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ABSTRACT 

Membrane computing is a branch of natural computing. Several studies have recently attempted to utilize 
the structure of membrane computing to improve intelligent algorithms. These studies have applied 
communication rules in membrane models to facilitate information exchange between membranes, thereby 
improving the performance of those algorithms. However, parallel membrane computing has not yet been 
considered. This study proposes a membrane computing-inspired genetic algorithm. Similar to previous 
studies, the algorithm also uses communication rules to facilitate information exchange. In this study, an 
appropriate membrane computing-inspired genetic algorithm is defined, in which each membrane can be 
executed over different cores in a parallel manner. The proposed algorithm can be executed over different 
cores and uses multi-core processing to implement parallel membrane computation. Simulation with a 
Colville minimization problem shows that the membrane computing inspired genetic algorithm has 
improved performance, with a mean error of the solution 61.9 times better than genetic algorithm. 
 
Keywords: Membrane Computing, Tissue P Systems, Genetic Algorithms, Multi-Core Processing, 

Colville Function 

1. INTRODUCTION 

Membrane computing (also known as P systems) 
(Paun et al., 2010) is a branch of natural computing. 
Since its inception, membrane computing has been used 
to solve various problems. Specifically, membrane 
computing has been used to solve biological problems, 
such as molecular interactions (Twycross et al., 2010; 
Muniyandi and Abdullah, 2012), bearded vulture 
evolution prediction (Cardona et al., 2009) and predator 
and prey relationship modeling. Membrane computing 
techniques have also been utilized to solve other 
problems, such as computation of the threshold of two-
dimensional images (Christinal et al., 2010), 
segmentation of images (Christinal et al., 2011) and 
robot controlling (Buiu et al., 2012). Difficult 
optimization problems, such as N-queens problem 
(Gutierrez-Naranjo and Perez-Jimenez, 2011), three-

coloring problems (Adrian and Florentin, 2012) and 
satisfiability problems (Ishdorj et al., 2010), have also 
been solved by membrane computing models.  

The main components of membrane computing are as 
follows: (i) the membrane structure and the delimiting 
compartments, in which (ii) multi-sets of objects evolve 
according to (iii) (reaction) biochemically inspired rules. 
The rules can process both objects and membranes (Paun et 
al., 2010). Thus, membrane computing can be defined as a 
framework for devising cell-like, tissue-like, or spiking-
like computing models (Paun et al., 2010). This study 
applies the tissue-like membrane computing model.  

Membrane computing models have recently been used 
to improve intelligent algorithms (Cheng et al., 2011; 
Zhang et al., 2011; 2012a; 2012b). Quantum-inspired and 
differential evolution intelligent algorithms are used in 
previous studies based on membrane computing to solve 
difficult non-deterministic, polynomial-time problems. 
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However, these studies merely use communication rules 
to aid information exchange between membranes.  

This study introduces a Membrane Computing-

Inspired Genetic Algorithm (MCIGA). MCIGA uses a 

parallel structure aside from communication rules to 

assist in information exchange between membranes. In 

this study, membrane computing is defined with 

appropriate communication rules and membranes such 

that each membrane has the ability to run parallel on 

different processors. 

2. MATERIALS AND METHODS 

2.1. Tissue-like P Systems 

Tissue-like P systems (Pena-Cantillana et al., 2011) 
have two biological inspirations: inter-cellular 
communication and cooperation between neurons. The 
common mathematical model of these two mechanisms 
is a network of processors dealing with symbols and then 
communicating these symbols along the channels 
specified in advance. Tissue-like P systems contain many 
cells within a common environment. Two cells can 
communicate with each other through channels between 
them and all cells can communicate among each other 
through the environment. A tissue-like P system with 
degree m ≥ 1 is expressed as follows: 
 

π = (O,E,w1,…,wm,R,iout) 
 
Where: 

m = The number of cells in the system  

O = finite non-empty alphabet of objects 

E⊆ O = the set of objects present in the environment 

w1,…w2 = Strings over O, representing multi-sets of  

  objects associated with m cells at the initial 

  state of the computation 

R = A finite set of communication and  

  transformation rules of the following form 
 

• Transformation rules x→y allow cell i∈O to 

consume a multi-set x to produce a new multi-set y 

inside the cell i. 

• Communication rules (i,u/v,j) for i,j∈{0, 1, 2,…,m}, 

i≠j and u, v∈O
 
 

 

iout ∈ {0,1,2,…,m} = The output cell  

A tissue-like P system of degree m is as a set of m 

cells (each one consisting of an elementary membrane) 
labeled by 1,2,…,m. Here, 0 refers to the label of the 
environment and iout denotes the output region, which 
can be the region inside a cell or the environment. The 

strings w1,…,wm describe the multi-sets of objects placed 
in the m cells of the P system and E⊆O is the set of 

objects placed in the environment. Each set is available 
in arbitrary large amount of copies. 

The communication rule (I,u/v,j) can be applied over 

two cells labeled by i and j such that u is contained in cell i 

and v is contained in cell j. The communication rule denotes 

that the objects of the multi-sets represented by u and v are 

interchanged between the two cells. When either  i = 0 or j 

= 0, the objects are interchanged between the cell and the 

environment. Rules are used in the framework of membrane 

computing, that is, in a maximally parallel way (a universal 

clock is considered). Each object in a membrane can only 

be used in one rule, which is non-deterministically chosen 

when there are several possibilities, but any object should 

participate in a rule of any form, that is, in each step, a 

maximal set of rules should be applied. 

2.2. Genetic Algorithms 

Evolutionary Algorithms (EAs) (Affenzeller et al., 
2009) are generic population-based meta-heuristics 
inspired by biological evolution to address combinatorial 

optimization problems. Four main EAs have been 
applied to different types of problem domains: Genetic 
Algorithms (GAs), genetic programming, evolutionary 
strategies and evolutionary programming. GAs were 
introduced to study self-adaptation in biological 
processes and to solve optimization problems 

(Affenzeller et al., 2009). 

GAs are a class of probabilistic algorithms that start 

with a population of randomly generated candidates. 

Moreover, GAs are iterative procedures that operate on a 

population where individuals are evaluated according to 

a certain fitness value. Individuals are selected according 

to this value. The selected individuals produce offspring 

candidates, thus forming the next generation. Two 

operators, namely, crossover and mutation, are used to 

produce new individuals. Crossover takes two 

individuals called parents and then produces one or two 

new individuals called offspring. In its simplest form, 

crossover works by swapping pieces of information from 

the parents. The second operator is called mutation, which 

is applied by modifying an information unit in one 

individual according to a mutation rate (Affenzeller et al., 

2009). A simple pseudo code for GAs is as follows: 

Step 1: Randomly generate an initial population. 
Step 2: Select pairs of individuals based on the fitness 

function. 
Step 3: Produce next generations from the selected pairs 

by applying crossover and mutation. 
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Step 4: Replace previous generation with the new 
generation if the new generation is better or 
identical to the previous generation. 

Step 5: The algorithm is finished when the coverage 
reaches a solution or a pre-determined number of 
iterations. Otherwise, increase the number of 
iterations and go back to Step 2. 

2.3. Proposed Method 

The structure of the proposed MCIGA is as follows: 
 

MCIGA 1 m out(O,E,w ,..., w ,R,i )π =
 

 
where, m = NumCores where NumCore is the number of 

cores that exist on a computer. The parallelism structure 

of membrane computing is utilized, aside from 

communication rules. The number of cells in a 

membrane is equal to the number of cores in a computer 

(NumCores). Thus, each cell can be executed on 

different cores in a parallel manner: 

• O includes all individuals in the cells and index of 

cells, that is, {0,1,…,m} (0 means environment)  

• E =  φ means no object in the initial state exists in 

the environment 

• },...,,{ 21

p

n

pp

p p
IIIw =  where mp ,...,1=  in the initial 

state, p

qI  is the q
th

 individual in the p
th

 cell and each 

cell labeled with p contains np individuals as 
p

q pI ;q 1,...,n ;=  p =1,..,m. These individuals evolve 

according to the operations of GA, that is, crossover 

and mutation in each membrane 

• R is a finite set of communication and 

transformation rules and expressed as follows 

 
The transformation rules x→y are identical to the 

concepts of mutation and crossover operation in GAs 
that evolve individuals. Transformation rules (including 
mutation and crossover) are executed on different cores 
for each membrane for determined times that set with 
user and named as maximum iteration of transformation 
rules (Max_Iter_Tran). Individuals resulting from 
transformation rules are transferred to the master core so 
that the communication rules will be applied on them 
and information will be exchanged between membranes. 

The communication rules are (i,u/v,j) for 
i,j∈{1,2,…,m}, i≠j that is, different cells can 
exchange their individuals using these rules. u can be 
chosen from ni individuals inside cell i (i.e., 

i

i i i

1 2 nu {I ,I ,..., I }∈ ) and exchange with v from cell j 
(i.e.,

j

j j j

1 2 nv {I ,I ,..., I }∈ ). Figure 1 shows the 
communication direction for four membranes.  

 
 
Fig. 1. Communication between four different membranes 
 

For example, in rule 1 3

7 5
(1,I / I ,3) , the seventh individual in 

Cell 1 is exchanged with the fifth individual in Cell 3. By 

exchanging information between membranes, the 

diversity of individuals in each membrane increases and 

the trapping of the algorithm in a local minimum 

solution are avoided. After each separate execution of 

transformation rules in each membrane Max_Iter_Tran
 

times, communication rules are executed on the master 

core, after which membranes exchange individuals. 

Afterwards, the transformation rules execute on a 

separate core for Max_Iter_Tran times. This process is 

repeated until the termination condition is reached. 
iout = 0 (0 indicates the environment of the output 

cell) at the end of computation. All membranes send 
their best individuals to the environment. The best 
individual in the environment is chosen as the solution.  

The steps of the introduced membrane computing 
inspired genetic algorithm are as follows. Except for 
the communication step that runs on the master core in 
other steps, each membrane is executed on different 
cores in a parallel way. 

Step1. Initialization 

 In this step, a membrane structure with m cells is 

created. m is equal to the number of existing cores in a 

computer, that is, m = NumCroses, because each membrane 

should be executed on different cores. np individuals are 

randomly generated as 
p

p p p

1 2 n{I , I ,..., I }  in cell P, that is, p

qI  is 

the q
th
 individual in the P

th
 cell and p =1,..,m. This process is 

applied over different cores. Master cores pass the number 

of individuals np in cell p to the core p where p =1,…,m. 

Each core generates np individuals. 

Step2. Evaluation 

 A fitness function is calculated for each individual in 
this step. Fitness functions differ based on the problem. 
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This step shows how near a solution is to the optimal 
solution and is executed on different cores for each cell. 

Step3. Transformation 

 In each membrane, pairs of individuals are chosen 

based on their fitness and crossover rate. Individuals 

with better fitness have higher chances to crossover. If 

the crossover rate is equal to one, all individuals are 

chosen for crossover. Crossover takes two randomly 

chosen individuals (parents) as input and combines 

them to generate two children. The combination is 

performed by choosing a crossing point in the strings 

of the two parents and then exchanging the values. 

After crossover, mutation operation is used for 

individuals resulting from the crossover stage to prevent 

convergence of the algorithm with the local solution. The 

mutation operator chooses an   individual and then 

changes   the   value of a   randomly   chosen   gene   in 

this   individual. Different kinds of mutations and 

crossover operators can be defined based on the problem 

(Raad, 2011). This stage is performed on different cores 

for each membrane to exploit parallel structures of 

membrane computing and utilize multi-cores. The 

distribution of data over cores and gathering data from 

cores to master cores is a time-consuming process. Thus, 

this step is repeated several times on each core because 

the expected overhead time for sending data to the cores 

and receiving data from the cores with respect to the 

times data are processed on each core should be very 

low. This way, the advantages of multi cores are used. 

Results of each membrane in distinct cores are sorted 

according to fitness values. The results are then sent to 

the master core for communication information between 

membranes resulting from different cores. 

Step 4. Communication 

 In this step, all of the individuals in the membranes 

are gathered from cores to the master core. According to 

the rules of the tissue-like P system, individuals are 

exchanged between membranes based on (i,u/v,j) for i, 

j∈{1,2,…,m}, i≠j rules. This study defines i

l m ( j i) 1u I × + − +=  

and j

l×m+(m-(j-i))+1
v = I . We assume that the numbers of 

individuals (ni) in all m membranes are the same, that is, 

(n1 = …= ni = … = nm), j>i, in
l 0,1,...,

m
=  and the numbers 

of individuals (ni) are multiples of the number of 

membranes (m). The membranes exchange information 

by applying these rules. In this study, the information 

being exchanged are individuals containing the solution 

to the problem. After applying these rules, individuals 

inside membrane i change from 
i

i i i

1 2 n{I ,I ,..., I }
 

to the 

following individuals when i>1: 

 

i i

i i 1 i 2 m

0 m 1 0 m 2 0 m 3 0 m (m i) 1

1 2 i 1

0 m (m i) 2 0 m (m i) 3 0 m m

i i 1 i 2 m

1 m 1 1 m 2 1 m 3 1 m (m i) 1

1 2 i 1

1 m ( m i) 2 1 m (m i) 3 1 m m

i

n n
( 1) m 1 ( 1)

m m

{I , I , I ,..., I ,

I , I ,..., I ,

I , I , I ,..., I ,

I , I ,..., I ,

I , I

+ +
× + × + × + × + − +

−
× + − + × + − + × +

+ +
× + × + × + × + − +

−
× + − + × + − + × +

− × + −

M

i

i i

i i

i 1 i 2

n
m 2 ( 1) m 3

m

m 1

n n
( 1) m (m i) 1 ( 1) m (m i) 2

m m

2 i 1

n n
( 1) m (m i) 3 ( 1) m m

m m

, I ,...,

I , I ,

I ,..., I }

+ +

× + − × +

− × + − + − × + − +

−

− × + − + − × +

 

 

When i =1, the individuals inside membrane i change 

to the following individuals: 
 

i i i i

i i 1 i 2 m

0 m 1 0 m 2 0 m 3 0 m (m i) 1

i i 1 i 2 m

1 m 1 1 m 2 1 m 3 1 m (m i) 1

i i 1 i 2 m

n n n n
( 1) m 1 ( 1) m 2 ( 1) m 3 ( 1) m (m i) 1

m m m m

{I ,I , I ,..., I ,

I , I , I ,..., I

I , I , I ,..., I }

+ +
× + × + × + × + − +

+ +
× + × + × + × + − +

+ +

− × + − × + − × + − × + − +

M
 

 
For example, individuals for three membranes with 

six individuals inside each membrane is 
i i i

1 2 6
{I ,I ,..., I };i 1,2,3=

 
after applying the rules, as shown in 

Fig. 2a. 
 The results of the rules for each membrane are 

similar to that at the start of membrane i. The first 
individual of this membrane is selected as the new first 
individual in membrane i. afterwards, the membrane is 
changed according to Fig. 2b and a second individual of 
the next membrane is chosen as the new second 
individual in membrane i. Afterwards, the membrane is 
again changed and a third individual is chosen as a new 
third individual in membrane i. This process is repeated 
until all ni new individuals are chosen for membrane i. 
This process is repeated for other membranes. As 
mentioned in Step 3, the materials are sorted according 
to their fitness values in each membrane before being 
transferred to the master core. Thus, after individuals are 
exchanged between membranes, each membrane 
includes individuals with good fitness and low fitness 
values from itself and other membranes, thereby 
increasing the diversity of individuals in each membrane 
and increasing the performance of the algorithm. 
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 (a) (b) 

 

Fig. 2. Exchange of individuals: (a) exchange of individuals between three membranes; (b) order of choosing individuals from 

membranes 
 
Table 1. Comparison of errors of solutions for GA and 

MCIGA in 500 runs 

  GA Proposed MCIGA Speed up 

Max error 4.49E-02 6.20E-03 7.20 

Min error 1.04E-16 1.09E-16 - 

Mean error  1.30E-03 2.10E-05 61.90 

Standard deviation 4.30E-03 6.60E-04 6.50 

Average time 1.6 1.09 1.46 

2.4. Case Study 

 MCIGA is tested on familiar Colville minimization 

problem, such as benchmark. The Colville problem 

(Pires et al., 2010) is expressed as follows: 

 
2 2 2 2 2 2

1 2 1 3 4 3

2 2

2 4 2 4

f (x) 100(x x ) (1 x ) 90(x x ) (1 x )

10.1((1 x ) (1 x ) ) 19.8(x 1)(x 1)

= − + − + − + − +

− + − + − −
 

 

where, -18≤xi ≤10; i = 1, 2, 3, 4 with global solution 

(1,1,1,1) when f(1,1,1,1)=0. 

2.5. Simulation Method 

Simulations were implemented with Visual C++ 

software in a computer with Intel core i5 2.5 GHz 

(two cores) and 4 GB random access memory. In the 

simulations, blended crossover (Raad, 2011) is used as 

[Xmin+a(Xmax- Xmin),Xmax-a (Xmax-Xmin)], where a is a 

user-defined parameter; 1 2

min i i
X min(x ,x )= ; 

1 2

max i i
X max(x ,x )=  and 1

i
x  and 2

i
x  are the i

th
 gen of the 

first and second individuals chosen for the crossover, 

respectively. Mutation for this simulation is based on 

(Chen and Wang, 2011) where gen xi is expressed as 

follows:  

i i inew

i

i i i

x (U x ) if 0
g

x (x L ) if 1

+ γ − ρ =
= 

− γ − ρ =
 

 

where, ρ randomly choosen with a value of 1 or 0 with 

similar probabilities and Ui and Li are the upper and 

lower boundaries of gene xi, respectively. γ decreases 

when γ = 1-b
(1-Iter/Iter

max
)C

, where itermax is the total 

number of iterations, iter is the iteration for this step, b is 

a random variable from [0, 1] and C is the user defined 

variable. In the following simulation, the constant for 

crossover is a = 0.5, the crossover rate is 1, the mutation 

rate is 0.7, the constant C for mutation is 3, the 

maximum iteration number itermax = 1000, the number of 

membrane for the MCIGA is equal to the number of 

cores on our computer (i.e., 2) and the numbers of 

individuals for the GA and MCIGA are both 300. Each 

membrane has 150 individuals. These parameters are 

obtained via experimental trials. 

3. RESULTS  

Results of simulation for proposed algorithms and 

GA have been shown in Table 1 and Fig. 3. In Table 1 

times in seconds and maximum, minimum, mean and 

deviation of error from global solution have been 

illustrated. These amount have been obtained from 500 

simulation runs and the maximum iteration number for 

each run is itermax = 1000. In Fig. 3 the error of solution 

in each run for 500 runs has been shown for both 

proposed algorithm and GA.    
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Fig. 3. Comparison of errors of solutions between GA and MCIGA for 500 runs 

 

4. DISCUSSION 

The results demonstrate the advantages of the 
proposed approach of membrane computing inspired 
inteligent algorithm. This illustrates that the MCIGA has 
enough diversity to avoid local solutions and has enough 
parallelism to run on different cores. As illustrated in 
Table 1, the elapsed time of MCIGA is less than GA 
because MCIGA can execute on different cores in a 
parallel manner. Furthermore, the standard deviation of 
errors of solutions for 500 runs using MCIGA is 6.5 
times lower and the mean error of the solution 61.9 times 
better than that obtained using GA. These enhancement 
caused by exchanging information between membranes. 
As shown in Fig. 3, in some runs, the error of the 
solutions for GA is higher than that of MCIGA. Because 
in the algorithm of MCIGA there are information 
(individuls) exchanged among membranes, thus, the 
diversity of the proposed algorithm increases and 
prevents the proposed algorithm to trap in local solutions 
as errors decreases.  

5. CONCLUSION 

A new membrane computing-inspired algorithm was 

introduced for solving optimization problems. This 

algorithm outperformed a previous algorithm because, 

unlike the latter, the former used parallel structures. 

Previous studies used communication rules in 

membrane computing to improve their algorithms. 

Aside from using communication rules, this study 

uses parallel structures in membrane computing by 

defining appropriate membrane-inspired algorithm 

and using multi-cores. The speed of the algorithm 

increases by executing each membrane on different 

cores. The diversity of the algorithm increases and the 

algorithm avoids being trapped in the local minimum 

answer by using communication rules to exchange 

information between membranes. Thus, the execution 

times and mean error are decreased. 
The idea of using parallel structures in membrane 

computing for GA is introduced for the first time in this 
study. The proposed algorithm can also parallelize other 
intelligent algorithms. For our future work, we will 
extend the application of this proposed algorithm to 
manufacturing optimization problems and then compare 
it with several other algorithms.  
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