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ABSTRACT 

Nearest neighbor search is one of the most widely-used techniques and its applications including mobile 
communication, Geographic information systems, bioinformatics, computer vision and marketing. For 
example, four friends want to rent an apartment which should be nearer to their working places. Our 
paper discussed about the problems on finding the most appropriate location among a set of available 
places. The problem is defined as a top-k query which gives output of k points from a set of available 
places P along with the conveniences. We proposed algorithms based on R-trees to answer the query 
exactly. The efficiency of our proposed algorithms is verified through various experiments and found 
that it is better than existing algorithms use large scale real datasets. 
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1. INTRODUCTION 

Nowadays Optimal locations problems got the great 
focus on research (Corral et al., 2004; Wong et al., 
2009). In this study, we discuss about a new problem of 
finding the place with all facilities like a restaurant, super 
market and a bus stop nearby. The person may opt for 
different choices according to his interests. Furthermore 
he may give higher priority to certain choice when 
compared with other choices. Hence we use monotonic 
function to set priorities.  

We tried to solve this problem in Euclidean distance 
like the other existing works on the facility location 
problems (Du et al., 2005; Zhang et al., 2006) by 
fulfilling the criteria of facilities asked by the user. 
Already many algorithms have been proposed for all 
nearest neighbors problem (Chen and Patel, 2007; 
Emrich et al., 2010) and aggregate nearest neighbor 
problem (Li et al.,  2005; Mouratidis et al., 2005; 
Papadias et al., 2004). But in these papers, only one 
facility has been taken into account but ours will work 
out with multiple facilities with certain preferences. 

We put forward two algorithms, first one making the 
facilities in separate R-trees and traverses it to result into 

top-k queries. The second algorithm ranking the facilities 
in a R-tree and finds out the most suitable settings. Both 
algorithms are experimented carefully with many non-
trivial optimizations results.  

By keeping the existing algorithm as our baseline 
algorithm, we keep on reporting the users about the best 
sites based upon their facility criteria. Suppose a user is 
satisfied with first n results, he can terminate the algorithm. 

In this study we proposed 2 algorithms for finding 
out the most appropriate site among a set of possible 
sites. Our algorithm is used to reduce the running time 
and I/O cost. We experimented our algorithm with 
real datasets and results show better performance than 
the existing algorithm. 

2. PROBLEM SETUP 

We defined  two spatial datasets S and F. Every  
point f in F is numbered a type n. Let total number of 
types is |T|. The Euclidean distance d(s,f) measures the 
distance between s and f. The cost is calculated as cs of s 
by using the Equation (1): 
 
cs f (d(s,NN(s,Fn)),....d(s,NN(s,F T ))=  (1) 
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where, NN(s,Fn) is the nearest location of i from s and 
f() is a function which takes input |T| as parameters and 
results into a single value.  This paper aims to locate 
different k points from S with minimal cost among all 
the points in S. 

Then we construct the R-tree RS for locations in S 
and the second R-tree RFn for each type of facilities 
in F. Therefore |T|+1 R-trees are there. Then we start 
examining these two R-trees starting from their roots. 
We use Local Priority Queue (LPQ) and Global 
Priority Queue (GPQ) from previous works for 
determining the access order of nodes in R-trees. 

LPQ: LPQ is assigned to each node m in RS and 
maps its entries in RFn. The entries p in the priority 
queue has mindist and maxdist, represent minimum 
distance computed from m’s MBR to p’s MBR and the 
maximum distance computed from m’s MBR to p’s 
MBR. The priority queue is ordered by the ascending 
order of mindist values and maxdist is used for pruning 
the unpromising nodes. Apart from these two values, 
minmindist represents the minimum value in the mindist 
values defined from its entries and minmaxdist represents 
minimum of  maxdist values defined in its entries. 

GPQ: A min heap is used for pruning the LPQs, 
ordered by ascending order of minmindist.minmaxdist. 

GPQ and LPQ are used to find the most promising 
nodes with the lower bound of smallest distance. To 
avoid duplicate nodes in RS, we allow only one LPQ 
for each node in RS.  

The nearest neighbor algorithms iterate all over the 
categories in F. As in (Chen and Patel, 2007; Shin et al., 
2000), each iteration for a type n, started from the roots 
of RS and RFn and expand the it in a bi-directional 
manner. If end level is attained in RS and RFn, then the 
nearest neighbors are returned. After finishing expansion 
of all types in F, it returns k points to the top-k queries 
with minimum accessibility cost. The disadvantage of 
this algorithm is that RS will be traversed only |T| times 
not |T|+1 times. Hence we will not get the results till all 
the types are processed. 

3. ALGORITHMS 

We use existing algorithms as our baseline algorithm 
and enhancing it with two more new algorithms for 
fulfilling many facilities defined by the user. 

3.1. Isolated Tree Method 

 This method is used for choosing the indexes and 
traversing the trees in a parallel manner like the all 

nearest neighbor algorithm. We use the datastructures of 
Global Priority Queue (GPQ) and Local Priority 
Queue(LPQ) in our isolated tree method. Since we tried 
to expand all entries of R-trees in a parallel manner, each 
entry m in RS has its own |T| LPQs and call it as LPQm. 
So we can estimate the accessibility cost of the points in 
m. We calculate the lower bound as Equation (2): 
 

T

n 1
LowBoundc LPQm[n].min indist

=∑   (2) 

 
where, LPQm[n] maintains the entries in RFn. We push 
LPQs to GPQ from the smallest value of LowBoundc to 
highest value of LowBoundc. The top-k results are 
stored in a min-heap H and the results obtained 
temporarily with kth minimum cost for accessibility is 
stored in H[k]. We evaluate the newest LPQ groups’ 
LowBoundc accompanied with the cost of H[k]’s 
accessibility.  If it is smaller, then the entries are made 
on new LPQ groups.  

Algorithm1: Isolated Tree (RS, RF) 

For each point s in S do 
 Cs←NULL; 
H←InitializeTempResults; 
GPQ←NULL; 
For n =1 to |T| do 
 m← RS.root; 
 p←RFn.root; 
 LPQm[n] NULL; 
 LPQm[n].minmindist← ∞; 
 LPQm[n].minmaxdist ← ∞; 
 IsoTreePushAndUpdate(LPQm[n],p); 
GPQ.push(LPQm); 
While GPQ ≠ NULL do 
 LPQm←GPQ.pop(); 
 IsoTreeExpansion(LPQm, GPQ); 

Algorithm 1 explains isolated tree algorithm. Here we 
have  initiated  the min heap H by means of selecting 
some k points which are temporary results obtained at the 
beginning. Those points are calculated with accessibility 
costs of all nearest neighbors. Iteration starts from RS’s 
root and RFn’s root and expanding its nodes in a bi-
directional manner. Initially, the  formed LPQ is hold by 
the root of RS. Then RFn’s root is pushed into the priority 
queues. There after the group of LPQ is inserted into 
GPQ. We keep on selecting a group of LPQ from GPQ 
and expanding its nodes in both RS and RFn. 
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Algorithm 2: IsoTreePushAndUpdate(LPQm[n], 
p) 

if mindist(m,p) < LPQm[n].minmaxdist then 
 LPQm[n].push(p); 
 LPQm[n].minmindist ← 
min(LPQm[n].minmindist,mindist(m,p)); 
 LPQm[n].minmaxdist← 
min(LPQm[n].minmaxdist,maxdist(m,p)); 
 LPQm.LowBoundc← 

T

n 1
LPQm[n].min indist

=∑  

 
Algorithm 3 explains the expansion algorithm. 

Having a node m in RS, the entries stored in m’s LPQ 
are deleted, according to mindist. We find out the nearest 
neighbor by summing the distance with the cost of 
accessibility and updating the temporary results till the 
point is reached in both the R-trees RS and RFn. Or else 
the deleted entry of p is paired with the children of m to 
form a new LPQ group. Especially, we expand m for 
each type and new group is created for each of its 
children m. The priority queue p’s children are pushed 
into the LPQ of m⁪. We evaluate the nodes’mindist of 
m⁪ and minmaxdist of ml. If the mindist is lesser than 
m’s minmaxdist, then we pushed that node into m⁪’s 
LPQ. Once the entry is made, the LPQ’s minmindist and 
minmaxdist values are updated. At last we will check  
LowBoundc of newly created LPQ group prior to 
pushing it into GPQ. If the cost of its accessibility is 
lesser than LowBoundc of LPQ group deleted from 
GPQ, then the temporary results are declared as final 
results.  

Algorithm 3: IsoTreeExpansion(LPQm, GPQ) 

If ml is a point then 
 For n=1 to |T| do 
  whileLPQm[n] # NULL do 
   p←LPQm[n].pop(); 
if p is appointed then 
    cm←cm + d(m,p); 
    if m’s NNs of all categories 
are originated and cm <H[k].cost,  then 
 H.add(m,cm); 
 Return 
    else 
 For each pɪ Î p do 
 IsoTreePushAndUpdate (LPQm[n],p⁪); 
 if LPQm.LowBoundc < H[k].cost then 
  GPQ.push(LPQm); 

Else 
 For each mɪ∈m do 
  LPQm[n]ɪ  ← NULL; 
  LPQm[n]ɪ .minmindist ← ∞; 
  LPQm[n]ɪ .minmaxdist ← ∞;  
 For n=1 to |T| do 
  While LPQm[n] # NULL do 
   p ← LPQm[n].pop(); 
   if p is a point then 
    for each p⁪∈p do 
    
 IsoTreePushAndUpdate(LPQm[n],p); 
else 
    For each p⁪∈p do 
    For each mlϵml do 
     
 IsoTreePushAndUpdate(LPQm[n],p); 
 For each m⁪∈m do 
  If LPQm.LowBoundc < H[k].cost then 
   GPQ.push(LPQm); 

4. EXPERIMENTAL RESULTS 

We have implemented our algorithm and by using the 
data from 
http://en.wikipedia.org/wiki/Highways_of_Tamil_Nadu. 
 

We separated it into |T| types and if it is not 
specified, the default |T| is 20. A random type is 
assigned for each point in the dataset. To generate the 
possible sites S, we select 15% of the original dataset 
points  and modify the x, y coordinates randomly in 
the range of [-10,10]. We evaluate the expanded 
interior nodes and expanded leaf nodes in R-trees 
along with the processing time which does not include 
construction of R-tree indexes. 

We have executed our algorithm with different 
values of objects (k) and categories of points(|T|). 
Figure 1-3 show the performance of our algorithm 
based on different k. Here we have noticed that 
running time of our algorithm slightly increases when 
the k values become larger. The result proves that our 
algorithm is 1.5 times faster than the existing ANN 
algorithm. It has been achieved by the expansion of 
internal node and leaf node very efficiently. 

Then we examined the concert of our algorithm based 
on different categories of points |T| and its results have 
been shown in Fig. 4-6. In this experiment, we have 
taken 100 as default k value. As mentioned in the 
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figures, the node expansion and the processing time are grown linearly when |T| is increasing. 

 
 

Fig. 1. Processing time w.r.t. |T| 
 

 
 

Fig. 2. Internal node expansion w.r.t. |T| 
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Fig. 3. Leaf node expansion w.r.t. |T| 

 
 

Fig. 4. Processing time w.r.t. k 
 

 
 

Fig. 5. Internal node expansion w.r.t. k 
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Fig. 6. Leaf node expansion w.r.t. k 

5. CONCLUSION 

Here we studied the problem of finding k best sites 
which are nearer to different types of facilities. We 
computed the accessibility with the help of sum of 
distances to nearest neighbors using Euclidean distances. 
Our proposed algorithm finds the top-k locations 
efficiently by improving runtime performance. The 
experimental results prove that our algorithm 
outperforms the baseline algorithm.  
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