODUCTION

1.1. Peer-to-Peer Database

A P2P network consists of several peer nodes that
share data and resources with other peers on an equal
basis. The most gripping applications on P2P systems
to data have been file sharing and retrieval. For
example, P2P systems such as Napster (2006);
Gnutella (2006); Kazaa (2006); Freene (2006) are
mainly known for their file sharing capabilities.

1.2. Aggregation Queries

The huge amount of data within P2P databases
creates a different challenge that has not been
adequately researched thus far, that is, how
aggregation queries on such databases can be replied.
Aggregation queries have the possible wrong
applications in decision support, data analysis and

data mining. Sensor networks (Zhao et al., 2003) can
directly profit from aggregation of traffic analysis data
by contribution a more efficient means of computing
various network-based aggregates such as the average
message size and maximum data throughput within
the network, with smallest energy consumption and
reduced response times. We make the problem more
precise as follows.

Consider a single table T that is distributed over a
P2P system; that is, the peers store horizontal partitions
(of varying sizes) of this table. An aggregation query
such as the following may be initiated at any peer.

Aggregation query: SELECT Agg-Op(Col) FROM T
WHERE selection-condition In the above query, the
Agg-Op may be any aggregation operator such as SUM,
COUNT, AVG and so on, Col may be any numeric
measure column of T or even an expression involving
multiple columns and the selection condition decides
which tuples should be involved in the aggregation.

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1187 Science Publications

JCS

Although aggregation queries have been deeply
investigated in traditional databases, it is not clear that
these techniques will simply adapt to the P2P domain.

1.3. Approximate Query Processing (AQP)

A variety of AQP (Babcock et al., 2003) techniques
have been developed:

The most accepted ones are based on random
sampling, where a small random sample of the rows of the
database is drawn, the query is executed on this small
sample and the results are extrapolated to the complete
database. In addition to effortlessness of implementation,
random sampling has the forceful advantage that, in
addition to an estimate of the aggregate, one can also offer
confidence intervals of the error, with high probability.

generally, two types of sampling-based approaches
have been considered: (1) precomputed samples, where a
random sample is precomputed by scanning the database
and the same sample is reused for several queries and (2)
online samples, where the sample is drawn “on the fly”
upon encountering a query.

1.4. Existing System

The existing system requires aggregation of large
volume of data. It involves scanning of entire P2P
repository as shown in Fig. 1. As there is no centralized
storage it is not possible to store the precomputed
samples. It is time consuming and difficult to
implement when the P2P databases are of dynamic
nature. It focuses on specific application domains and
ignores the semantics of data. The process is also
resource intensive and expensive since it considers all
the peers and all the tuples in it.

1.5. Proposed System

Approximate Query Processing (AQP) is introduced
in P2P databases to overcome the limitations of
existing system by improving the efficiency. Hybrid
algorithm is used which involves two phases with
gossiping thereby selecting peers randomly and then
random selection of tuples is done. Finally cross
validation is performed. Thus the latency is reduced
sacrificing the accuracy to some extent.

1.6. Two Phase Sampling Approach

Our approach has two major phases (Das et al., 2007).
In the first phase, we initiate a fixed-length random walk

from the query node. This random walk should be
long enough to ensure that the visited peers represent
a close sample from the underlying stationary
distribution (the appropriate length of such a walk is
determined in a preprocessing step) (Gribble et al.,
2001; Gupta et al., 2002). We then retrieve certain
information from the visited peers, such as the number
of tuples, the aggregate of tuples (for example, SUM,
COUNT, AVG and so forth) that satisfy the selection
condition and send this information back to the query
node. This information is then analyzed at the query
node to determine the skewed nature of the data that is
distributed across the network, such as the variance of
the aggregates of the data at peers, the amount of
correlation between tuples that exists within the same
peers, the variance in the degrees of individual nodes in
the P2P graph (recall that the degree has a bearing on
the probability that a node will be sampled by the
random walk) and so on. Once this data has been
analyzed at the query node, an estimation is made on
how much more samples are required (and in what
way should these samples be collected) so that the
original query can be optimally answered within the
desired accuracy, with high probability. For example,
the first phase may recommend that the best way to
answer this query is to visit m0 more peers and from
each peer, randomly sample t tuples. We mention that
the first phase is not overly driven by heuristics.
Instead, it is based on underlying theoretical
principles such as the theory of random walks as well
as statistical techniques such as cluster sampling,
block-level sampling and cross validation.

The second phase is then straightforward: A
random walk is reinitiated and tuples are collected
according to the recommendations made by the first
phase. Effectively, the first phase is used to “sniff” the
network and determine an optimal-cost “query plan,”
which is then implemented in the second phase. For
certain aggregates such as COUNT and SUM, further
optimizations may be achieved by pushing the
selections and aggregations to the peers; that is, the
local aggregates instead of raw samples are returned
to the query node, which are then composed into a
final answer. In addition, we explore in-network
techniques for dissemination of values throughout the
network. We accomplish this through a hybrid
technique building upon the Gossip protocol. A
Gossip protocol is executed in rounds.

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1188 Science Publications

JCS

Fig 1. Existing P2P network

For each round, participating peers select adjacent
peers uniformly at random sharing information. The
gossip protocol exploits a communication mechanism
where peers diffuse local aggregates with adjacent peers.
This process relies heavily upon mass conversation,
which describes that the average of all of the sums of
individual peers is the correct average and the sum of all
of the weights is n. In general, as the number of passes of
the Gossip protocol increases, values of participating
peers are increasingly diffused through the network (in
our case, the local groups); therefore, sampling-diffused
values provide a better representation of the values
contained in the network as opposed to a single peer. The
contributions of this study are summarized as follows:

• We introduce the important problem of AQP in P2P

databases, which is likely to be of increasing
significance in the future

• The problem is analyzed in detail and its unique
challenges are comprehensively discussed

• Hybrid sampling technique maximizes per-peer
network computation building upon the Gossip
protocol

• Adaptive two-phase sampling-based approaches
are proposed based on well-founded theoretical
principles

• We present an adaptive approach for computing
aggregates such as COUNT, SUM, AVERAGE
and MEDIAN

1.7. Two-Phase Algorithm

In this section, we present details of our two-phase
algorithm for approximate answering of aggregate

queries. For illustration, we focus on approximating
COUNT queries (it can be easily extended to SUM,
AVERAGE and MEDIAN queries).

2. COUNT

First, we perform a random walk on the P2P
network, attempting to avoid skewing due to graph
clustering and vertices of high degree. Our walk skips j
nodes between each selection to reduce the dependency
between consecutive selected peers. As the jump size
increases, our method increases overall bandwidth
requirements within the database, but for most cases,
small jump sizes suffice for obtaining random samples.

Second, we compute aggregates of the data at the
peers and send these back to the query node. In reality,
the local databases at some peers can be quite large and
aggregating them in their entirety may not be negligible
as compared to the overhead of visiting the peer. In other
words, the simplistic cost model of only counting the
number of visited peers is inappropriate. In such cases, it
is preferable to randomly subsample a small portion of
the local database and apply the aggregation only to this
subsample. Thus, the ideal approach for this problem is
to develop a cost model that takes into account cost of
visiting peers, as well as local processing costs.
Moreover, for such cost models, an ideal two-phase
algorithm should determine various parameters in the
first phase, such as how many peers should be visited in
the second phase and how many tuples should be
subsampled from each visited peer. We have taken a
somewhat simpler approach in which we fix a constant t
(determined at preprocessing time via experiments) such
that if a peer has at most t tuples, then its database is

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1189 Science Publications

JCS

aggregated in its entirety, whereas if the peer has more than
t tuples, then t tuples are randomly selected and aggregated.
Subsampling can be more efficient than scanning the entire
local database, for example, by blocklevel sampling, in
which only a small number of disk blocks are retrieved. If
the data in the disk blocks are highly correlated, then it will
simply mean that the number of peers to be visited will
increase, as determined by our crossvalidation approach at
query time. Third, we estimate the CVError of the collected
sample and use that to estimate the additional number of
peers that need to be visited in the second phase. For
improving robustness, steps 2-4 in the cross-validation
procedure can be repeated a few times, as well as the
average squared CVError computed.

Once the first phase has completed, the second phase
is then straightforward. We simply initiate a second
random walk based on the recommendations of the first
phase and compute the final aggregate.

2.1. SUM and AVERAGE

Although the algorithm has been presented for
COUNT queries, it can be easily extended to other
aggregates such as the SUM and AVERAGE by
modifying the y (Curr) value specified on line 8, phase 1
of the algorithm. For the SUM, no changes are required
and for the AVERAGE, (#tuples/#process Tuples) is
removed from y (Curr), since no scaling is required.

2.2. Algorithms for Choosing a Random Peer

We consider two types of algorithm for choosing a
random peer (King and Saia, 2004) among the
neighbour peers:

• Peer Count Algorithm
• Arc Length Algorithm

Here we consider the peer count algorithm as
follows:

2.3. Peer Count Algorithm

A peer p initially calls FindParameters () to
determine values for dminp and tp and sets λ to
dminp/tp. Then the algorithm enters a loop in which it
selects a random number r from (0, 1). It moves
clockwise around the circle to the next peer until a
peer p1 is encountered such that dist(r, p1)<λ num(r,
p1) or tp peers have been examined.

If such a peer is found, it is returned; otherwise,
the loop is repeated. One execution of a loop is
referred to as a round.

2.3.1. Algorithm

1. Tp,dminp ← FindParameters ();
2. λ ← dminp/tp;
3. While TRUE do:
4. R ← random number in [0, 1];
5. First ← h (r); T ← dist(r, first)-λ;
6. Repeat tp times or until T<0:
7. T ← T+dist (first, next (first))-λ;
8. First ← next (first).
9. If T<0 return first;

In this algorithm used in Hybrid approach to select
peer randomly from the neighbour peers.

3. HYBRID SOLUTION

In order to further improve the quality of our random
sampling process, we have employed a hybrid sampling
technique by allowing individually selected peers (Peer
count Algorithm) to perform additional sampling in
parallel with the random sampling phase. We exploit the
fact that during a random walk, previously selected peers
can perform further independent processing while
waiting for the final peer to be selected for sampling
during the random-walk phase. The ability to execute in-
network computation is a valuable tool for maximizing
sample quality and reducing the required jump size for
individual queries. Our hybrid technique can be utilized
for many aggregate types including SUM, AVERAGE
and COUNT queries.

3.1. Two Phase Adaptive Algorithm

3.1.1. Predefined Values

M:Total number of peers in network E:
Total number of edges in network M:
Number of peers to visit in phase 1 J:
Jump size for random walk
T: max #tuples to be subsampled per peer Inputs Q:
COUNT query with selection condition:
Sink: peer where query is initiated
∆req: desired max error
Phase 1
 // perform random walk
 Curr = Sink; Hops = 1;
 while (Hops < j * m)
 {
 if (Hops % j) Visit(Curr);
 Hops++;
 Curr = Random adjacent peer
 }

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1190 Science Publications

JCS

// Visit peer
 V visit (Curr)
 {
 if (NO of tuples of Curr)<= t) Execute Q on

all tuples else
 Execute Q on t randomly sampled tuples
 y (Curr) = (no of tuples/no of processed

tuples)*result of Query;
 Return (y (Curr); deg (Curr)) to Sink
 }
// Cross validate at sink
Let S = {s1,s2, . . . , sm} be the visited peers Partition
 S randomly into halves: S1 and S2

Compute
s s1

s s2

y(s) m
y"1 /

Prob(s) 2

y(s) m
y"2 /

Prob(s) 2

∈

∈

   =    
  

   =    
  

∑

∑

where, prob(s) = deg(s)/2E
Compute CVError = |y’’1 –y’’ 2|
Return m’ = (m/2)* (CVError2/∆2

req)
Phase 2
 1) Visit m’ peers by using random walk
 2) Let S’ = {s1, s2,... s’m) be the visited peers

 3) Return
s S'

y(3)
y ' / (m')

Prob(3)∈

 
=  

 
∑

First Phase

First, perform a random walk on the P2P network,
attempting to avoid skewing due to graph clustering and
vertices of high degree. Our walk skips j nodes between
each selection to reduce the dependency between
consecutive selected peers. As the jump size increases,
our method increases overall bandwidth requirements
within the database, but for most cases, small jump sizes
suffice for obtaining random samples. Second, compute
aggregates of the data at the peers and send these back to
the query node. Note that in Section 3, we had not
formally discussed the issue of subsampling at peers:
This was primarily done to keep the previous discussion
simple. In reality, the local databases at some peers can
be quite large and aggregating them in their entirety may
not be negligible as compared to the overhead of visiting
the peer. In other words, the simplistic cost model of
only counting the number of visited peers is
inappropriate. In such cases, it is preferable to randomly
sub sample a small portion of the local database and
apply the aggregation only to this sub sample. Thus, the
ideal approach for this problem is to develop a cost

model that takes into account cost of visiting peers, as
well as local processing costs. Moreover, for such cost
models, an parameters in the first phase, such as how
many peers should be visited in the second phase and
how many tuples should be sub sampled from each
visited peer. In this study, we have taken a somewhat
simpler approach in which we fix a constant t
(determined at preprocessing time via experiments) such
that if a peer has at most t tuples, then its database is
aggregated in its entirety, whereas if the peer has more
than t tuples, then t tuples are randomly selected and
aggregated. Subsampling can be more efficient than
scanning the entire local database, for example, by block
level sampling, in which only a small number of disk
blocks are retrieved. If the data in the disk blocks are
highly correlated, then it will simply mean that the
number of peers to be visited will increase, as
determined by our cross validation approach at query
time. Third, we estimate the CrossValidationError of the
collected sample and use that to estimate the additional
number of peers that need to be visited in the second
phase. For improving robustness, steps 2-4 in the cross-
validation procedure can be repeated a few times, as well
as the average squared CroseValidationError computed.

Second Phase

Once the first phase has completed, the second phase
is then straightforward. We simply initiate a second
random walk based on the recommendations of the first
phase and compute the final aggregate.

3.2. Hybrid Algorithm

We propose a hybrid solution for random
sampling, focusing on extending our technique with a
hybrid in-network decentralized approach. Upon
selection of a peer pi by the random-walk phase, pi
contains a period pi period where further processing
may be performed to improve the quality of a peer’s
local data. The period pi period is defined as the
number of hops remaining in the random-walk phase
before the final peer pm is selected for sampling. In
order to exploit these periods, we propose an
incremental decentralized sampling technique building
upon the Gossip protocol over the network due to
gossiping may be varied based upon the user-defined
parameters ra and rr. Parameter ra is the number of
edges that a peer may randomly select for gossiping
and rr is the maximum number of hops from pi that
gossiping is permitted. Regardless of the value of ra or
rr, the number of messages sent to the query node

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1191 Science Publications

JCS

remains constant. These two parameters combined
allow the user to leverage in-network computation,
without affecting the number of messages sent back to
the query node, avoiding possible bottlenecks.

The Gossip protocol works as follows: For each
peer in the path pi, compute the sum of all of the tuples
contained in the peer. For each randomly selected
adjacent peer pij of pi, send the aggregate values sij and
an associated weight wij representing the contributions of
the randomly selected adjacent peers of pi. For each
selected peer pi, local sets are created si1...n and wi1...n
from contributed sij and wij values. From the adjacent
peers, these sets are used to revaluate si and wi for the
current peer pi. This process allows adjacent peers to
mix data and allows local data sets to take into
consideration both the local and the contributed values.
Each round of the Gossip algorithm involves a single
pass where neighboring peers contribute local values to
adjacent peers. A single iteration of the gossip
algorithm (Kempe et al., 2003), xecutes as follows:

• Each peer pi maintains a local sum si and weight

wi. All weights wi are initialized to 1 for average
and 0 for sum

• For each peer, let si1...n represent the Contributed
sums from all randomly selected adjacent peers
and wi1...n represent the number of tuples
contributed from each respective adjacent peer

• Each peer pi randomly selects ra adjacent peer’s
pi1...ra for gossiping

• Assuming that the associated weights for each
item in si1...n is 1, our new si value is the sum of
the vector si1...ra and similarly, wi is the sum of
the vector wi1...ra

• Send (1 = 2) si and (1 = 2)wi to randomly selected
adjacent peers and pi. By sharing (1/2), peers may
exchange information between peers while still
obeying the mass conservation requirement.

• With each aggregate replaced with computed si
and wi, the new estimated aggregate is si/wi

Mixing between peers increases the diffusion of

values through the network. For our purpose, there is no
specific constraint on the number of iterations required
before exiting. Under our hybrid approach, the algorithm
attempts to maximize the amount of mixing per peer pi
by exploiting the period before a peer must send a
sample back to the query node. As stated, the diffusion
speed of the network can be represented as T (n, €) = O
(log n+log 1/€) 0 for expander-type networks. In

addition, for very long walks, convergence may occur
before the final peer has been selected, but we can
continue to perform gossiping, without loss of benefit,
since P2P networks such as Gnutella are, by nature,
transient. Where peers are continually entering and
leaving the network, gossiping can continue to diffuse
new values as peers enter the network.

Simply, since we know how many peers remain to be
selected by the random-walk phase, the lower bound for
the period pi period is the remaining number of hops
required to obtain the required sample, given the
specified jump size and sample size. For example,
suppose a query is executed with the following
parameters: jump size of 10, tuples per peer 100 and a
sample size of 400. After selection of the first peer, at
least 30 hops are required by the random walk before
completion. For the first peer selected p1, the period p1
period is equal to 30 hops. This determines that for the
next 30 hops, further processing can be utilized to
improve the sample quality for the selected peer p1.
Thus, for each consecutive peer selected, the period pi
period is bounded as the (jump size)- the number of
remaining peers to be selected).

As shown in Fig. 2 the earlier that a peer is
selected for sampling; the larger is the period
available for gossiping. As additional hops are taken
to reach the next peer for sampling, already selected
peers can continue to gossip (this is represented by the
rings around peers for each period). By combining our
knowledge of Gossip and the pi period for selected
peers, we can maximize the quality of the sample
obtained from individual peers. Our hybrid sampling
algorithm executes as follows:

• Given a random start-location peer p0, the local

group is {p0}
• Initialize a group for each selected peer pi: groupi

ϵ{p i}
• For each peer in groupi, randomly select ra adjacent

peers
• Extend the local group to include adjacent peers if

and only if (path from pi≤rr) groupi u groupi {For
each peer in groupi add pi1 . . . ra}

• Perform Gossip on current groupi
• Continue steps 2-5 for each peer in groupi until pi

period has been reached
• All peers selected by the random sampling phase,

excluding peers selected by the local groups, send
their current mixed values back to the query node

• Compute remaining algorithm normally

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1192 Science Publications

JCS

Fig. 2. Each ring represents the increase in gossiping per period for each peer.

Peers near the beginning of the random walk have a
longer period to gossip, whereas peers closer to the end
of the walk contain an incrementally smaller period for
gossiping. This creates an uneven level of mixing among
the local groups of peers, but since all peers obey mass
conservation as previously defined, the number of rounds
performed by each group doesn’t affect the overall results
between the different Gossiping groups.

4. RESULTS

4.1. ACTIVE NODES DETECTION

The Fig. 3 shows the Active node detection. This
Active node detection deals with cases:

4.1.1. Listing All Nodes

This case deals with finding all the nodes which are
connected to the network.

4.1.2. Active Nodes Detection

This case takes the input from the previous case and
detects the active nodes by checking for sql server
connection. If the node is having sql server connectivity,
then it is listed as active node.

4.2. AGGREGATE QUERIES

4.2.1. AVERAGE

The average function is done for two cases:

4.2.1.1. EXACT AVERAGE

This deals with calculating the exact average value by
randomly selecting any one of the active nodes. By
considering the selected active node, calculate the
average with all the tuples present in the table.

4.2.1.2. APPROXIMATE AVERAGE

This deals with calculating the approximate value by
randomly selecting any one of the nodes from the active
nodes and from the randomly selected nodes, randomly
select tuples. Then the calculated value is checked against
the exact value. Choose the acceptable error rate (say 25%
or less).Then using the exact and approximate values,

determine the error rate for comparison. If the error rate is
lesser than or equal to the acceptable error rate, return the
average result. Else perform second random walk and
check for error rate continue until the error rate is accepted
as shown in Fig. 4 and also given exact result,
approximate result of Avg (Fig. 5) and comparison chart
for exact and approximate processing time (Fig. 6).

4.2.2. SUM

Like average function, sum is also computed for two
cases. It follows the similar steps of average.

4.2.2.1. EXACT SUM

This deals with calculating the exact sum value by
randomly selecting any one of the active nodes. By
considering the selected active node, calculate the sum
with all the tuples present in the table.

4.2.2.2. APPROXIMATE SUM

This deals with calculating the approximate value by
randomly selecting any one of the nodes from the active
nodes and from the randomly selected nodes, randomly
select tuples. Then the calculated value is checked against
the exact value. Choose the acceptable error rate (say 25%
or less). Then using the exact and approximate values,
determine the error rate for comparison. If the error rate is
lesser than or equal to the acceptable error rate, return the
calculated result. Else perform second random walk and
check for error rate continue until the error rate is accepted
as shown in Fig. 4 and also given exact result,
approximate result of Sum (Fig. 7) and comparison chart
for Exact and Approximate processing time (Fig. 8).

Fig. 3. Active node detection

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1193 Science Publications

JCS

Fig. 4. Average

Fig. 5. Average

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1194 Science Publications

JCS

Fig. 6. Processing chart-average

Fig. 7. Sum

Fig. 8. Processing chart-sum

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1195 Science Publications

JCS

4.2.3. COUNT

This function follows the similar steps of average.

4.2.3.1. EXACT COUNT

This deals with calculating the exact count value by
randomly selecting any one of the active nodes. By
considering the selected active node, calculate the count
with all the tuples present in the table.

4.2.3.2. APPROXIMATE COUNT

This deals with calculating the approximate value by
randomly selecting any one of the nodes from the active
nodes and from the randomly selected nodes, randomly
select tuples. Then the calculated value is checked
against the exact value. Choose the acceptable error rate
(say 25% or less). Then using the exact and
approximate values, determine the error rate for

comparison. If the error rate is lesser than or equal to
the acceptable error rate, return the calculated result.
Else perform second random walk and check for error
rate continue until the error rate is accepted as shown in
Fig. 4 and also given exact result, approximate result of
Count (Fig. 9) and comparison chart for Exact and
Approximate processing Time (Fig. 10).

4.2.4. MINIMUM

This function detects and displays the minimum
value in the table selected by the user. Processing
steps is similar to the above queries.

4.2.5. MAXIMUM

This function detects and displays the maximum value in
the table selected by the user. Processing steps is similar
to the above queries.

Fig. 9. Count

Fig. 10. Processing chart-count

Rajkumar, N. et al. / Journal of Computer Science 10 (7): 1186-1196, 2014

1196 Science Publications

JCS

4.3. Processing Chart

A chart for each aggregate query. The chart compares
the processing time involved for computing exact and
approximate values. The processing time is expressed in
nanoseconds. The chart clearly says that the time
involved for computing approximate values using Hybrid
algorithm will be less compared to exact processing.

5. CONCLUSION

In this project, Hybrid algorithm used for the
approximate answering of ad hoc aggregation queries
in P2P databases. This approach requires a minimal
number of messages sent over the network and
provides tunable parameters to maximize performance
for various network topologies. This approach
provides a powerful technique for approximating
aggregates of various topologies and data clustering
but comes with limitations based upon a given
topologies structure and connectivity. For topologies
with very distinct clusters of peers, it becomes
increasingly difficult to accurately obtain random
samples due to the inability of random-walk process
to quickly reach all clusters. This can be resolved by
increasing the jump size, allowing a larger number of
peers to be considered and increasing the allowed
mixing by our hybrid algorithm. By varying a few
parameters, Hybrid algorithm successfully computes
aggregates within a given required accuracy.

5.1. FUTURE ENHANCEMENTS

As with the development of the computer field and its
related technology this project is a very dynamic and user-
friendly which blends with the needs and the great deal of
requirements of the individual user and also the needs of
industries. This project has been developed with ideas of
flexibility and scalability. This project does not stay
resident to the system but grows to the level of great
assistance in the field of data warehousing and data
mining. Though this project at its initial level is a pre-
cursor to data warehousing and mining operations it is
truly sure that it is of good help in the financial and share-
market oriented fields of data handling. To make things
feasible there are sure certain improvements to be made in
this project like the determination of the error rate with the
view of user inputs and the random selection of the
records in a more efficient manner. The queries can be
made more dynamic. To enhance the security operations
we can add Asymmetric Encryption algorithm.

6. REFERENCES

Das, G., D. Gunopulos B. Arai and V. Kalogeraki,
2007. Efficient approximate query processing in
peer-to-peer networks. IEEE Trans. Knowl. Data
Eng., 19: 919-933.DOI:
10.1109/TKDE.2007.1064

King V. and J. Saia, 2004. Choosing a random peer.
Proceedings of the 23rd Annual ACM Symposium
on Principles of Distributed Computing, Jul. 25-
28, ACM Press, St John, Newfoundland, Canada,
pp: 125-130. DOI:10.1145/1011767.1011786

Babcock, B., S. Chaudhuri and G. Das, 2003.
Dynamic sample selection for approximate query
processing, Proceedings of the 22nd International
Conference Management of Data, Jun. 09-12,
ACM New York, NY, USA., pp: 539-550. DOI:
10.1145/872757.872822

Kempe, D., A. Dobra and J. Gehrke, 2003. Gossip-based
computation of aggregate information. Proceedings
of the 44th Annual IEEE Symposium on
Foundations of Computer Science, Oct. 11-14, IEEE
Xplore Press, pp: 482-491. DOI:

10.1109/SFCS.2003.1238221
Zhao, J., R. Govindan and D. Estrin, 2003. Computing

aggregates for monitoring wireless sensor networks.
Proceeding of the 1st IEEE International Workshop
Sensor Network Protocols and Applications, May
11-11, IEEE Xplore Press, pp: 139-148. DOI:
10.1109/SNPA.2003.1203364

Gribble, S., A. Halevy, Z. Ives, M. Rodrig and D. Suciu,
2001. What can peer-to-peer do for databases and
vice versa? Proceedings of the 4th International
Workshop on the Web and Databases (WDB’ 01),
Santa Barbara, California, USA.

Gupta, A., D. Agrawal and A.E. Abbadi, 2002.
Approximate range selection queries in peer-to-peer
systems. University of California at Santa Barbara.

