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ABSTRACT

A data warehouse is a collection of data gatheneldoaganized so that it can easily be analyzedaeted,
synthesized and also be used for the purpose tfefuunderstanding data. Peer to Peer networkasae

for distribution and sharing of documents. In ttimdhial techniques, when aggregate functions likeragye,
sum and count are encountered, the aggregate mpeistperformed by considering all the nodes and
tuples, which reduces the efficiency of the quelgcpssing system. Exact solutions can be time coimgu
and difficult to implement, given the distributeddadynamic nature of P2P networks. The problem is
overcome in this project by selecting random pemrd random tuples from P2P networks and then
performing the aggregation operation, thus the gpeécreased and latency is reduced. Though acgur
is compromised to small extent, efficiency is aehik Thus, this kind of approximate query processiill

be beneficial to the areas where efficiency playman role than accuracy. Adaptive Hybrid approach
based on random walk is used to achieve the dffigién the performance of aggregation operation.

Keywords: Aggregate Function, Peer to Peéetworks, Distributed Databases, Distributed Dasgba
Query Processing and Gossiping

1. INTRODUCTION data mining. Sensor networks (Zhebal., 2003) can
directly profit from aggregation of traffic analgsdata
1.1. Peer-to-Peer Database by contribution a more efficient means of computing

various network-based aggregates such as the averag

A P2P network consists qf several peer nodes thatmessage size and maximum data throughput within
share data and resources with other peers on &l €quine network, with smallest energy consumption and

basis. The most gripping applications on P2P system \qq,ced response times. We make the problem more
to data have been file sharing and retrieval. Forprecise as follows.

example, P2P systems such as Napster (2006), Consider a sin PETI
] ) gle table T that is distributed oaer
Gnutella (2006); Kazaa (2006); Freene (2006) arepop system; that is, the peers store horizontaitipas

mainly known for their file sharing capabilities. (of varying sizes) of this table. An aggregationeu
1.2. Aggregation Queries such as the following may be initiated at any peer.
o Aggregation query: SELECT Agg-Op(Col) FROM T

The huge amount of data within P2P databasesyHERE selection-condition In the above query, the
creates a different Challenge that has not beenAgg_Op may be any aggregation operator such as SUM,
adequately researched thus far, that is, howCOUNT, AVG and so on, Col may be any numeric
aggregation queries on such databases can bedepliemeasure column of T or even an expression involving
Aggregation queries have the possible wrong multiple columns and the selection condition deside
applications in decision support, data analysis andwhich tuples should be involved in the aggregation.
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Although aggregation queries have been deeplyfrom the query node. This random walk should be
investigated in traditional databases, it is naeaclthat  long enough to ensure that the visited peers reptes
these techniques will simply adapt to the P2P domai a close sample from the underlying stationary
distribution (the appropriate length of such a wadk
determined in a preprocessing step) (Gribbteal.,

A variety of AQP (Babcoclkt al., 2003) techniques 2001; Guptaet al., 2002). We then retrieve certain
have been developed: information from the visited peers, such as the bem

The most accepted ones are based on randomof tuples, the aggregate of tuples (for exampleMSU
sampling, where a small random sample of the rdtlsso = COUNT, AVG and so forth) that satisfy the selection
database is drawn, the query is executed on tha&l sm condition and send this information back to thergue
sample and the results are extrapolated to the letenp node. This information is then analyzed at the guer
database. In addition to effortlessness of implaatem, node to determine the skewed nature of the dataigha
random sampling has the forceful advantage that, indistributed across the network, such as the vaeiarfc
addition to an estimate of the aggregate, one lsanoffer the aggregates of the data at peers, the amount of
confidence intervals of the error, with high protigb correlation between tuples that exists within thee

generally, two types of sampling-based approachespeers, the variance in the degrees of individudlesan
have been considered: (1) precomputed sampleseveher the P2P graph (recall that the degree has a bearing
random sample is precomputed by scanning the dsgaba the probability that a node will be sampled by the
and the same sample is reused for several quenie@%  random walk) and so on. Once this data has been
online samples, where the sample is drawn “on tifife f analyzed at the query node, an estimation is made o
upon encountering a query. how much more samples are required (and in what
1.4. Exigting System way should these sample_s be collected) SO t_hat the

original query can be optimally answered within the

The existing system requires aggregation of largedesired accuracy, with high probability. For exaepl
volume of data. It involves scanning of entire P2P the first phase may recommend that the best way to
repository as shown iRig. 1. As there is no centralized answer this query is to visit frmore peers and from
storage it is not possible to store the precomputedeach peer, randomly sample t tuples. We mentioh tha
samples. It is time consuming and difficult to the first phase is not overly driven by heuristics.
implement when the P2P databases are of dynamignstead, it is based on underlying theoretical
nature. It focuses on specific application domans  principles such as the theory of random walks a we
ignores the semantics of data. The process is alsas statistical techniques such as cluster sampling,
resource intensive and expensive since it considirs plock-level sampling and cross validation.
the peers and all the tuples in it. The second phase is then straightforward: A

random walk is reinitiated and tuples are collected
1.5. Proposed System according to the recommendationspmade by the first

Approximate Query Processing (AQP) is introduced phase. Effectively, the first phase is used toffsnie

in P2P databases to overcome the limitations ofhetwork and determine an optimal-cost “query plan,”

existing system by improving the efficiency. Hybrid Which is then implemented in the second phase. For
algorithm is used which involves two phases with C€rtain aggregates such as COUNT and SUM, further

gossiping thereby selecting peers randomly and thenthimiZ"jltions may be achieved by pushing the

random selection of tuples is done. Finally crossseIeCtlons and aggregations to the peers; thahs,

lidation i ¢ d. Thus the lat . dl local aggregates instead of raw samples are radurne
vaiidation 1S performed. us the fatency 1S Tealce 4 the query node, which are then composed into a

sacrificing the accuracy to some extent. final answer. In addition, we explore in-network
1.6. Two Phase Sampling Approach techniques for dissemination of values throughdet t

network. We accomplish this through a hybrid

Our approach has two major phases (Bas., 2007).  technique building upon the Gossip protocol. A

In the first phase, we initiate a fixed-length ramdwalk Gossip  protocol is  executed in  rounds.

1.3. Approximate Query Processing (AQP)
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Fig 1. Existing P2P network

For each round, participating peers select adjacengueries. For illustration, we focus on approximgtin
peers uniformly at random sharing information. The COUNT queries (it can be easily extended to SUM,
gossip protocol exploits a communication mechanismAVERAGE and MEDIAN queries).
where peers diffuse local aggregates with adjagpeets. 2 COUNT
This process relies heavily upon mass conversation, )
which describes that the average of all of the soms
individual peers is the correct average and the clail
of the weights is n. In general, as the numberasfps of
the Gossip protocol increases, values of partirigat
peers are increasingly diffused through the netwark
our case, the local groups); therefore, sampliffigisizd
values provide a better representation of the walue
contained in the network as opposed to a single pée
contributions of this study are summarized as fadlp

First, we perform a random walk on the P2P
network, attempting to avoid skewing due to graph
clustering and vertices of high degree. Our walipsk
nodes between each selection to reduce the depgnden
between consecutive selected peers. As the jun® siz
increases, our method increases overall bandwidth
requirements within the database, but for most ase
small jump sizes suffice for obtaining random saspl

Second, we compute aggregates of the data at the
peers and send these back to the query node. lityrea
. Lo ) ~" the local databases at some peers can be quite dad

d_ata_b_ases, _Wh'Ch is likely to be of increasing aggregating them in their entirety may not be migle

significance in the future _ _ _as compared to the overhead of visiting the peeother

* The problem is analyzed in detail and its unique \yords, the simplistic cost model of only countirtget
challenges are comprehensively discussed number of visited peers is inappropriate. In suaes, it

* Hybrid sampling technique maximizes per-peer js preferable to randomly subsample a small portibn
network computation building upon the Gossip the local database and apply the aggregation onllis
protocol subsample. Thus, the ideal approach for this probge

« Adaptive two-phase sampling-based approacheso develop a cost model that takes into account @bs
are proposed based on well-founded theoreticalyisiting peers, as well as local processing costs.
principles Moreover, for such cost models, an ideal two-phase

+ We present an adaptive approach for computingalgorithm should determine various parameters & th
aggregates such as COUNT, SUM, AVERAGE first phase, such as how many peers should bedigit

and MEDIAN the second phase and how many tuples should be

. subsampled from each visited peer. We have taken a
1.7. Two-Phase Algorithm somewhat simpler approach in which we fix a cordtan

In this section, we present details of our two-ghas (determined at preprocessing time via experimesush

algorithm for approximate answering of aggregate that if a peer has at most t tuples, then its dagtis

* We introduce the important problem of AQP in P2P
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aggregated in its entirety, whereas if the peemma® than ~ 2.3.1. Algorithm

t tuples, then t tuples are randomly selected ggdegated. ) )

Subsampling can be more efficient than scanningttiee - Todmin, . FindParameters ();
local database, for example, by blocklevel sampling ~ 2-* . dmin/t,,

which only a small number of disk blocks are ree If ~ 3- While TRUE do:

the data in the disk blocks are highly correlateen it will 4. R random number in [0, 1J;
simply mean that the number of peers to be vismdd 5. First_ h (r); T _ dist(r, first)3;
increase, as determined by our crossvalidationoapgprat 6. Repeat tp times or until T<O:
query time. Third, we estimate the CVError of théected 7. T _ T+dist (first, next (first))x;
sample and use that to estimate the additional eumb 8. First_ next (first).

peers that need to be visited in the second phase. 9. If T<O return first;

improving robustness, steps 2-4 in the cross-uadidla _ _ _ _
procedure can be repeated a few times, as welhes t  In this algorithm used in Hybrid approach to select

average squared CVError computed. peer randomly from the neighbour peers.
Once the first phase has completed, the secona phas
is then straightforward. We simply initiate a seton 3.HYBRID SOLUTION

random walk based on the recommendations of tke fir

phase and compute the final aggregate In order to further improve the quality of our ramad

sampling process, we have employed a hybrid samplin
2.1. SUM and AVERAGE technique by allowing individually selected peePedr
count Algorithm) to perform additional sampling in
Although the algorithm has been presented for parallel with the random sampling phase. We exjhat
COUNT queries, it can be easily extended to otherfact that during a random walk, previously selegiedrs
aggregates such as the SUM and AVERAGE bycan perform further independent processing while
modifying the y (Curr) value specified on line igse 1~ waiting for the final peer to be selected for sangl
of the algorithm. For the SUM, no changes are mequi  during the random-walk phase. The ability to exednt
and for the AVERAGE, (#tuples/#process Tuples) is network computation is a valuable tool for maximgi

; o ; sample quality and reducing the required jump $ime
removed from y (Curr), since no scaling is required individual queries. Our hybrid technique can bdiagd

2.2. Algorithmsfor Choosing a Random Peer for many aggregate types including SUM, AVERAGE

. . , and COUNT queries.
We consider two types of algorithm for choosing a

random peer (King and Saia, 2004) among the3.1. Two Phase Adaptive Algorithm
neighbour peers: 3.1.1. Predefined Values

*  Peer Count Algorithm M:Total number of peers in network E:
* Arc Length Algorithm Total number of edges in network M:
_ ) Number of peers to visit in phase 1 J:

Here we consider the peer count algorithm as jymp size for random walk
follows: T: max #tuples to be subsampled per peer Inputs Q:
2.3. Peer Count Algorithm COUNT query with selegtipq _condition:

Sink: peer where query is initiated

A peer p initially calls FindParameters () to Areq: desired max error

determine values for dminp and tp and s&tgo Phase 1

dminp/tp. Then the algorithm enters a loop in whiich /I perform random walk
selects a random number r from (0, 1). It moves Curr = Sink; Hops = 1;
clockwise around the circle to the next peer uatil while (Hops <j* m)
peer g is encountered such that dist(f) num(r,
p') or tp peers have been examined. if (Hops % j) Visit(Curr);
If such a peer is found, it is returned; otherwise, Hops++;
the loop is repeated. One execution of a loop is Curr = Random adjacent peer
referred to as a round. }
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I Visit peer model that takes into account cost of visiting peas
V visit (Curr) well as local processing costs. Moreover, for sookt
{ models, an parameters in the first phase, suchoas h
if (NO of tuples of Curr)<=t) Execute Q on many peers should be visited in the second phade an
all tuples else how many tuples should be sub sampled from each
Execute Q on t randomly sampled tuples visited peer. In this study, we have taken a sona¢wh
y (Curr) = (no of tuples/no of processed simpler approach in which we fix a constant t
tuples)*result of Query; (determined at preprocessing time via experimesush
Return (y (Curr); deg (Curr)) to Sink that if a peer has at most t tuples, then its dmabis
aggregated in its entirety, whereas if the peerrhase
/I Cross validate at sink than t tuples, then t tuples are randomly selected
Let S ={s1,s2, ... ,$ be the visited peers Partition aggregated. Subsampling can be more efficient than
S randomly into halves: S1 and S2 scanning the entire local database, for exampldaldogk
level sampling, in which only a small number ofldis
y"lzz‘( y(s) ]/(m] blocks are retrieved. If the data in the disk bkbeke
&2 Prob(s) highly correlated, then it will simply mean thateth
Compute number of peers to be visited will increase, as
y"2:2[ y(s) ]/[mJ determined by our cross validation approach at yquer
&4 Prob(s) time. Third, we estimate the CrossValidationErrbthe

collected sample and use that to estimate the iaddit

where, prob(s) = deg(s)/2E number of peers that need to be visited in the reico
Compute CVError = |y7 —y" | phase. For improving robustnesseps 2-4 in the cross-
Returnm’ = (m/2)* (CVEMOA%eg) validation procedure can be repeated a few tinmsesedl
Phase 2 as the average squared CroseValidationError cordpute

1) Visit m’ peers by using random walk

2) LetS'={sl,s2,...s) be the visited peers Second Phase

3) Returw-:zm{ y(3) ]/(m') _ Once the_first phase has completeq,_the seconaphas

Prob(3) is then straightforward. We simply initiate a setdon

First Phase random walk based on the recommendations of tke fir

. hase and compute the final aggregate.
First, perform a random walk on the P2P network, P pu ! gareg

attempting to avoid skewing due to graph clustegnd 3.2. Hybrid Algorithm

vertices of high degree. Our walk skips j nhodesvben . .

each selection to reduce the dependency between W€ propose a hybrid solution for random
consecutive selected peers. As the jump size isesea Sampling, focusing on extending our technique waith
our method increases overall bandwidth requirementd?yPrid —in-network decentralized approach. Upon
within the database, but for most cases, small jsings ~ Selection of a peer; by the random-walk phase; p
suffice for obtaining random samples. Second, cdepu Contains a period;pperiod where further processing
aggregates of the data at the peers and sendithels¢éo ~ May be performed to improve the quality of a peer’s
the query node. Note that in Section 3, we had notlocal data. The period;pperiod is defined as the
formally discussed the issue of subsampling at gpeer Number of hops remaining in the random-walk phase
This was primarily done to keep the previous disiars ~ before the final peerpis selected for sampling. In
simple. In reality, the local databases at somespean  order to exploit these periods, we propose an
be quite large and aggregating them in their efytineay incremental decentralized sampling technique bogdi
not be negligible as compared to the overheadsiting upon the Gossip protocol over the network due to
the peer. In other words, the simplistic cost mooel gossiping may be varied based upon the user-defined
only counting the number of visited peers is parameters rand y. Parameter,ris the number of
inappropriate. In such cases, it is preferableatalomly edges that a peer may randomly select for gossiping
sub sample a small portion of the local databask anand ¢ is the maximum number of hops from that
apply the aggregation only to this sub sample. Tthes  gossiping is permitted. Regardless of the valug, of
ideal approach for this problem is to develop atcosr,, the number of messages sent to the query node
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remains constant. These two parameters combinedddition, for very long walks, convergence may eccu
allow the user to leverage in-network computation, before the final peer has been selected, but we can
without affecting the number of messages sent back continue to perform gossiping, without loss of Hene
the query node, avoiding possible bottlenecks. since P2P networks such as Gnutella are, by nature,
The Gossip protocol works as follows: For each transient. Where peers are continually entering and
peer in the path;pcompute the sum of all of the tuples Ieavmgl the network, 9055"?]'”9 can <l:<ont|nue to it
contained in the peer. For each randomly selecteonevé.va lfes as peerslfnterrt] e network. 1o b
adjacent peer;pof p, send the aggregate valugsasd | mg;;), sw;ce Wed now Iiw rl;nany F;]eelrs remgclﬁr;tc()j e
an associated weight;wepresenting the contributions of selected by the random-walk phase, the lower n
the randomly selected adjacent peers pofFor each the perlod P! penpd is the remaining number_ of hop
selected peer;plocal sets are created.s.n and wi...n reqw_r_ed t_o obta_m the required Sf”““p'e- given the
from contributed ;s and w values. From the adjacent specified jump size and sample size. For example,
peers, these sets are used to revalyaamds w for the suppose ~a query IS executed with the following
current peer p This process allows adjacent peers to parameters: jump size of 10, tuples Per peer 1@Dzan
mix data and allows local data sets to take into sample size of 400. After selection of the firseipeat

consideration both the local and the contributeldes least 30. hops are re.quired by the random W‘?‘Ik befor
Each round of the Gossip algorithm involves a singl COMPletion. For the first peer selected fne period p

pass where neighboring peers contribute local walae period is equal to 30 hops. This. determines thr?u_trfe
adjacent peers. A single iteration of the gossip next 30 hops, further processing can be utilized to

algorithm (Kempeet al., 2003), xecutes as follows: improve the sample quality for the selected peer p
Thus, for each consecutive peer selected, the ggyio

period is bounded as the (jump size)- the number of
remaining peers to be selected).

As shown inFig. 2 the earlier that a peer is
selected for sampling; the larger is the period
available for gossiping. As additional hops areetak
to reach the next peer for sampling, already setect

and .Wl"'n represent the .numb(.ar of tuples peers can continue to gossip (this is represenydtid

contributed from each respective a_djacent pee’r fings around peers for each period). By combiniag o
* Each peer prandomly selectsaradjacent peer's  ynowledge of Gossip and the period for selected

pil...1, for gossiping peers, we can maximize the quality of the sample
* Assuming that the associated weights for eachobtained from individual peers. Our hybrid sampling

item in sl...n is 1, our new;salue is the sum of algorithm executes as follows:

the vector 4...r, and similarly, wis the sum of

* Each peer pmaintains a local sum and weight
w;. All weights w are initialized to 1 for average
and 0 for sum

» For each peer, letls..n represent the Contributed
sums from all randomly selected adjacent peers

the vector wi...r, . Given a random start-location peeg, phe local

« Send (1 = 2);sand (1 = 2)wto randomly selected group is {p}
adjacent peers and. By sharing (1/2), peers may * Initialize a group for each selected peer group
exchange information between peers while still elpi}
obeying the mass conservation requirement. +  For each peer in groypandomly select,radjacent

e With each aggregate replaced with computed s peers
and w, the new estimated aggregate;iss . Extend the local group to include adjacent peers if

and only if (path from gr,) group u group {For

Mixing between peers increases the diffusion of each peerin groypdd pl . . . g}

values through the network. For our purpose, tigere . Perform Gossip on current grqup

specific constraint on the number of iterationsuiesg . Continue ste ; T
o . . ps 2-5 for each peer in growil p
before exiting. Under our hybrid approach, the atgm period has been reached

attempts to maximize the amount of mixing per pger .
by exploiting the period before a peer must send a°  All peers selected by the random sampling phase,

sample back to the query node. As stated, the siliffu excluding peers selected by the local groups, send
speed of the network can be represented as T (&) their current mixed values back to the query node
(log n+log 1/€) 0 for expander-type networks. In e Compute remaining algorithm normally
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Fig. 2. Each ring represents the increase in gossipinggrénd for each peer.

Peers near the beginning of the random walk have aletermine the error rate for comparison. If thererate is
longer period to gossip, whereas peers closeredctid lesser than or equal to the acceptable error netigrn the
of the walk contain an incrementally smaller perfod average result. Else perform second random walk and
gossiping. This creates an uneven level of miximgiag check for error rate continue until the error liataccepted
the local groups of peers, but since all peers ahags as shown inFig. 4 and also given exact result,
conservation as previously defined, the numbeoohds approximate result of AvgH{g. 5) and comparison chart
performed by each group doesn't affect the oveealllts  for exact and approximate processing tiffFig.(6).
between the different Gossiping groups. 422 SUM

4.RESULTS Like average function, sum is also computed for two

cases. It follows the similar steps of average.
4.1. ACTIVE NODESDETECTION
_ _ ] 4221 EXACT SUM
The Fig. 3 shows the Active node detection. This

Active node detection deals with cases: This deals with calculating the exact sum value by
o randomly selecting any one of the active nodes. By
4.1.1. Listing All Nodes considering the selected active node, calculatestim

This case deals with finding all the nodes whicé ar with all the tuples present in the table.

connected to the network. 4.2.2.2. APPROXIMATE SUM

4.1.2. Active Nodes Detection This deals with calculating the approximate valye b
randomly selecting any one of the nodes from theec
nodes and from the randomly selected nodes, rarydoml
'select tuples. Then the calculated value is cheaeghst

This case takes the input from the previous case an
detects the active nodes by checking for sqgl serve

connection. If the node is having sql server COtimf,  {he exact value. Choose the acceptable errorsage26%
then itis listed as active node. or less). Then using the exact and approximateesalu
determine the error rate for comparison. If thererate is
4.2 AGGREGATE QUERIES lesser than or equal to the acceptable error netigrn the
4.2.1. AVERAGE calculated result. Else perform second random \aalk
Lo ] check for error rate continue until the error iataccepted
The average function is done for two cases: as shown inFig. 4 and also given exact result,
42.1.1. EXACT AVERAGE approximate result of Sunfrig. 7) and comparison chart

for Exact and Approximate processing tirkég( 8).
This deals with calculating the exact average vhle

randomly selecting any one of the active nodes. By _
considering the selected active node, calculate the Request for List all nodes
average with all the tuples present in the table. ‘ Net View J Al nodes
4.2.1.2. APPROXIMATE AVERAGE Client Active nodes

This deals with calculating the approximate valye b detection
randomly selecting any one of the nodes from thivec | Active nodes

nodes and from the randomly selected nodes, rarydoml
select tuples. Then the calculated value is cheagaihst Node Response
the exact value. Choose the acceptable errorsaye26%

or less).Then using the exact and approximate salue Fig. 3. Active node detection
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4.2.3. COUNT comparison. If the error rate is lesser than oraéqo
the acceptable error rate, return the calculateltie
Else perform second random walk and check for error
4.2.3.1. EXACT COUNT rate continue until the error rate is acceptechasvs in
_ ) ) Fig. 4 and also given exact result, approximate result of
This deals with calculating the exact count valye b count €ig. 9) and comparison chart for Exact and

randomly selecting any one of the active nodes. Byapproximate processing Tim&ig. 10).
considering the selected active node, calculatetumt

with all the tuples present in the table. 4.2.4. MINIMUM

4.2.3.2. APPROXIMATE COUNT This function detects and displays the minimum
value in the table selected by the user. Processing
steps is similar to the above queries.

This function follows the similar steps of average.

This deals with calculating the approximate valye b
randomly selecting any one of the nodes from thivec
nodes and from the randomly selected nodes, rarydoml 4.2.5. MAXIMUM
select tuples. Then the calculated value is checke
against the exact value. Choose the acceptable rete
(say 25% or less). Then using the exact an
approximate values, determine the error rate for

dThis function detects and displays the maximum eatu
OIthe table selected by the user. Processing stegsiiar
to the above queries.

ER Agerepation Result - extends JFrame E:]@tgl
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4.3. Processing Chart

A chart for each aggregate query. The chart conspare
the processing time involved for computing exactl an
approximate values. The processing time is expdesse
nanoseconds. The chart clearly says that the time
involved for computing approximate values using Hiyb
algorithm will be less compared to exact processing
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