Jour nal of Computer Science 10 (6): 1045-1050, 2014

ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.1045.1050 Published Onlings) 2014 (http://www.thescipub.com/jcs.toc)

FINDING A RESIDENCE WITH ALL
FACILITIESUSING NEAREST NEIGHBOR SEARCH

Padmapriya, K. and Dr. S. Sridhar

Department of Computer Science and Engineeringy8b#tma University, Chennai, India

Received 2013-11-12; Revised 2013-11-14; Accepted-P2101
ABSTRACT

Nearest neighbor search is one of the most widsbgutechniques and its applications including neobil
communication, Geographic information systems, rf@imatics, computer vision and marketing. For
example, four friends want to rent an apartmentcWwhshould be nearer to their working places. Our
paper discussed about the problems on finding tbet mppropriate location among a set of available
places. The problem is defined as a top-k querycligives output of k points from a set of available
places P along with the conveniences. We propo&gatithms based on R-trees to answer the query
exactly. The efficiency of our proposed algorithiesverified through various experiments and found
that it is better than existing algorithms use éasgale real datasets.

Keywords: Nearest Neighbor Search, R-Trees, Local Prioritg @@, Global Priority Queue

1. INTRODUCTION top-k queries. The second algorithm ranking thdifes
in a R-tree and finds out the most suitable sedtifpth
algorithms are experimented carefully with many -non
trivial optimizations results.

By keeping the existing algorithm as our baseline

Nowadays Optimal locations problems got the great
focus on research (Corra al., 2004; Wonget al.,
2009). In this study, we discuss about a new prolidé

finding the place with all facilities like a restant, super algorithm, we keep on reporting the users abouthg
market and a bus stop nearby. The person may opt f0gjieq hased upon their facility criteria. Supposaser is

different choices according to his interests. Femiore  gatisfied with first n results, he can terminageahgorithm.
he may give higher priority to certain choice when |j this study we proposed 2 algorithms for finding
compared with qthgr choices. Hence we use monotoniGyt the most appropriate site among a set of ptessib
function to set priorities. sites. Our algorithm is used to reduce the runmimg
We tried to solve this problem in Euclidean dis&anc and 1/0 cost. We experimented our algorithm with
like the other existing works on the facility loicat real datasets and results show better performdrare t
problems (Duet al., 2005; Zhanget al., 2006) by the existing algorithm.
fulfilling the criteria of facilities asked by theser.
Already many algorithms have been proposed for all 2. PROBLEM SETUP
nearest neighbors problem (Chen and Patel, 2007; . .
Emrich et al., 2010) and aggregate nearest neighbor ~We defined two spatial datasets S and F. Every
problem (Li et al., 2005; Mouratidiset al., 2005; point f_ in Fis number_ed a type n. Let total numbér
Papadiaset al., 2004). But in these papers, only one YP€S is [T|. The Euclidean distance d(s,f) meastire
facility has been taken into account but ours witirk  distance between s and f. The cost is calculates as s
out with multiple facilities with certain preferess by using the Equation (1):
We put forward two algorithms, first one making the
facilities in separate R-trees and traversesiiesolt into 5= f(d(s,NN(s,Fn)),....d(s,NN(s,H T (1)
Corresponding Author: Padmapriya, K., Department of Computer ScienceEangineering, Sathyabama University, Chennai, India

///4 Science Publications 1045 JCS



Padmapriya, K. and Dr. S. Sridhar / Journal of Cor@pScience 10 (6): 1045-1050, 2014

where, NN(s,Fn) is the nearest location of i froransl nearest neighbor algorithm. We use the datastrestof
f() is a function which takes input |T| as parametnd Global Priority Queue (GPQ) and Local Priority
results into a single value. This paper aims ate  Queue(LPQ) in our isolated tree method. Since veel tr
different k points from S with minimal cost amonlj a to expand all entries of R-trees in a parallel neaneach
the points in S. ~_entrymin RS has its own |T| LPQs and call it RQIm.
Then we construct the R-tree RS for locations in Sgg we can estimate the accessibility cost of thietpdn

and the second R-tree RFn for each type of faedliti |, \we calculate the lower bound as Equation (2):
in F. Therefore |T|+1 R-trees are there. Then \aet st

examining these two R-trees starting from theirtsoo

7 P
We use Local Priority Queue (LPQ) and Global LowBoundgy, ', LPQmn].minindis (2)
Priority Queue (GPQ) from previous works for
determining the access order of nodes in R-trees. where, LPQm[n] maintains the entries in RFn. Wehpus

LPQ: LPQ is assigned to each node m in RS and_PQs to GPQ from the smallest value of LowBoundc to
maps its entries in RFn. The entries p in the fivior highest value of LowBoundc. The top-k results are
queue has mindist and maxdist, represent minimumstored in a min-heap H and the results obtained
distance computed from m’s MBR to p’s MBR and the temporarily with K' minimum cost for accessibility is
maximum distance computed from m's MBR to p’s stored in H[K]. We evaluate the newest LPQ groups’
MBR. The priority queue is ordered by the ascendingLowBoundc accompanied with the cost of H[K]'s
order of mindist values and maxdist is used fomjig accessibility. If it is smaller, then the entri® made
the unpromising nodes. Apart from these two values,0n new LPQ groups.
minmindisF represenj[s the minimum yalue ir! the nsind Algorithm1: Isolated Tree (RS, RF)
values defined from its entries and minmaxdistesents
minimum of mgxdist valges defined in its gntries. For each point s in S do

GPQ: A min heap is used for pruning the LPQs, Cs NULL:
ordered by ascending order of minmindist.minmaxdist H i

GPQ and LPQ are used to find the most promisingG
nodes with the lower bound of smallest distance. To
avoid duplicate nodes in RS, we allow only one LPQ

< InitializeTempResults;
PQ< NULL;
Forn=1to |T|do

for each node in RS. m« RS.root;
The nearest neighbor algorithms iterate all over th p—RFn.root;
categories in F. As in (Chen and Patel, 2007; shat., LPQm[n] NULL;
2000), each iteration for a type n, started froe thots LPQm[n].minmindist- co;
of RS and RFn and expand the it in a bi-directional LPQm[n].minmaxdist. oo;
manner. If end level is attained in RS and RFnn tie IsoTreePushAndUpdate(LPQm[n],p);

nearest neighbors are returned. After finishingaegion ~ GPQ-Push(LPQm);

of all types in F, it returns k points to the tomkeries  While GPQ# NULL do

with minimum accessibility cost. The disadvantage o LPQm.- GPQ.pop();

this algorithm is that RS will be traversed only fifnes IsoTreeExpansion(LPQm, GPQ);
not |T[+1 times. Hence we will not get the restiltsall

the types are processed. Algorithm 1 explains isolated tree algorithm. Heve
have initiated the min heap H by means of selgcti
3. ALGORITHMS some k points which are temporary results obtaatettie

beginning. Those points are calculated with acb#igi
We use existing algorithms as our baseline algarith costs of all nearest neighbors. lteration stadsnfiRS'’s
and enhancing it with two more new algorithms for root and RFn’s root and expanding its nodes in-a bi
fulfilling many facilities defined by the user. directional manner. Initially, the formed LPQ isldh by
the root of RS. Then RFn’s root is pushed intogtherity
3.1 Isolated Tree Method gueues. There after the group of LPQ is inserted in
This method is used for choosing the indexes andGPQ. We keep on selecting a group of LPQ from GPQ
traversing the trees in a parallel manner like #le  and expanding its nodes in both RS and RFn.

///// Science Publications 1046 Jjcs



Padmapriya, K. and Dr. S. Sridhar / Journal

Algorithm 2: 1soTreePushAndUpdate(L PQm[n],
p)

if mindist(m,p) < LPQm[n].minmaxdist then
LPQm[n].push(p);
LPQm[n].minmindist

min(LPQm[n].minmindist,mindist(m,p));
LPQm[n].minmaxdist

min(LPQm[n].minmaxdist,maxdist(m,p));
LPQm.LowBounde-

I LPQm[n].minindist

n=1

Algorithm 3 explains the expansion algorithm.
Having a node m in RS, the entries stored in mQLP
are deleted, according to mindist. We find outribarest
neighbor by summing the distance with the cost of
accessibility and updating the temporary resultsthe
point is reached in both the R-trees RS and RFrel€ar
the deleted entry of p is paired with the childoémm to
form a new LPQ group. Especially, we expand m for

each type and new group is created for each of its

children m. The priority queue p’s children are lpe
into the LPQ of ml. We evaluate the nodes’'mindist of
m(] and minmaxdist of ml. If the mindist is lesserrtha
m’s minmaxdist, then we pushed that node inta’sn
LPQ. Once the entry is made, the LPQ’s minmindigt a
minmaxdist values are updated. At last we will dhec
LowBoundc of newly created LPQ group prior to
pushing it into GPQ. If the cost of its accessibilis
lesser than LowBoundc of LPQ group deleted from
GPQ, then the temporary results are declared @ fin
results.

Algorithm 3: IsoTreeExpansion(L PQm, GPQ)

If mlis a point then
For n=1to |T| do
whileLPQm([n] # NULL do
p—LPQm[n].pop();
if p is appointed then
cm—cm + d(m,p);
if m's NNs of all categories
are originated and cm <H[K].cost, then
H.add(m,cm);
Return
else
For each p1 p do
IsoTreePushAndUpdate (LPQmM[n]jp
if LPQm.LowBoundc < H[K].cost then
GPQ.push(LPQm);

///// Science Publications 1047

of Comp8tience 10 (6): 1045-1050, 2014

Else
For each mm do
LPOM[NA « NULL;
LPQm[nR.minmindist « oo;
LPQm[nR.minmaxdist oo;
For n=1to |T| do
While LPQmI[n] # NULL do
p — LPQmM[n].pop();
if p is a point then
for each pldp do

IsoTreePushAndUpdate(LPQm[n],p);
else
For each pOp do
For each neiml do

IsoTreePushAndUpdate(LPQm[n],p);
For each mOm do
If LPQm.LowBoundc < H[k].cost then
GPQ.push(LPQm);

4. EXPERIMENTAL RESULTS

We have implemented our algorithm and by using the
data from
http://en.wikipedia.org/wiki/Highways_of Tamil_Nadu

We separated it into |T| types and if it is not
specified, the default |T| is 20. A random type is
assigned for each point in the dataset. To gené¢hate
possible sites S, we select 15% of the originahskit
points and modify the x, y coordinates randomly in
the range of [-10,10]. We evaluate the expanded
interior nodes and expanded leaf nodes in R-trees
along with the processing time which does not idelu
construction of R-tree indexes.

We have executed our algorithm with different
values of objects (k) and categories of points(|T]|)
Figure 1-3 show the performance of our algorithm
based on different k. Here we have noticed that
running time of our algorithm slightly increasesemh
the k values become larger. The result provesdhat
algorithm is 1.5 times faster than the existing ANN
algorithm. It has been achieved by the expansion of
internal node and leaf node very efficiently.

Then we examined the concert of our algorithm based
on different categories of points |T| and its rsshlve
been shown irFig. 4-6. In this experiment, we have
taken 100 as default k value. As mentioned in the

JCS



Padmapriya, K. and Dr. S. Sridhar / Journal of Comp8tience 10 (6): 1045-1050, 2014

figures, the node expansion and the processing diree  grown linearly when |T| is increasing.

Processing time (sec)

Internal node # (Thousands)

Leal node # (Lakhs)

% Science Publications

201 Processing time (|T| = 20)
15 4 .—.—W
10 4
s ANN
5 . well= [s0Tree
O T T T L] T L 1
2 5 10 20 50 100 200
k
Fig. 1. Processing time w.r.t. |T|
201 Internal node (|T| = 20)
154 #® a 5 < <P < <
10 4
=== ANN
51 == [soTree
0 1 1 1 1 1 1 1
2 5 10 20 50 100 200
k
Fig. 2. Internal node expansion w.r.t. |T|
Leafnode (|T| = 20)
4
35— b r— —
3
215 mpe
ZT ./I+I—H—l—
s ANN
1.5
1 wfll= IsoTree
0.5+
1 —
2 5 10 20 50 100 200
k
1048 JCS



% Science Publications

Padmapriya, K. and Dr. S. Sridhar / Journal of Comp8tience 10 (6): 1045-1050, 2014

Processing lime (sec)

Internal node #

Leal node # (Lakhs)

Fig. 3. Leaf node expansion w.r.t. [T|

20~ Processing time (k= 100)
18
16
14
12 -
10 -
8 -
6 -
4 -
2 -
O 2 T T T T L T 1
2 5 10 15 20 25 30
IT
Fig. 4. Processing time w.r.t. k
2000 4 Internal node (k= 100)
15000 -
10000 -
50000 -
0 T
2 ] 10 15 20 25
IT|
Fig. 5. Internal node expansion w.r.t. k
201 Leaf node (k= 100)
151
10 4
5 B
0 T T T T T 1
2 5 10 15 20 25
IT|
1049

. AININ
il [s0TTCE

e ANN
== IsoTree

= ANN

== [soTree

JCS



Padmapriya, K. and Dr. S. Sridhar / Journa

| of Comp8tience 10 (6): 1045-1050, 2014

Fig. 6. Leaf node expansion w.r.t. k

5. CONCLUSION

Here we studied the problem of finding k best sites
which are nearer to different types of facilitiesle
computed the accessibility with the help of sum of
distances to nearest neighbors using Euclideaantiss.
Our proposed algorithm finds the top-k locations
efficiently by improving runtime performance. The
experimental results prove that our algorithm
outperforms the baseline algorithm.

6. REFERENCES

Chen, Y. and J.M. Patel, 2007. Efficient evaluatafn
all-nearest-neighbor queries. Proceeding of thel 23r
International Conference on Data Engineering, Apr.
15-20, IEEE Xplore Press, Istanbul, pp: 1056-1065.
DOI: 10.1109/ICDE.2007.368964

Corral, A., Y. Manolopoulos, Y. Theodoridis and M.
Vassilakopoulos, 2004. Algorithms for processing k-
closest-pair queries in spatial databases.
Knowl. Eng., 49: 67-104.
0rg/10.1016/j.datak.2003.08.007

Du, Y., D. Zhang and T. Xia, 2005. The optimal-lbca
query. Proceeding of the 9th International
Conference Advances in Spatial and Temporal
Databases, Aug. 22-24, Springer Berlin Heidelberg,
Brazil, pp: 163-180. DOI: 10.1007/11535331_10

Emrich, T., F. Graf, H.P. Kriegel, M. Schubert akd
Thoma, 2010. Optimizing all-nearest-neighbor
queries with trigonometric pruning. Proceeding of
the 22nd International Conference Scientific and
Statistical Database Management, Jun. 30-July 2,
Springer Berlin Heidelberg, Germany, pp: 501-518.
DOI: 10.1007/978-3-642-13818-8_35

DOI:

///// Science Publications 1050

Data

Li, H., H. Lu, B. Huang and Z. Huang, 2005. Two
ellipse-based pruning methods for group nearest
neighbor queries. Proceedings of the 13th Annual
International Workshop on Geographic Information
Systems, Oct. 31-Nov. 05, ACM Press, Bremen,
Germany, pp: 192-199. DOI:
10.1145/1097064.1097092

Mouratidis, K., M. Hadjieleftheriou and D. Papadias
2005. Conceptual partitioning: An efficient method
for continuous nearest neighbor monitoring.
Proceedings of the International Conference on
Management of Data, Jun. 13-17, ACM Press,
Baltimore, MD, USA., pp: 634-645. DOI:
10.1145/1066157.1066230

Papadias, D., Q. Shen, Y. Tao and K. Mouratidi©420
Group nearest neighbor queries. Proceedings of the
20th International Conference on Data Engineering,
Mar. 30-Apr. 2, IEEE Xplore Press, pp: 301-312.
DOI: 10.1109/ICDE.2004.1320006

Shin, H., B. Moon and S. Lee, 2000. Adaptive multi-

stage distance join processing. Proceedings of the

International Conference on Management of Data,

May 15-18, ACM Press, Dallas, TX, USA., pp: 343-

354. DOI: 10.1145/335191.335428

Wong, R.C.W., M. T. Ozsu, P.S. Yu, AW.C. Fu and L.
Liu, 2009. Efficient method for maximizing
bichromatic reverse nearest neighbor. Proc. VLDB
Endowment, 2: 1126-1137.

Zhang, D., Y. Du, T. Xia and Y. Tao, 2006. Progness
computation of the min-dist optimal-location query.
Proceedings of the 32nd International Conference on
Very large Data Bases, (DB’'06), ACM Press, pp:
643-654.

JCS



