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ABSTRACT 

A data warehouse is a collection of data gathered and organized so that it can easily be analyzed, extracted, 
synthesized and also be used for the purpose of further understanding data. Peer to Peer networks are used 
for distribution and sharing of documents. In traditional techniques, when aggregate functions like average, 
sum and count are encountered, the aggregate operation is performed by considering all the nodes and 
tuples, which reduces the efficiency of the query processing system. Exact solutions can be time consuming 
and difficult to implement, given the distributed and dynamic nature of P2P networks. The problem is 
overcome in this project by selecting random peers and random tuples from P2P networks and then 
performing the aggregation operation, thus the speed is increased and latency is reduced. Though accuracy 
is compromised to small extent, efficiency is achieved. Thus, this kind of approximate query processing will 
be beneficial to the areas where efficiency plays a main role than accuracy. Adaptive Hybrid approach 
based on random walk is used to achieve the efficiency in the performance of aggregation operation. 

 
Keywords: Aggregate Function, Peer to Peer Networks, Distributed Databases, Distributed Database 

Query Processing and Gossiping 

1. INTRODUCTION 

1.1. Peer-to-Peer Database 

A P2P network consists of several peer nodes that 
share data and resources with other peers on an equal 
basis. The most gripping applications on P2P systems 
to data have been file sharing and retrieval. For 
example, P2P systems such as Napster (2006); 
Gnutella (2006); Kazaa (2006); Freene (2006) are 
mainly known for their file sharing capabilities. 

1.2. Aggregation Queries 

The huge amount of data within P2P databases 
creates a different challenge that has not been 
adequately researched thus far, that is, how 
aggregation queries on such databases can be replied. 
Aggregation queries have the possible wrong 
applications in decision support, data analysis and 

data mining. Sensor networks (Zhao et al., 2003) can 
directly profit from aggregation of traffic analysis data 
by contribution a more efficient means of computing 
various network-based aggregates such as the average 
message size and maximum data throughput within 
the network, with smallest energy consumption and 
reduced response times. We make the problem more 
precise as follows. 

Consider a single table T that is distributed over a 
P2P system; that is, the peers store horizontal partitions 
(of varying sizes) of this table. An aggregation query 
such as the following may be initiated at any peer. 

Aggregation query: SELECT Agg-Op(Col) FROM T 
WHERE selection-condition In the above query, the 
Agg-Op may be any aggregation operator such as SUM, 
COUNT, AVG and so on, Col may be any numeric 
measure column of T or even an expression involving 
multiple columns and the selection condition decides 
which tuples should be involved in the aggregation. 
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Although aggregation queries have been deeply 
investigated in traditional databases, it is not clear that 
these techniques will simply adapt to the P2P domain. 

1.3. Approximate Query Processing (AQP) 

A variety of AQP (Babcock et al., 2003) techniques 
have been developed: 

The most accepted ones are based on random 
sampling, where a small random sample of the rows of the 
database is drawn, the query is executed on this small 
sample and the results are extrapolated to the complete 
database. In addition to effortlessness of implementation, 
random sampling has the forceful advantage that, in 
addition to an estimate of the aggregate, one can also offer 
confidence intervals of the error, with high probability. 

generally, two types of sampling-based approaches 
have been considered: (1) precomputed samples, where a 
random sample is precomputed by scanning the database 
and the same sample is reused for several queries and (2) 
online samples, where the sample is drawn “on the fly” 
upon encountering a query. 

1.4. Existing System 

The existing system requires aggregation of large 
volume of data. It involves scanning of entire P2P 
repository as shown in Fig. 1. As there is no centralized 
storage it is not possible to store the precomputed 
samples. It is time consuming and difficult to 
implement when the P2P databases are of dynamic 
nature. It focuses on specific application domains and 
ignores the semantics of data. The process is also 
resource intensive and expensive since it considers all 
the peers and all the tuples in it. 

1.5. Proposed System 

Approximate Query Processing (AQP) is introduced 
in P2P databases to overcome the limitations of 
existing system by improving the efficiency. Hybrid 
algorithm is used which involves two phases with 
gossiping thereby selecting peers randomly and then 
random selection of tuples is done. Finally cross 
validation is performed. Thus the latency is reduced 
sacrificing the accuracy to some extent. 

1.6. Two Phase Sampling Approach 

Our approach has two major phases (Das et al., 2007). 
In the first phase, we initiate a fixed-length random walk 

from the query node. This random walk should be 
long enough to ensure that the visited peers represent 
a close sample from the underlying stationary 
distribution (the appropriate length of such a walk is 
determined in a preprocessing step) (Gribble et al., 
2001; Gupta et al., 2002). We then retrieve certain 
information from the visited peers, such as the number 
of tuples, the aggregate of tuples (for example, SUM, 
COUNT, AVG and so forth) that satisfy the selection 
condition and send this information back to the query 
node. This information is then analyzed at the query 
node to determine the skewed nature of the data that is 
distributed across the network, such as the variance of 
the aggregates of the data at peers, the amount of 
correlation between tuples that exists within the same 
peers, the variance in the degrees of individual nodes in 
the P2P graph (recall that the degree has a bearing on 
the probability that a node will be sampled by the 
random walk) and so on. Once this data has been 
analyzed at the query node, an estimation is made on 
how much more samples are required (and in what 
way should these samples be collected) so that the 
original query can be optimally answered within the 
desired accuracy, with high probability. For example, 
the first phase may recommend that the best way to 
answer this query is to visit m0 more peers and from 
each peer, randomly sample t tuples. We mention that 
the first phase is not overly driven by heuristics. 
Instead, it is based on underlying theoretical 
principles such as the theory of random walks as well 
as statistical techniques such as cluster sampling, 
block-level sampling and cross validation. 

The second phase is then straightforward: A 
random walk is reinitiated and tuples are collected 
according to the recommendations made by the first 
phase. Effectively, the first phase is used to “sniff” the 
network and determine an optimal-cost “query plan,” 
which is then implemented in the second phase. For 
certain aggregates such as COUNT and SUM, further 
optimizations may be achieved by pushing the 
selections and aggregations to the peers; that is, the 
local aggregates instead of raw samples are returned 
to the query node, which are then composed into a 
final answer. In addition, we explore in-network 
techniques for dissemination of values throughout the 
network. We accomplish this through a hybrid 
technique building upon the Gossip protocol. A 
Gossip protocol is executed in rounds.  
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Fig 1. Existing P2P network 
 

For each round, participating peers select adjacent 
peers uniformly at random sharing information. The 
gossip protocol exploits a communication mechanism 
where peers diffuse local aggregates with adjacent peers. 
This process relies heavily upon mass conversation, 
which describes that the average of all of the sums of 
individual peers is the correct average and the sum of all 
of the weights is n. In general, as the number of passes of 
the Gossip protocol increases, values of participating 
peers are increasingly diffused through the network (in 
our case, the local groups); therefore, sampling-diffused 
values provide a better representation of the values 
contained in the network as opposed to a single peer. The 
contributions of this study are summarized as follows: 
 
• We introduce the important problem of AQP in P2P 

databases, which is likely to be of increasing 
significance in the future 

• The problem is analyzed in detail and its unique 
challenges are comprehensively discussed 

• Hybrid sampling technique maximizes per-peer 
network computation building upon the Gossip 
protocol 

• Adaptive two-phase sampling-based approaches 
are proposed based on well-founded theoretical 
principles 

• We present an adaptive approach for computing 
aggregates such as COUNT, SUM, AVERAGE 
and MEDIAN 

1.7. Two-Phase Algorithm 

In this section, we present details of our two-phase 
algorithm for approximate answering of aggregate 

queries. For illustration, we focus on approximating 
COUNT queries (it can be easily extended to SUM, 
AVERAGE and MEDIAN queries). 

2. COUNT 

First, we perform a random walk on the P2P 
network, attempting to avoid skewing due to graph 
clustering and vertices of high degree. Our walk skips j 
nodes between each selection to reduce the dependency 
between consecutive selected peers. As the jump size 
increases, our method increases overall bandwidth 
requirements within the database, but for most cases, 
small jump sizes suffice for obtaining random samples. 

Second, we compute aggregates of the data at the 
peers and send these back to the query node. In reality, 
the local databases at some peers can be quite large and 
aggregating them in their entirety may not be negligible 
as compared to the overhead of visiting the peer. In other 
words, the simplistic cost model of only counting the 
number of visited peers is inappropriate. In such cases, it 
is preferable to randomly subsample a small portion of 
the local database and apply the aggregation only to this 
subsample. Thus, the ideal approach for this problem is 
to develop a cost model that takes into account cost of 
visiting peers, as well as local processing costs. 
Moreover, for such cost models, an ideal two-phase 
algorithm should determine various parameters in the 
first phase, such as how many peers should be visited in 
the second phase and how many tuples should be 
subsampled from each visited peer. We have taken a 
somewhat simpler approach in which we fix a constant t 
(determined at preprocessing time via experiments) such 
that if a peer has at most t tuples, then its database is 
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aggregated in its entirety, whereas if the peer has more than 
t tuples, then t tuples are randomly selected and aggregated. 
Subsampling can be more efficient than scanning the entire 
local database, for example, by blocklevel sampling, in 
which only a small number of disk blocks are retrieved. If 
the data in the disk blocks are highly correlated, then it will 
simply mean that the number of peers to be visited will 
increase, as determined by our crossvalidation approach at 
query time. Third, we estimate the CVError of the collected 
sample and use that to estimate the additional number of 
peers that need to be visited in the second phase. For 
improving robustness, steps 2-4 in the cross-validation 
procedure can be repeated a few times, as well as the 
average squared CVError computed. 

Once the first phase has completed, the second phase 
is then straightforward. We simply initiate a second 
random walk based on the recommendations of the first 
phase and compute the final aggregate. 

2.1. SUM and AVERAGE 

Although the algorithm has been presented for 
COUNT queries, it can be easily extended to other 
aggregates such as the SUM and AVERAGE by 
modifying the y (Curr) value specified on line 8, phase 1 
of the algorithm. For the SUM, no changes are required 
and for the AVERAGE, (#tuples/#process Tuples) is 
removed from y (Curr), since no scaling is required. 

2.2. Algorithms for Choosing a Random Peer 

We consider two types of algorithm for choosing a 
random peer (King and Saia, 2004) among the 
neighbour peers: 
 
• Peer Count Algorithm  
• Arc Length Algorithm  
 

Here we consider the peer count algorithm as 
follows:  

2.3. Peer Count Algorithm 

A peer p initially calls FindParameters () to 
determine values for dminp and tp and sets λ to 
dminp/tp. Then the algorithm enters a loop in which it 
selects a random number r from (0, 1). It moves 
clockwise around the circle to the next peer until a 
peer p1 is encountered such that dist(r, p1)<λ num(r, 
p1) or tp peers have been examined. 

If such a peer is found, it is returned; otherwise, 
the loop is repeated. One execution of a loop is 
referred to as a round.  

2.3.1. Algorithm 

1. Tp,dminp ← FindParameters (); 
2. λ ← dminp/tp; 
3. While TRUE do: 
4. R ← random number in [0, 1]; 
5. First ← h (r); T ← dist(r, first)-λ; 
6. Repeat tp times or until T<0:  
7. T ← T+dist (first, next (first))-λ;  
8. First ← next (first).  
9. If T<0 return first;  
 

In this algorithm used in Hybrid approach to select 
peer randomly from the neighbour peers. 

3. HYBRID SOLUTION 

In order to further improve the quality of our random 
sampling process, we have employed a hybrid sampling 
technique by allowing individually selected peers (Peer 
count Algorithm) to perform additional sampling in 
parallel with the random sampling phase. We exploit the 
fact that during a random walk, previously selected peers 
can perform further independent processing while 
waiting for the final peer to be selected for sampling 
during the random-walk phase. The ability to execute in-
network computation is a valuable tool for maximizing 
sample quality and reducing the required jump size for 
individual queries. Our hybrid technique can be utilized 
for many aggregate types including SUM, AVERAGE 
and COUNT queries. 

3.1. Two Phase Adaptive Algorithm 

3.1.1. Predefined Values 

M:Total number of peers in network E:  
Total number of edges in network M:  
Number of peers to visit in phase 1 J:  
Jump size for random walk 
T: max #tuples to be subsampled per peer Inputs Q: 
COUNT query with selection condition: 
Sink: peer where query is initiated 
∆req: desired max error 
Phase 1 
 // perform random walk 
  Curr = Sink; Hops = 1; 
  while (Hops < j * m) 
  { 
 if (Hops % j) Visit(Curr); 
 Hops++; 
 Curr = Random adjacent peer 
 } 
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// Visit peer 
 V visit (Curr) 
 { 
 if (NO of tuples of Curr)<= t) Execute Q on 

all tuples else 
 Execute Q on t randomly sampled tuples 
 y (Curr) = (no of tuples/no of processed 

tuples)*result of Query; 
 Return (y (Curr); deg (Curr)) to Sink 
 } 
// Cross validate at sink 
Let S = {s1,s2, . . . , sm} be the visited peers Partition 
 S randomly into halves: S1 and S2 
 

Compute
s s1

s s2

y(s) m
y"1 /

Prob(s) 2

y(s) m
y"2 /

Prob(s) 2

∈

∈

   =    
  

   =    
  

∑

∑
 

 
where, prob(s) = deg(s)/2E 
Compute CVError = |y’’1 –y’’ 2| 
Return m’ = (m/2)* (CVError2/∆2

req) 
Phase 2 
 1) Visit m’ peers by using random walk  
 2) Let S’ = {s1, s2,... s’m) be the visited peers  

 3) Return
s S'

y(3)
y ' / (m')

Prob(3)∈

 
=  

 
∑  

First Phase 

First, perform a random walk on the P2P network, 
attempting to avoid skewing due to graph clustering and 
vertices of high degree. Our walk skips j nodes between 
each selection to reduce the dependency between 
consecutive selected peers. As the jump size increases, 
our method increases overall bandwidth requirements 
within the database, but for most cases, small jump sizes 
suffice for obtaining random samples. Second, compute 
aggregates of the data at the peers and send these back to 
the query node. Note that in Section 3, we had not 
formally discussed the issue of subsampling at peers: 
This was primarily done to keep the previous discussion 
simple. In reality, the local databases at some peers can 
be quite large and aggregating them in their entirety may 
not be negligible as compared to the overhead of visiting 
the peer. In other words, the simplistic cost model of 
only counting the number of visited peers is 
inappropriate. In such cases, it is preferable to randomly 
sub sample a small portion of the local database and 
apply the aggregation only to this sub sample. Thus, the 
ideal approach for this problem is to develop a cost 

model that takes into account cost of visiting peers, as 
well as local processing costs. Moreover, for such cost 
models, an parameters in the first phase, such as how 
many peers should be visited in the second phase and 
how many tuples should be sub sampled from each 
visited peer. In this study, we have taken a somewhat 
simpler approach in which we fix a constant t 
(determined at preprocessing time via experiments) such 
that if a peer has at most t tuples, then its database is 
aggregated in its entirety, whereas if the peer has more 
than t tuples, then t tuples are randomly selected and 
aggregated. Subsampling can be more efficient than 
scanning the entire local database, for example, by block 
level sampling, in which only a small number of disk 
blocks are retrieved. If the data in the disk blocks are 
highly correlated, then it will simply mean that the 
number of peers to be visited will increase, as 
determined by our cross validation approach at query 
time. Third, we estimate the CrossValidationError of the 
collected sample and use that to estimate the additional 
number of peers that need to be visited in the second 
phase. For improving robustness, steps 2-4 in the cross-
validation procedure can be repeated a few times, as well 
as the average squared CroseValidationError computed.  

Second Phase 

Once the first phase has completed, the second phase 
is then straightforward. We simply initiate a second 
random walk based on the recommendations of the first 
phase and compute the final aggregate. 

3.2. Hybrid Algorithm 

We propose a hybrid solution for random 
sampling, focusing on extending our technique with a 
hybrid in-network decentralized approach. Upon 
selection of a peer pi by the random-walk phase, pi 
contains a period pi period where further processing 
may be performed to improve the quality of a peer’s 
local data. The period pi period is defined as the 
number of hops remaining in the random-walk phase 
before the final peer pm is selected for sampling. In 
order to exploit these periods, we propose an 
incremental decentralized sampling technique building 
upon the Gossip protocol over the network due to 
gossiping may be varied based upon the user-defined 
parameters ra and rr. Parameter ra is the number of 
edges that a peer may randomly select for gossiping 
and rr is the maximum number of hops from pi that 
gossiping is permitted. Regardless of the value of ra or 
rr, the number of messages sent to the query node 
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remains constant. These two parameters combined 
allow the user to leverage in-network computation, 
without affecting the number of messages sent back to 
the query node, avoiding possible bottlenecks. 

The Gossip protocol works as follows: For each 
peer in the path pi, compute the sum of all of the tuples 
contained in the peer. For each randomly selected 
adjacent peer pij of pi, send the aggregate values sij and 
an associated weight wij representing the contributions of 
the randomly selected adjacent peers of pi. For each 
selected peer pi, local sets are created si1...n and wi1...n 
from contributed sij and wij values. From the adjacent 
peers, these sets are used to revaluate si and wi for the 
current peer pi. This process allows adjacent peers to 
mix data and allows local data sets to take into 
consideration both the local and the contributed values. 
Each round of the Gossip algorithm involves a single 
pass where neighboring peers contribute local values to 
adjacent peers. A single iteration of the gossip 
algorithm (Kempe et al., 2003), xecutes as follows: 
 
• Each peer pi maintains a local sum si and weight 

wi. All weights wi are initialized to 1 for average 
and 0 for sum 

• For each peer, let si1...n represent the Contributed 
sums from all randomly selected adjacent peers 
and wi1...n represent the number of tuples 
contributed from each respective adjacent peer 

• Each peer pi randomly selects ra adjacent peer’s 
pi1...ra for gossiping 

• Assuming that the associated weights for each 
item in si1...n is 1, our new si value is the sum of 
the vector si1...ra and similarly, wi is the sum of 
the vector wi1...ra 

• Send (1 = 2) si and (1 = 2)wi to randomly selected 
adjacent peers and pi. By sharing (1/2), peers may 
exchange information between peers while still 
obeying the mass conservation requirement.  

• With each aggregate replaced with computed si 
and wi, the new estimated aggregate is si/wi 

 
Mixing between peers increases the diffusion of 

values through the network. For our purpose, there is no 
specific constraint on the number of iterations required 
before exiting. Under our hybrid approach, the algorithm 
attempts to maximize the amount of mixing per peer pi 
by exploiting the period before a peer must send a 
sample back to the query node. As stated, the diffusion 
speed of the network can be represented as T (n, €) = O 
(log n+log 1/€) 0 for expander-type networks. In 

addition, for very long walks, convergence may occur 
before the final peer has been selected, but we can 
continue to perform gossiping, without loss of benefit, 
since P2P networks such as Gnutella are, by nature, 
transient. Where peers are continually entering and 
leaving the network, gossiping can continue to diffuse 
new values as peers enter the network. 

Simply, since we know how many peers remain to be 
selected by the random-walk phase, the lower bound for 
the period pi period is the remaining number of hops 
required to obtain the required sample, given the 
specified jump size and sample size. For example, 
suppose a query is executed with the following 
parameters: jump size of 10, tuples per peer 100 and a 
sample size of 400. After selection of the first peer, at 
least 30 hops are required by the random walk before 
completion. For the first peer selected p1, the period p1 
period is equal to 30 hops. This determines that for the 
next 30 hops, further processing can be utilized to 
improve the sample quality for the selected peer p1. 
Thus, for each consecutive peer selected, the period pi 
period is bounded as the (jump size)- the number of 
remaining peers to be selected). 

As shown in Fig. 2 the earlier that a peer is 
selected for sampling; the larger is the period 
available for gossiping. As additional hops are taken 
to reach the next peer for sampling, already selected 
peers can continue to gossip (this is represented by the 
rings around peers for each period). By combining our 
knowledge of Gossip and the pi period for selected 
peers, we can maximize the quality of the sample 
obtained from individual peers. Our hybrid sampling 
algorithm executes as follows: 
 
• Given a random start-location peer p0, the local 

group is {p0} 
• Initialize a group for each selected peer pi: groupi 

ϵ{p i} 
• For each peer in groupi, randomly select ra adjacent 

peers 
• Extend the local group to include adjacent peers if 

and only if (path from pi≤rr) groupi u groupi {For 
each peer in groupi add pi1 . . . ra} 

• Perform Gossip on current groupi 
• Continue steps 2-5 for each peer in groupi until pi 

period has been reached 
• All peers selected by the random sampling phase, 

excluding peers selected by the local groups, send 
their current mixed values back to the query node 

• Compute remaining algorithm normally
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Fig. 2. Each ring represents the increase in gossiping per period for each peer. 
 

Peers near the beginning of the random walk have a 
longer period to gossip, whereas peers closer to the end 
of the walk contain an incrementally smaller period for 
gossiping. This creates an uneven level of mixing among 
the local groups of peers, but since all peers obey mass 
conservation as previously defined, the number of rounds 
performed by each group doesn’t affect the overall results 
between the different Gossiping groups. 

4. RESULTS 

4.1. ACTIVE NODES DETECTION 

The Fig. 3 shows the Active node detection. This 
Active node detection deals with cases: 

4.1.1. Listing All Nodes 

This case deals with finding all the nodes which are 
connected to the network. 

4.1.2. Active Nodes Detection 

This case takes the input from the previous case and 
detects the active nodes by checking for sql server 
connection. If the node is having sql server connectivity, 
then it is listed as active node. 

4.2. AGGREGATE QUERIES   

4.2.1. AVERAGE 

The average function is done for two cases: 

4.2.1.1. EXACT AVERAGE 

This deals with calculating the exact average value by 
randomly selecting any one of the active nodes. By 
considering the selected active node, calculate the 
average with all the tuples present in the table. 

4.2.1.2. APPROXIMATE AVERAGE 

This deals with calculating the approximate value by 
randomly selecting any one of the nodes from the active 
nodes and from the randomly selected nodes, randomly 
select tuples. Then the calculated value is checked against 
the exact value. Choose the acceptable error rate (say 25% 
or less).Then using the exact and approximate values, 

determine the error rate for comparison. If the error rate is 
lesser than or equal to the acceptable error rate, return the 
average result. Else perform second random walk and 
check for error rate continue until the error rate is accepted 
as shown in Fig. 4 and also given exact result, 
approximate result of Avg (Fig. 5) and comparison chart 
for exact and approximate processing time (Fig. 6). 

4.2.2. SUM  

Like average function, sum is also computed for two 
cases. It follows the similar steps of average. 

4.2.2.1. EXACT SUM 

This deals with calculating the exact sum value by 
randomly selecting any one of the active nodes. By 
considering the selected active node, calculate the sum 
with all the tuples present in the table. 

4.2.2.2. APPROXIMATE SUM 

This deals with calculating the approximate value by 
randomly selecting any one of the nodes from the active 
nodes and from the randomly selected nodes, randomly 
select tuples. Then the calculated value is checked against 
the exact value. Choose the acceptable error rate (say 25% 
or less). Then using the exact and approximate values, 
determine the error rate for comparison. If the error rate is 
lesser than or equal to the acceptable error rate, return the 
calculated result. Else perform second random walk and 
check for error rate continue until the error rate is accepted 
as shown in Fig. 4 and also given exact result, 
approximate result of Sum (Fig. 7) and comparison chart 
for Exact and Approximate processing time (Fig. 8). 
 

 
 
Fig. 3. Active node detection 
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Fig. 4. Average 

 

 
 

Fig. 5. Average 
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Fig. 6. Processing chart-average 
 

 
 

Fig. 7. Sum 
 

 
 

Fig. 8. Processing chart-sum 
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4.2.3. COUNT 

This function follows the similar steps of average. 

4.2.3.1. EXACT COUNT 

This deals with calculating the exact count value by 
randomly selecting any one of the active nodes. By 
considering the selected active node, calculate the count 
with all the tuples present in the table. 

4.2.3.2. APPROXIMATE COUNT 

This deals with calculating the approximate value by 
randomly selecting any one of the nodes from the active 
nodes and from the randomly selected nodes, randomly 
select tuples. Then the calculated value is checked 
against the exact value. Choose the acceptable error rate 
(say 25% or less). Then using the exact and 
approximate values, determine the error rate for 

comparison. If the error rate is lesser than or equal to 
the acceptable error rate, return the calculated result. 
Else perform second random walk and check for error 
rate continue until the error rate is accepted as shown in 
Fig. 4 and also given exact result, approximate result of 
Count (Fig. 9) and comparison chart for Exact and 
Approximate processing Time (Fig. 10). 

4.2.4. MINIMUM 

This function detects and displays the minimum 
value in the table selected by the user. Processing 
steps is similar to the above queries. 

4.2.5. MAXIMUM 

This function detects and displays the maximum value in 
the table selected by the user. Processing steps is similar 
to the above queries. 

 

 
 

Fig. 9. Count 
 

 
 

Fig. 10. Processing chart-count
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4.3. Processing Chart 

A chart for each aggregate query. The chart compares 
the processing time involved for computing exact and 
approximate values. The processing time is expressed in 
nanoseconds. The chart clearly says that the time 
involved for computing approximate values using Hybrid 
algorithm will be less compared to exact processing. 

5. CONCLUSION 

In this project, Hybrid algorithm used for the 
approximate answering of ad hoc aggregation queries 
in P2P databases. This approach requires a minimal 
number of messages sent over the network and 
provides tunable parameters to maximize performance 
for various network topologies. This approach 
provides a powerful technique for approximating 
aggregates of various topologies and data clustering 
but comes with limitations based upon a given 
topologies structure and connectivity. For topologies 
with very distinct clusters of peers, it becomes 
increasingly difficult to accurately obtain random 
samples due to the inability of random-walk process 
to quickly reach all clusters. This can be resolved by 
increasing the jump size, allowing a larger number of 
peers to be considered and increasing the allowed 
mixing by our hybrid algorithm. By varying a few 
parameters, Hybrid algorithm successfully computes 
aggregates within a given required accuracy. 

5.1. FUTURE ENHANCEMENTS 

As with the development of the computer field and its 
related technology this project is a very dynamic and user-
friendly which blends with the needs and the great deal of 
requirements of the individual user and also the needs of 
industries. This project has been developed with ideas of 
flexibility and scalability. This project does not stay 
resident to the system but grows to the level of great 
assistance in the field of data warehousing and data 
mining. Though this project at its initial level is a pre-
cursor to data warehousing and mining operations it is 
truly sure that it is of good help in the financial and share-
market oriented fields of data handling. To make things 
feasible there are sure certain improvements to be made in 
this project like the determination of the error rate with the 
view of user inputs and the random selection of the 
records in a more efficient manner. The queries can be 
made more dynamic. To enhance the security operations 
we can add Asymmetric Encryption algorithm. 
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