
Journal of Computer Science, 9 (2): 264-270, 2013

ISSN 1549-3636

© 2013 Maroosi and Muniyandi, This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license

doi:10.3844/jcssp.2013.264.270 Published Online 9 (2) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Ali Maroosi, Center for Software Technology and Management, Faculty of Information Science and Technology,

University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

264
Science Publications

 JCS

Membrane Computing Inspired

Genetic Algorithm on Multi-Core Processors

Ali Maroosi and Ravie Chandren Muniyandi

Center for Software Technology and Management,

Faculty of Information Science and Technology,

University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received 2012-09-27, Revised 2013-04-04; Accepted 2013-04-12

ABSTRACT

Membrane computing is a branch of natural computing. Several studies have recently attempted to utilize
the structure of membrane computing to improve intelligent algorithms. These studies have applied
communication rules in membrane models to facilitate information exchange between membranes, thereby
improving the performance of those algorithms. However, parallel membrane computing has not yet been
considered. This study proposes a membrane computing-inspired genetic algorithm. Similar to previous
studies, the algorithm also uses communication rules to facilitate information exchange. In this study, an
appropriate membrane computing-inspired genetic algorithm is defined, in which each membrane can be
executed over different cores in a parallel manner. The proposed algorithm can be executed over different
cores and uses multi-core processing to implement parallel membrane computation. Simulation with a
Colville minimization problem shows that the membrane computing inspired genetic algorithm has
improved performance, with a mean error of the solution 61.9 times better than genetic algorithm.

Keywords: Membrane Computing, Tissue P Systems, Genetic Algorithms, Multi-Core Processing,

Colville Function

1. INTRODUCTION

Membrane computing (also known as P systems)
(Paun et al., 2010) is a branch of natural computing.
Since its inception, membrane computing has been used
to solve various problems. Specifically, membrane
computing has been used to solve biological problems,
such as molecular interactions (Twycross et al., 2010;
Muniyandi and Abdullah, 2012), bearded vulture
evolution prediction (Cardona et al., 2009) and predator
and prey relationship modeling. Membrane computing
techniques have also been utilized to solve other
problems, such as computation of the threshold of two-
dimensional images (Christinal et al., 2010),
segmentation of images (Christinal et al., 2011) and
robot controlling (Buiu et al., 2012). Difficult
optimization problems, such as N-queens problem
(Gutierrez-Naranjo and Perez-Jimenez, 2011), three-

coloring problems (Adrian and Florentin, 2012) and
satisfiability problems (Ishdorj et al., 2010), have also
been solved by membrane computing models.

The main components of membrane computing are as
follows: (i) the membrane structure and the delimiting
compartments, in which (ii) multi-sets of objects evolve
according to (iii) (reaction) biochemically inspired rules.
The rules can process both objects and membranes (Paun et
al., 2010). Thus, membrane computing can be defined as a
framework for devising cell-like, tissue-like, or spiking-
like computing models (Paun et al., 2010). This study
applies the tissue-like membrane computing model.

Membrane computing models have recently been used
to improve intelligent algorithms (Cheng et al., 2011;
Zhang et al., 2011; 2012a; 2012b). Quantum-inspired and
differential evolution intelligent algorithms are used in
previous studies based on membrane computing to solve
difficult non-deterministic, polynomial-time problems.

Ali Maroosi and Ravie Chandren Muniyandi / Journal of Computer Science 9 (2): 264-270, 2013

265 Science Publications

JCS

However, these studies merely use communication rules
to aid information exchange between membranes.

This study introduces a Membrane Computing-

Inspired Genetic Algorithm (MCIGA). MCIGA uses a

parallel structure aside from communication rules to

assist in information exchange between membranes. In

this study, membrane computing is defined with

appropriate communication rules and membranes such

that each membrane has the ability to run parallel on

different processors.

2. MATERIALS AND METHODS

2.1. Tissue-like P Systems

Tissue-like P systems (Pena-Cantillana et al., 2011)
have two biological inspirations: inter-cellular
communication and cooperation between neurons. The
common mathematical model of these two mechanisms
is a network of processors dealing with symbols and then
communicating these symbols along the channels
specified in advance. Tissue-like P systems contain many
cells within a common environment. Two cells can
communicate with each other through channels between
them and all cells can communicate among each other
through the environment. A tissue-like P system with
degree m ≥ 1 is expressed as follows:

π = (O,E,w1,…,wm,R,iout)

Where:

m = The number of cells in the system

O = finite non-empty alphabet of objects

E⊆ O = the set of objects present in the environment

w1,…w2 = Strings over O, representing multi-sets of

 objects associated with m cells at the initial

 state of the computation

R = A finite set of communication and

 transformation rules of the following form

• Transformation rules x→y allow cell i∈O to

consume a multi-set x to produce a new multi-set y

inside the cell i.

• Communication rules (i,u/v,j) for i,j∈{0, 1, 2,…,m},

i≠j and u, v∈O

iout ∈ {0,1,2,…,m} = The output cell

A tissue-like P system of degree m is as a set of m

cells (each one consisting of an elementary membrane)
labeled by 1,2,…,m. Here, 0 refers to the label of the
environment and iout denotes the output region, which
can be the region inside a cell or the environment. The

strings w1,…,wm describe the multi-sets of objects placed
in the m cells of the P system and E⊆O is the set of

objects placed in the environment. Each set is available
in arbitrary large amount of copies.

The communication rule (I,u/v,j) can be applied over

two cells labeled by i and j such that u is contained in cell i

and v is contained in cell j. The communication rule denotes

that the objects of the multi-sets represented by u and v are

interchanged between the two cells. When either i = 0 or j

= 0, the objects are interchanged between the cell and the

environment. Rules are used in the framework of membrane

computing, that is, in a maximally parallel way (a universal

clock is considered). Each object in a membrane can only

be used in one rule, which is non-deterministically chosen

when there are several possibilities, but any object should

participate in a rule of any form, that is, in each step, a

maximal set of rules should be applied.

2.2. Genetic Algorithms

Evolutionary Algorithms (EAs) (Affenzeller et al.,
2009) are generic population-based meta-heuristics
inspired by biological evolution to address combinatorial

optimization problems. Four main EAs have been
applied to different types of problem domains: Genetic
Algorithms (GAs), genetic programming, evolutionary
strategies and evolutionary programming. GAs were
introduced to study self-adaptation in biological
processes and to solve optimization problems

(Affenzeller et al., 2009).

GAs are a class of probabilistic algorithms that start

with a population of randomly generated candidates.

Moreover, GAs are iterative procedures that operate on a

population where individuals are evaluated according to

a certain fitness value. Individuals are selected according

to this value. The selected individuals produce offspring

candidates, thus forming the next generation. Two

operators, namely, crossover and mutation, are used to

produce new individuals. Crossover takes two

individuals called parents and then produces one or two

new individuals called offspring. In its simplest form,

crossover works by swapping pieces of information from

the parents. The second operator is called mutation, which

is applied by modifying an information unit in one

individual according to a mutation rate (Affenzeller et al.,

2009). A simple pseudo code for GAs is as follows:

Step 1: Randomly generate an initial population.
Step 2: Select pairs of individuals based on the fitness

function.
Step 3: Produce next generations from the selected pairs

by applying crossover and mutation.

Ali Maroosi and Ravie Chandren Muniyandi / Journal of Computer Science 9 (2): 264-270, 2013

266 Science Publications

JCS

Step 4: Replace previous generation with the new
generation if the new generation is better or
identical to the previous generation.

Step 5: The algorithm is finished when the coverage
reaches a solution or a pre-determined number of
iterations. Otherwise, increase the number of
iterations and go back to Step 2.

2.3. Proposed Method

The structure of the proposed MCIGA is as follows:

MCIGA 1 m out(O,E,w ,..., w ,R,i)π =

where, m = NumCores where NumCore is the number of

cores that exist on a computer. The parallelism structure

of membrane computing is utilized, aside from

communication rules. The number of cells in a

membrane is equal to the number of cores in a computer

(NumCores). Thus, each cell can be executed on

different cores in a parallel manner:

• O includes all individuals in the cells and index of

cells, that is, {0,1,…,m} (0 means environment)

• E = φ means no object in the initial state exists in

the environment

• },...,,{ 21

p

n

pp

p p
IIIw = where mp ,...,1= in the initial

state, p

qI is the q
th

 individual in the p
th

 cell and each

cell labeled with p contains np individuals as
p

q pI ;q 1,...,n ;= p =1,..,m. These individuals evolve

according to the operations of GA, that is, crossover

and mutation in each membrane

• R is a finite set of communication and

transformation rules and expressed as follows

The transformation rules x→y are identical to the

concepts of mutation and crossover operation in GAs
that evolve individuals. Transformation rules (including
mutation and crossover) are executed on different cores
for each membrane for determined times that set with
user and named as maximum iteration of transformation
rules (Max_Iter_Tran). Individuals resulting from
transformation rules are transferred to the master core so
that the communication rules will be applied on them
and information will be exchanged between membranes.

The communication rules are (i,u/v,j) for
i,j∈{1,2,…,m}, i≠j that is, different cells can
exchange their individuals using these rules. u can be
chosen from ni individuals inside cell i (i.e.,

i

i i i

1 2 nu {I ,I ,..., I }∈) and exchange with v from cell j
(i.e.,

j

j j j

1 2 nv {I ,I ,..., I }∈). Figure 1 shows the
communication direction for four membranes.

Fig. 1. Communication between four different membranes

For example, in rule 1 3

7 5
(1,I / I ,3) , the seventh individual in

Cell 1 is exchanged with the fifth individual in Cell 3. By

exchanging information between membranes, the

diversity of individuals in each membrane increases and

the trapping of the algorithm in a local minimum

solution are avoided. After each separate execution of

transformation rules in each membrane Max_Iter_Tran

times, communication rules are executed on the master

core, after which membranes exchange individuals.

Afterwards, the transformation rules execute on a

separate core for Max_Iter_Tran times. This process is

repeated until the termination condition is reached.
iout = 0 (0 indicates the environment of the output

cell) at the end of computation. All membranes send
their best individuals to the environment. The best
individual in the environment is chosen as the solution.

The steps of the introduced membrane computing
inspired genetic algorithm are as follows. Except for
the communication step that runs on the master core in
other steps, each membrane is executed on different
cores in a parallel way.

Step1. Initialization

 In this step, a membrane structure with m cells is

created. m is equal to the number of existing cores in a

computer, that is, m = NumCroses, because each membrane

should be executed on different cores. np individuals are

randomly generated as
p

p p p

1 2 n{I , I ,..., I } in cell P, that is, p

qI is

the q
th
 individual in the P

th
 cell and p =1,..,m. This process is

applied over different cores. Master cores pass the number

of individuals np in cell p to the core p where p =1,…,m.

Each core generates np individuals.

Step2. Evaluation

 A fitness function is calculated for each individual in
this step. Fitness functions differ based on the problem.

Ali Maroosi and Ravie Chandren Muniyandi / Journal of Computer Science 9 (2): 264-270, 2013

267 Science Publications

JCS

This step shows how near a solution is to the optimal
solution and is executed on different cores for each cell.

Step3. Transformation

 In each membrane, pairs of individuals are chosen

based on their fitness and crossover rate. Individuals

with better fitness have higher chances to crossover. If

the crossover rate is equal to one, all individuals are

chosen for crossover. Crossover takes two randomly

chosen individuals (parents) as input and combines

them to generate two children. The combination is

performed by choosing a crossing point in the strings

of the two parents and then exchanging the values.

After crossover, mutation operation is used for

individuals resulting from the crossover stage to prevent

convergence of the algorithm with the local solution. The

mutation operator chooses an individual and then

changes the value of a randomly chosen gene in

this individual. Different kinds of mutations and

crossover operators can be defined based on the problem

(Raad, 2011). This stage is performed on different cores

for each membrane to exploit parallel structures of

membrane computing and utilize multi-cores. The

distribution of data over cores and gathering data from

cores to master cores is a time-consuming process. Thus,

this step is repeated several times on each core because

the expected overhead time for sending data to the cores

and receiving data from the cores with respect to the

times data are processed on each core should be very

low. This way, the advantages of multi cores are used.

Results of each membrane in distinct cores are sorted

according to fitness values. The results are then sent to

the master core for communication information between

membranes resulting from different cores.

Step 4. Communication

 In this step, all of the individuals in the membranes

are gathered from cores to the master core. According to

the rules of the tissue-like P system, individuals are

exchanged between membranes based on (i,u/v,j) for i,

j∈{1,2,…,m}, i≠j rules. This study defines i

l m (j i) 1u I × + − +=

and j

l×m+(m-(j-i))+1
v = I . We assume that the numbers of

individuals (ni) in all m membranes are the same, that is,

(n1 = …= ni = … = nm), j>i, in
l 0,1,...,

m
= and the numbers

of individuals (ni) are multiples of the number of

membranes (m). The membranes exchange information

by applying these rules. In this study, the information

being exchanged are individuals containing the solution

to the problem. After applying these rules, individuals

inside membrane i change from
i

i i i

1 2 n{I ,I ,..., I }

to the

following individuals when i>1:

i i

i i 1 i 2 m

0 m 1 0 m 2 0 m 3 0 m (m i) 1

1 2 i 1

0 m (m i) 2 0 m (m i) 3 0 m m

i i 1 i 2 m

1 m 1 1 m 2 1 m 3 1 m (m i) 1

1 2 i 1

1 m (m i) 2 1 m (m i) 3 1 m m

i

n n
(1) m 1 (1)

m m

{I , I , I ,..., I ,

I , I ,..., I ,

I , I , I ,..., I ,

I , I ,..., I ,

I , I

+ +
× + × + × + × + − +

−
× + − + × + − + × +

+ +
× + × + × + × + − +

−
× + − + × + − + × +

− × + −

M

i

i i

i i

i 1 i 2

n
m 2 (1) m 3

m

m 1

n n
(1) m (m i) 1 (1) m (m i) 2

m m

2 i 1

n n
(1) m (m i) 3 (1) m m

m m

, I ,...,

I , I ,

I ,..., I }

+ +

× + − × +

− × + − + − × + − +

−

− × + − + − × +

When i =1, the individuals inside membrane i change

to the following individuals:

i i i i

i i 1 i 2 m

0 m 1 0 m 2 0 m 3 0 m (m i) 1

i i 1 i 2 m

1 m 1 1 m 2 1 m 3 1 m (m i) 1

i i 1 i 2 m

n n n n
(1) m 1 (1) m 2 (1) m 3 (1) m (m i) 1

m m m m

{I ,I , I ,..., I ,

I , I , I ,..., I

I , I , I ,..., I }

+ +
× + × + × + × + − +

+ +
× + × + × + × + − +

+ +

− × + − × + − × + − × + − +

M

For example, individuals for three membranes with

six individuals inside each membrane is
i i i

1 2 6
{I ,I ,..., I };i 1,2,3=

after applying the rules, as shown in

Fig. 2a.
 The results of the rules for each membrane are

similar to that at the start of membrane i. The first
individual of this membrane is selected as the new first
individual in membrane i. afterwards, the membrane is
changed according to Fig. 2b and a second individual of
the next membrane is chosen as the new second
individual in membrane i. Afterwards, the membrane is
again changed and a third individual is chosen as a new
third individual in membrane i. This process is repeated
until all ni new individuals are chosen for membrane i.
This process is repeated for other membranes. As
mentioned in Step 3, the materials are sorted according
to their fitness values in each membrane before being
transferred to the master core. Thus, after individuals are
exchanged between membranes, each membrane
includes individuals with good fitness and low fitness
values from itself and other membranes, thereby
increasing the diversity of individuals in each membrane
and increasing the performance of the algorithm.

Ali Maroosi and Ravie Chandren Muniyandi / Journal of Computer Science 9 (2): 264-270, 2013

268 Science Publications

JCS

 (a) (b)

Fig. 2. Exchange of individuals: (a) exchange of individuals between three membranes; (b) order of choosing individuals from

membranes

Table 1. Comparison of errors of solutions for GA and

MCIGA in 500 runs

 GA Proposed MCIGA Speed up

Max error 4.49E-02 6.20E-03 7.20

Min error 1.04E-16 1.09E-16 -

Mean error 1.30E-03 2.10E-05 61.90

Standard deviation 4.30E-03 6.60E-04 6.50

Average time 1.6 1.09 1.46

2.4. Case Study

 MCIGA is tested on familiar Colville minimization

problem, such as benchmark. The Colville problem

(Pires et al., 2010) is expressed as follows:

2 2 2 2 2 2

1 2 1 3 4 3

2 2

2 4 2 4

f (x) 100(x x) (1 x) 90(x x) (1 x)

10.1((1 x) (1 x)) 19.8(x 1)(x 1)

= − + − + − + − +

− + − + − −

where, -18≤xi ≤10; i = 1, 2, 3, 4 with global solution

(1,1,1,1) when f(1,1,1,1)=0.

2.5. Simulation Method

Simulations were implemented with Visual C++

software in a computer with Intel core i5 2.5 GHz

(two cores) and 4 GB random access memory. In the

simulations, blended crossover (Raad, 2011) is used as

[Xmin+a(Xmax- Xmin),Xmax-a (Xmax-Xmin)], where a is a

user-defined parameter; 1 2

min i i
X min(x ,x)= ;

1 2

max i i
X max(x ,x)= and 1

i
x and 2

i
x are the i

th
 gen of the

first and second individuals chosen for the crossover,

respectively. Mutation for this simulation is based on

(Chen and Wang, 2011) where gen xi is expressed as

follows:

i i inew

i

i i i

x (U x) if 0
g

x (x L) if 1

+ γ − ρ =
= 

− γ − ρ =

where, ρ randomly choosen with a value of 1 or 0 with

similar probabilities and Ui and Li are the upper and

lower boundaries of gene xi, respectively. γ decreases

when γ = 1-b
(1-Iter/Iter

max
)C

, where itermax is the total

number of iterations, iter is the iteration for this step, b is

a random variable from [0, 1] and C is the user defined

variable. In the following simulation, the constant for

crossover is a = 0.5, the crossover rate is 1, the mutation

rate is 0.7, the constant C for mutation is 3, the

maximum iteration number itermax = 1000, the number of

membrane for the MCIGA is equal to the number of

cores on our computer (i.e., 2) and the numbers of

individuals for the GA and MCIGA are both 300. Each

membrane has 150 individuals. These parameters are

obtained via experimental trials.

3. RESULTS

Results of simulation for proposed algorithms and

GA have been shown in Table 1 and Fig. 3. In Table 1

times in seconds and maximum, minimum, mean and

deviation of error from global solution have been

illustrated. These amount have been obtained from 500

simulation runs and the maximum iteration number for

each run is itermax = 1000. In Fig. 3 the error of solution

in each run for 500 runs has been shown for both

proposed algorithm and GA.

Ali Maroosi and Ravie Chandren Muniyandi / Journal of Computer Science 9 (2): 264-270, 2013

269 Science Publications

JCS

Fig. 3. Comparison of errors of solutions between GA and MCIGA for 500 runs

4. DISCUSSION

The results demonstrate the advantages of the
proposed approach of membrane computing inspired
inteligent algorithm. This illustrates that the MCIGA has
enough diversity to avoid local solutions and has enough
parallelism to run on different cores. As illustrated in
Table 1, the elapsed time of MCIGA is less than GA
because MCIGA can execute on different cores in a
parallel manner. Furthermore, the standard deviation of
errors of solutions for 500 runs using MCIGA is 6.5
times lower and the mean error of the solution 61.9 times
better than that obtained using GA. These enhancement
caused by exchanging information between membranes.
As shown in Fig. 3, in some runs, the error of the
solutions for GA is higher than that of MCIGA. Because
in the algorithm of MCIGA there are information
(individuls) exchanged among membranes, thus, the
diversity of the proposed algorithm increases and
prevents the proposed algorithm to trap in local solutions
as errors decreases.

5. CONCLUSION

A new membrane computing-inspired algorithm was

introduced for solving optimization problems. This

algorithm outperformed a previous algorithm because,

unlike the latter, the former used parallel structures.

Previous studies used communication rules in

membrane computing to improve their algorithms.

Aside from using communication rules, this study

uses parallel structures in membrane computing by

defining appropriate membrane-inspired algorithm

and using multi-cores. The speed of the algorithm

increases by executing each membrane on different

cores. The diversity of the algorithm increases and the

algorithm avoids being trapped in the local minimum

answer by using communication rules to exchange

information between membranes. Thus, the execution

times and mean error are decreased.
The idea of using parallel structures in membrane

computing for GA is introduced for the first time in this
study. The proposed algorithm can also parallelize other
intelligent algorithms. For our future work, we will
extend the application of this proposed algorithm to
manufacturing optimization problems and then compare
it with several other algorithms.

6. ACKNOWLEDGMENT

This study supported by the Young Researcher Grant

of the National University of Malaysia (Grant code:

GGPM-2011-051).

Ali Maroosi and Ravie Chandren Muniyandi / Journal of Computer Science 9 (2): 264-270, 2013

270 Science Publications

JCS

7. REFERENCES

Adrian, T. and I. Florentin, 2012. Computational

properties of two p systems solving the 3-colouring

problem. Proceedings of the 14th International

Symposium, Symbolic and Numeric Algorithms for

Scientific Computing, Sept. 26-29, IEEE Xplore

Press, Timisoara, Romania, pp: 62-69. DOI:

10.1109/SYNASC.2012.61

Affenzeller, M., S. Winkler, S. Wagner and A. Beham,

2009. Genetic Algorithms and Genetic

Programming: Modern Concepts and Practical

Applications. 1st Edn., Taylor and Francis, Boca

Raton, ISBN-10: 1420011324, pp: 379.
Buiu, C., C.I. Vasile and O. Arsene, 2012. Development

of membrane controllers for mobile Robots. Inform.
Sci., 187: 22-51. DOI: 10.1016/j.ins.2011.10.007

Cardona, M., M.A. Colomer, M.J. Perez-Jimenez, D.
Sanuy and A. Margalida, 2009. Modeling
ecosystems using p systems: The bearded vulture, a
case study. Comput. Sci., 5391: 95-116. DOI:
10.1007/978-3-540-95885-7_11

Chen, Z.Q. and R.L. Wang, 2011. Two efficient real-
coded genetic algorithms for real parameter
optimization. Int. J. Innov. Comput. Inform. Control,
7: 4871-4884.

Cheng, J.X., G.X. Zhang and X.X. Zeng, 2011. A novel
membrane algorithm based on differential evolution
for numerical optimization. Int. J. Unconventional
Comput., 7: 159-183.

Christinal, H.A., D. Diaz-Pernil and P. Real, 2011.

Region-based segmentation of 2D and 3D images

with tissue-like P systems. Patt. Recogn. Lett., 32:

2206-2212. DOI: 10.1016/j.patrec.2011.05.004
Christinal, H.A., D. Diaz-Pernil, M.A. Gutierrez-Naranjo

and M.J. Perez-Jimenez, 2010. Thresholding of 2D
images with cell-like P systems. Romanian J.
Inform. Sci. Technol., 13: 131-140.

Gutierrez-Naranjo, M.A. and M.J. Perez-Jimenez, 2011.

Local search with p systems: A case study. Int. J.

Natural Comput. Res., 2: 47-55. DOI:

10.4018/jncr.2011040104

Ishdorj, T., A. Leporati, L. Pan, X. Zeng and X. Zhang,

2010. Deterministic solutions to QSAT and Q3SAT

by spiking neural P systems with pre-computed

resources. Theor. Comput. Sci., 25: 2345-2358.

DOI: 10.1016/j.tcs.2010.01.019

Muniyandi, R. and M.Z. Abdullah, 2012. Modeling

hormone-induced calcium oscillations in liver cell

with membrane computing. Romanian J. Inform.

Sci. Technol., 15: 63-76.

Paun, G., G. Rozenberg and A. Salomaa, 2010.

Membrane Computing. 1st Edn., Oxford University

Press, Oxford, ISBN-10: 0199556679, pp: 672.

Pena-Cantillana, F., D. Diaz-Pernil, A. Berciano and M.

A. Gutierrez-Naranjo, 2011. A parallel

implementation of the thresholding problem by

using tissue-like P systems. Comput. Anal. Images

Patt., 6855: 277-284. DOI: 10.1007/978-3-642-

23678-5_32

Pires, E.S., J.T. Machado, P.B.D.M. Oliveira, J.B. Cunha

and L. Mendes, 2010. Particle swarm optimization

with fractional-order velocity. Nonlinear Dynamics,

61: 295-301. DOI: 10.1007/s11071-009-9649-y

Raad, D.N., 2011. Multi-objective optimisation of water

distribution systems design using metaheuristics.

PhD Thesis, University of Stellenbosch,

Stellenbosch.

Twycross, J., L.R. Band, M.J. Bennett, J.R. King and N.

Krasnogor, 2010. Stochastic and deterministic

multiscale models for systems biology: An auxin-

transport case study. BMC Syst. Biol., 4: 34-45.

DOI: 10.1186/1752-0509-4-34

Zhang, G., F. Zhou, X. Huang, J. Cheng and M.

Gheorghe et al., 2012b. A novel membrane

algorithm based on particle swarm optimization for

solving broadcasting problems. J. Universal

Comput. Sci., 18: 1821-1841. DOI: 10.3217/jucs-

018-13-1821

Zhang, G., J. Cheng and M. Gheorghe, 2011. A

membrane-inspired approximate algorithm for

traveling salesman problems. Romanian J. Inform.

Sci. Technol., 14: 3-19.

Zhang, G., J. Cheng, M. Gheorghe and Q. Meng, 2012a.

A hybrid approach based on differential evolution

and tissue membrane systems for solving

constrained manufacturing parameter optimization

problems. J. Applied Soft Comput., 13: 1528-1542.

DOI: 10.1016/j.asoc.2012.05.032

