
Journal of Computer Science 10 (6): 1045-1050, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1045.1050 Published Online 10 (6) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Padmapriya, K., Department of Computer Science and Engineering, Sathyabama University, Chennai, India

1045 Science Publications

JCS

FINDING A RESIDENCE WITH ALL
FACILITIES USING NEAREST NEIGHBOR SEARCH

Padmapriya, K. and Dr. S. Sridhar

Department of Computer Science and Engineering, Sathyabama University, Chennai, India

Received 2013-11-12; Revised 2013-11-14; Accepted 2014-02-01

ABSTRACT

Nearest neighbor search is one of the most widely-used techniques and its applications including mobile
communication, Geographic information systems, bioinformatics, computer vision and marketing. For
example, four friends want to rent an apartment which should be nearer to their working places. Our
paper discussed about the problems on finding the most appropriate location among a set of available
places. The problem is defined as a top-k query which gives output of k points from a set of available
places P along with the conveniences. We proposed algorithms based on R-trees to answer the query
exactly. The efficiency of our proposed algorithms is verified through various experiments and found
that it is better than existing algorithms use large scale real datasets.

Keywords: Nearest Neighbor Search, R-Trees, Local Priority Queue, Global Priority Queue

1. INTRODUCTION

Nowadays Optimal locations problems got the great
focus on research (Corral et al., 2004; Wong et al.,
2009). In this study, we discuss about a new problem of
finding the place with all facilities like a restaurant, super
market and a bus stop nearby. The person may opt for
different choices according to his interests. Furthermore
he may give higher priority to certain choice when
compared with other choices. Hence we use monotonic
function to set priorities.

We tried to solve this problem in Euclidean distance
like the other existing works on the facility location
problems (Du et al., 2005; Zhang et al., 2006) by
fulfilling the criteria of facilities asked by the user.
Already many algorithms have been proposed for all
nearest neighbors problem (Chen and Patel, 2007;
Emrich et al., 2010) and aggregate nearest neighbor
problem (Li et al., 2005; Mouratidis et al., 2005;
Papadias et al., 2004). But in these papers, only one
facility has been taken into account but ours will work
out with multiple facilities with certain preferences.

We put forward two algorithms, first one making the
facilities in separate R-trees and traverses it to result into

top-k queries. The second algorithm ranking the facilities
in a R-tree and finds out the most suitable settings. Both
algorithms are experimented carefully with many non-
trivial optimizations results.

By keeping the existing algorithm as our baseline
algorithm, we keep on reporting the users about the best
sites based upon their facility criteria. Suppose a user is
satisfied with first n results, he can terminate the algorithm.

In this study we proposed 2 algorithms for finding
out the most appropriate site among a set of possible
sites. Our algorithm is used to reduce the running time
and I/O cost. We experimented our algorithm with
real datasets and results show better performance than
the existing algorithm.

2. PROBLEM SETUP

We defined two spatial datasets S and F. Every
point f in F is numbered a type n. Let total number of
types is |T|. The Euclidean distance d(s,f) measures the
distance between s and f. The cost is calculated as cs of s
by using the Equation (1):

cs f (d(s,NN(s,Fn)),....d(s,NN(s,F T))= (1)

Padmapriya, K. and Dr. S. Sridhar / Journal of Computer Science 10 (6): 1045-1050, 2014

1046 Science Publications

JCS

where, NN(s,Fn) is the nearest location of i from s and
f() is a function which takes input |T| as parameters and
results into a single value. This paper aims to locate
different k points from S with minimal cost among all
the points in S.

Then we construct the R-tree RS for locations in S
and the second R-tree RFn for each type of facilities
in F. Therefore |T|+1 R-trees are there. Then we start
examining these two R-trees starting from their roots.
We use Local Priority Queue (LPQ) and Global
Priority Queue (GPQ) from previous works for
determining the access order of nodes in R-trees.

LPQ: LPQ is assigned to each node m in RS and
maps its entries in RFn. The entries p in the priority
queue has mindist and maxdist, represent minimum
distance computed from m’s MBR to p’s MBR and the
maximum distance computed from m’s MBR to p’s
MBR. The priority queue is ordered by the ascending
order of mindist values and maxdist is used for pruning
the unpromising nodes. Apart from these two values,
minmindist represents the minimum value in the mindist
values defined from its entries and minmaxdist represents
minimum of maxdist values defined in its entries.

GPQ: A min heap is used for pruning the LPQs,
ordered by ascending order of minmindist.minmaxdist.

GPQ and LPQ are used to find the most promising
nodes with the lower bound of smallest distance. To
avoid duplicate nodes in RS, we allow only one LPQ
for each node in RS.

The nearest neighbor algorithms iterate all over the
categories in F. As in (Chen and Patel, 2007; Shin et al.,
2000), each iteration for a type n, started from the roots
of RS and RFn and expand the it in a bi-directional
manner. If end level is attained in RS and RFn, then the
nearest neighbors are returned. After finishing expansion
of all types in F, it returns k points to the top-k queries
with minimum accessibility cost. The disadvantage of
this algorithm is that RS will be traversed only |T| times
not |T|+1 times. Hence we will not get the results till all
the types are processed.

3. ALGORITHMS

We use existing algorithms as our baseline algorithm
and enhancing it with two more new algorithms for
fulfilling many facilities defined by the user.

3.1. Isolated Tree Method

 This method is used for choosing the indexes and
traversing the trees in a parallel manner like the all

nearest neighbor algorithm. We use the datastructures of
Global Priority Queue (GPQ) and Local Priority
Queue(LPQ) in our isolated tree method. Since we tried
to expand all entries of R-trees in a parallel manner, each
entry m in RS has its own |T| LPQs and call it as LPQm.
So we can estimate the accessibility cost of the points in
m. We calculate the lower bound as Equation (2):

T

n 1
LowBoundc LPQm[n].min indist

=∑ (2)

where, LPQm[n] maintains the entries in RFn. We push
LPQs to GPQ from the smallest value of LowBoundc to
highest value of LowBoundc. The top-k results are
stored in a min-heap H and the results obtained
temporarily with kth minimum cost for accessibility is
stored in H[k]. We evaluate the newest LPQ groups’
LowBoundc accompanied with the cost of H[k]’s
accessibility. If it is smaller, then the entries are made
on new LPQ groups.

Algorithm1: Isolated Tree (RS, RF)

For each point s in S do
 Cs←NULL;
H←InitializeTempResults;
GPQ←NULL;
For n =1 to |T| do
 m← RS.root;
 p←RFn.root;
 LPQm[n] NULL;
 LPQm[n].minmindist← ∞;
 LPQm[n].minmaxdist ← ∞;
 IsoTreePushAndUpdate(LPQm[n],p);
GPQ.push(LPQm);
While GPQ ≠ NULL do
 LPQm←GPQ.pop();
 IsoTreeExpansion(LPQm, GPQ);

Algorithm 1 explains isolated tree algorithm. Here we
have initiated the min heap H by means of selecting
some k points which are temporary results obtained at the
beginning. Those points are calculated with accessibility
costs of all nearest neighbors. Iteration starts from RS’s
root and RFn’s root and expanding its nodes in a bi-
directional manner. Initially, the formed LPQ is hold by
the root of RS. Then RFn’s root is pushed into the priority
queues. There after the group of LPQ is inserted into
GPQ. We keep on selecting a group of LPQ from GPQ
and expanding its nodes in both RS and RFn.

Padmapriya, K. and Dr. S. Sridhar / Journal of Computer Science 10 (6): 1045-1050, 2014

1047 Science Publications

JCS

Algorithm 2: IsoTreePushAndUpdate(LPQm[n],
p)

if mindist(m,p) < LPQm[n].minmaxdist then
 LPQm[n].push(p);
 LPQm[n].minmindist ←
min(LPQm[n].minmindist,mindist(m,p));
 LPQm[n].minmaxdist←
min(LPQm[n].minmaxdist,maxdist(m,p));
 LPQm.LowBoundc←

T

n 1
LPQm[n].min indist

=∑

Algorithm 3 explains the expansion algorithm.

Having a node m in RS, the entries stored in m’s LPQ
are deleted, according to mindist. We find out the nearest
neighbor by summing the distance with the cost of
accessibility and updating the temporary results till the
point is reached in both the R-trees RS and RFn. Or else
the deleted entry of p is paired with the children of m to
form a new LPQ group. Especially, we expand m for
each type and new group is created for each of its
children m. The priority queue p’s children are pushed
into the LPQ of m⁪. We evaluate the nodes’mindist of
m⁪ and minmaxdist of ml. If the mindist is lesser than
m’s minmaxdist, then we pushed that node into m⁪’s
LPQ. Once the entry is made, the LPQ’s minmindist and
minmaxdist values are updated. At last we will check
LowBoundc of newly created LPQ group prior to
pushing it into GPQ. If the cost of its accessibility is
lesser than LowBoundc of LPQ group deleted from
GPQ, then the temporary results are declared as final
results.

Algorithm 3: IsoTreeExpansion(LPQm, GPQ)

If ml is a point then
 For n=1 to |T| do
 whileLPQm[n] # NULL do
 p←LPQm[n].pop();
if p is appointed then
 cm←cm + d(m,p);
 if m’s NNs of all categories
are originated and cm <H[k].cost, then
 H.add(m,cm);
 Return
 else
 For each pɪ Î p do
 IsoTreePushAndUpdate (LPQm[n],p⁪);
 if LPQm.LowBoundc < H[k].cost then
 GPQ.push(LPQm);

Else
 For each mɪ∈m do
 LPQm[n]ɪ ← NULL;
 LPQm[n]ɪ .minmindist ← ∞;
 LPQm[n]ɪ .minmaxdist ← ∞;
 For n=1 to |T| do
 While LPQm[n] # NULL do
 p ← LPQm[n].pop();
 if p is a point then
 for each p⁪∈p do

 IsoTreePushAndUpdate(LPQm[n],p);
else
 For each p⁪∈p do
 For each mlϵml do

 IsoTreePushAndUpdate(LPQm[n],p);
 For each m⁪∈m do
 If LPQm.LowBoundc < H[k].cost then
 GPQ.push(LPQm);

4. EXPERIMENTAL RESULTS

We have implemented our algorithm and by using the
data from
http://en.wikipedia.org/wiki/Highways_of_Tamil_Nadu.

We separated it into |T| types and if it is not
specified, the default |T| is 20. A random type is
assigned for each point in the dataset. To generate the
possible sites S, we select 15% of the original dataset
points and modify the x, y coordinates randomly in
the range of [-10,10]. We evaluate the expanded
interior nodes and expanded leaf nodes in R-trees
along with the processing time which does not include
construction of R-tree indexes.

We have executed our algorithm with different
values of objects (k) and categories of points(|T|).
Figure 1-3 show the performance of our algorithm
based on different k. Here we have noticed that
running time of our algorithm slightly increases when
the k values become larger. The result proves that our
algorithm is 1.5 times faster than the existing ANN
algorithm. It has been achieved by the expansion of
internal node and leaf node very efficiently.

Then we examined the concert of our algorithm based
on different categories of points |T| and its results have
been shown in Fig. 4-6. In this experiment, we have
taken 100 as default k value. As mentioned in the

Padmapriya, K. and Dr. S. Sridhar / Journal of Computer Science 10 (6): 1045-1050, 2014

1048 Science Publications

JCS

figures, the node expansion and the processing time are grown linearly when |T| is increasing.

Fig. 1. Processing time w.r.t. |T|

Fig. 2. Internal node expansion w.r.t. |T|

Padmapriya, K. and Dr. S. Sridhar / Journal of Computer Science 10 (6): 1045-1050, 2014

1049 Science Publications

JCS

Fig. 3. Leaf node expansion w.r.t. |T|

Fig. 4. Processing time w.r.t. k

Fig. 5. Internal node expansion w.r.t. k

Padmapriya, K. and Dr. S. Sridhar / Journal of Computer Science 10 (6): 1045-1050, 2014

1050 Science Publications

JCS

Fig. 6. Leaf node expansion w.r.t. k

5. CONCLUSION

Here we studied the problem of finding k best sites
which are nearer to different types of facilities. We
computed the accessibility with the help of sum of
distances to nearest neighbors using Euclidean distances.
Our proposed algorithm finds the top-k locations
efficiently by improving runtime performance. The
experimental results prove that our algorithm
outperforms the baseline algorithm.

6. REFERENCES

Chen, Y. and J.M. Patel, 2007. Efficient evaluation of
all-nearest-neighbor queries. Proceeding of the 23rd
International Conference on Data Engineering, Apr.
15-20, IEEE Xplore Press, Istanbul, pp: 1056-1065.
DOI: 10.1109/ICDE.2007.368964

Corral, A., Y. Manolopoulos, Y. Theodoridis and M.
Vassilakopoulos, 2004. Algorithms for processing k-
closest-pair queries in spatial databases. Data
Knowl. Eng., 49: 67-104. DOI:
org/10.1016/j.datak.2003.08.007

Du, Y., D. Zhang and T. Xia, 2005. The optimal-location
query. Proceeding of the 9th International
Conference Advances in Spatial and Temporal
Databases, Aug. 22-24, Springer Berlin Heidelberg,
Brazil, pp: 163-180. DOI: 10.1007/11535331_10

Emrich, T., F. Graf, H.P. Kriegel, M. Schubert and M.
Thoma, 2010. Optimizing all-nearest-neighbor
queries with trigonometric pruning. Proceeding of
the 22nd International Conference Scientific and
Statistical Database Management, Jun. 30-July 2,
Springer Berlin Heidelberg, Germany, pp: 501-518.
DOI: 10.1007/978-3-642-13818-8_35

Li, H., H. Lu, B. Huang and Z. Huang, 2005. Two

ellipse-based pruning methods for group nearest
neighbor queries. Proceedings of the 13th Annual
International Workshop on Geographic Information
Systems, Oct. 31-Nov. 05, ACM Press, Bremen,
Germany, pp: 192-199. DOI:
10.1145/1097064.1097092

Mouratidis, K., M. Hadjieleftheriou and D. Papadias,
2005. Conceptual partitioning: An efficient method
for continuous nearest neighbor monitoring.
Proceedings of the International Conference on
Management of Data, Jun. 13-17, ACM Press,
Baltimore, MD, USA., pp: 634-645. DOI:
10.1145/1066157.1066230

Papadias, D., Q. Shen, Y. Tao and K. Mouratidis, 2004.
Group nearest neighbor queries. Proceedings of the
20th International Conference on Data Engineering,
Mar. 30-Apr. 2, IEEE Xplore Press, pp: 301-312.
DOI: 10.1109/ICDE.2004.1320006

Shin, H., B. Moon and S. Lee, 2000. Adaptive multi-
stage distance join processing. Proceedings of the
International Conference on Management of Data,
May 15-18, ACM Press, Dallas, TX, USA., pp: 343-
354. DOI: 10.1145/335191.335428

Wong, R.C.W., M. T. Ozsu, P.S. Yu, AW.C. Fu and L.
Liu, 2009. Efficient method for maximizing
bichromatic reverse nearest neighbor. Proc. VLDB
Endowment, 2: 1126-1137.

Zhang, D., Y. Du, T. Xia and Y. Tao, 2006. Progressive
computation of the min-dist optimal-location query.
Proceedings of the 32nd International Conference on
Very large Data Bases, (DB’06), ACM Press, pp:
643-654.

