Jour nal of Computer Science 9 (12): 1695-1709, 2013

ISSN: 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.1695.1709 Published OnlifE2Y 2013 (http://www.thescipub.com/jcs.toc)

NEW TRACK-TO-TRACK CORRELATION ALGORITHMS
BASED ON BITHRESHOLD IN A DISTRIBUTED MULTISENSOR
INFORMATION FUSION SYSTEM

YLiu Yu, 'Wang Haipeng, *He Y ou, 'Dong K ai and ?Xiao Chuwan

'Research Institute of Information Fusion,
2Training centre of New Equipment,
Naval Aeronautical and Astronautical University,nfai, 264001, China

Received 2013-08-15, Revised 2013-10-19; Accepte8-20129
ABSTRACT

Track-to-Track correlation (or association) is angeing area of interest in the field of distributed
multisensory information fusion. In order to perfolaccurately identifying tracks with common origin
and get fast convergence, this study presents emimt and dependent Bi-threshold Track Correlation
Algorithms (called BTCAs), which are described irtail and the track correlation mass and
multivalency processing methods are discussed ds Ween, Based on BTCAs, two modified Bi-
threshold Track Correlation Algorithms with averagest Statistic (called BTCA-TSs) are proposed.
Finally, simulations are designed to compare theetation performance of these algorithms with tbiat
Singer’s and Bar-Shalom’s algorithms. The simulati@sults show that the performance of these
algorithms proposed in this study is much betteantithat of the classical methods under the
environments of dense targets, interfering, norsteack cross and so on.

Keywords: Data Fusion, Track Correlation, Radar Network,Zy3et

1. INTRODUCTION al., 2011; Osbomest al., 2011; Wanget al., 2012; La
Scala and Farina, 200Bar-Shalom, 2008is a crux of
Using data from multisensor system, the multitarget distributed multisensor system. It's a problem o#ho
tracking technology has been largely applied tatam decide whether two tracks coming from differentssen
affairs and public affairs. In some applicatioi® tlata is  systems represent the same target. The issue ak- tra
collected by many sensors distributed over a larga. In  to-track association was first considered in prieskby
view of the security, viability and communication Singer and Kanyuach (1971), assuming tracks with
bandwidth of such a multisensor system, it's ualgé to independent estimation errors (Singer’'s algorithfien,
process these data with centralized method. Howéiver  Bar-Shalom extended to the case of correlated siror
distributed structure of processing method is apabde. (Bar-Shalom and Fortmann, 1988) (Bar-Shalom'’s
Track-to-trackassociatio n problem (Yetal., 1996; algorithm) and Kosaka presented the Nearest Neighbo
Singer and Kanyuck, 1971; Bar-Shalom and Fortmann,(NN algorithm) in (Gul, 1994). A K-Nearest Neighbor
1988; Gul, 1994; Kosoka, 1983; Yoet al., 1989; algorithm was given in (Kosoka, 1983) and Bowman
Bowman, 1979; Chang and Youens, 1982; Bar-Shalomproposed a Maximum likelihood algorithm in (Yeual.,
and Chen, 2004; Kaplaet al., 2008; Tian and Bar- 1989). Chang and Youens (1982) transformed track-to
Shalom, 2011; Bar-Shalom and Campo, 1986; Mori track association into Multidimensional assignment
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problem and get it resolved with Hunger/Munker rodth  using Kalman filter. Assume that the tracks of &dsg

(Bowman, 1979). had been initialed by using some multitarget tragki
In these algorithms above, Singer’s algorithm, Bar- algorithms and the state estimation of targets eghiim

Shalom’s algorithm and NN algorithm are usually each node would be communicated to a central

applied to the actual system. However, theseprocessor, where track fusion takes places. The sta

algorithms will lead to false correlation or misgin estimation of theth target from theth sensor can be

correlation when under the environments of densewritten as follows Equation (5):

targets, interfering, noise, track cross and so To.

resolve these problems of Singer’s algorithm and Ba Xi(k +1]K +1) =X} (k +1|K) +K,(k +1)

Shalom’s algorithm and in view of history informati _ _ _ (5)
of tracks, several bi-threshold track correlation 1Zi(k +2) = H' (k + D)X, (k +[1]k)]
algorithms based on the double threshold detection
method are proposed in this study. Besides, effecti One-step prediction of the state is Equation (6):
track correlation mass management and multivalency
processing methods are discussed as well to gaehig  x!(k +1]k) = F(k)X, (k|k) (6)
correlation precision and faster convergence.
1.1. System Description and the one-step prediction covariance is Equéiipn
The dynamics of target can be modeled in the _ ; . e

discrete form as follows Equation (1): R (k+ ]4 k)= FIOR (} F(ky GIOFKIG'(K] (7)
X(k +1) = F(k)X(k) + G(K)V(k) k=1,2....., (1) the filter gain is Equation (8):
Where: . Ki(k +1) =F (k+ Tk)H' (k+ [H (k+ )P
X(K)OR = The state vector at time k ) _ (8)
V(K)OR" = A sequence of zero-mean, white (k+1K)H" (k+1)+ R (k+ 1)

Gaussian process noise with

covariance matrix and the update state covariance is Equation (9):
Q(k) and F(kDR™" = The transiton matrix of the

system P (k+ j k+ )= [I- K (k+ DH (k+ 1P (k+ 1 k)]
G(k )OR™" = The noise distribution matrix ©)

i=1,2,..,M,t=1,2,..,n
The initial state vector is assumed normally
distributed with meanyt and covariance P(0). Therefore, 1.2. BI-Threshold Track Correlation Algorithms

one knows that Equation (2):
a ) 1.2.1. Independent and Dependent Bi-threshold

E[V(K)] =0, E[V(K)V(K)] =Q(K) 3, 2) Track Correlation Algorithm
The measurement of node i at time k is given by There is a double threshold detection signal
Equation (3): processing method in the automatic radar detection
_ _ , theory (La Scala and Farina, 2002). Based on théleo
Z' (k) = H' (k)X (k) + W' (k) 3) threshold detection method, independent and depebile

threshold track correlation algorithms are propdsere.

where, W(k) is a sequence of zero-mean, white,  pefine the sets of track number initialed by node 1
Gaussian measurement noise vector with covarialtkg R 5nd node 2 Equation (10):

H'(k)OR™"is the measurement vector of the ith node at 2
time k and | = 1, 2,...,,M. This study only discussies U, ={L,2,....n}U,={,2,....,n,} (10)
situation of M = 2. Assuming that the measuremengen

sequences are independent Equation (4): Let >A<il(l) denotes the state of targeestimated by

E[W' (k)] =0, E[W' (k)W (k) TR’ (k)3,, (4) node 1. Assume that for the same time one has an

~2 ~
_ _ estimateX;(l) of target j from node 2. Denotg(l) as
Each node processes its observations locally to 0 getl &0

produce the state estimation and prediction ofgetdoy  the estimation of; (1) and Equation (11 and 12):
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£, =X -X 1) (11) which is a linear recursion with initial condition
P?(0)= 0. Under the Gaussian distributed assumptions,
t, () =X{() =X ( OV, j V) (12)  g; (I) and y; (l) is chi-square distributed with x n

degrees of freedom. The x n here denotes the diorens
where, X and X are the corresponding true states. One of state estimation vector.

wants to test for the “same target” hypothesis >A<i1(l) and 1.3. Track Mass Designing

~2 . .

X;(l) are the estimations of the same target Vs. Two kinds of track mass are designed here. One of
¢ them is track correlation mass and the other one is
. track separation mass. Similar to the associatiassm
targets. Then, the problem of track correlationopees (La Scala and Farina, 2002; Bar-Shalom, 2008)trtk

the hypothesistesting problem. correlation mass () denotes the times of track i from
H H |
The Independent Bi-threshold Track Correlation node 1 correlated with track j from node 2 till &nh

Algorithm (IBTCA) can be described as follows. : . - :
Using the test variable of Singers algorithm and the sep_arat|0n.mass of track i and j is defiagd
follow Equation (19):

Equation (13 and 14):

H, :X:() and X;(l) are the estimations of differen

&0 =R +R* O, O =1.2,....R (13) D;() =D; (-1 +1 (19)
D,(0)= 0,2, ()2 3ory, ()23
m; () =m; (I-1)+1 14
m, (0)=0,if & (I)<d (14) From (18) one can see that if Equation (20):
where, P-(l) is the estimation error covariance of node 1 Di(l-1) >R -L(WhereRandL havebeen s (20)

corresponding to target i and;m(l) denotes the
correlation mass that track i from node 1 correlate
with track j from node 2 till time |. The first teshold

is set as follow Equation (15):

The correlation test would not be performed between
track i and j at time I. Since j{l = R)<L (track i and j
are uncorrelated) must be in existence;i>B-L at time
| 1. Similarly, the correlation between track i andifl
P{Z, () >6\H0} —_— (15) be nearly confirmed if Equation (21):
where,a is, say, 0.05. Then the test af¥$. H is as follow ~ Mi(-D=L (21)
Equation (16):

The correlation test between track i andiquld be

accept H if m (R} L (16) cease at time | if only one track () can satist@)( then

] track i and j would be regarded as the correlatacktand

However, K may not be accepted ifnfl)=L, | = performed no correlation test any more. Howevethéfe

L, L+1,...,R for that there may be more than oneKrac gre more than one track (j) can suffice (20), treetation
will be correlated with track i. This problem iséited ot should be performed last | = R to give a BeeCi

in the following part. correlation mass for the multivalency processittigtaOn

In the Dependent Bi-threshold Track Correlation :
. . the other hand, the track | with no other trackrelated
Algorithm (DBTCA), the test variable of Bar- shalem il I=R will be performed test in the next cycle.

algorithm is used Equation (17):

b (0 =5 (VTR +R*() —R™()
-PZ I, () 1=1,2...R

1.4. Multivalency Processing M ethod

17 There are two situations where multivalency
processing method applied, one of them is | = R and
the other is I<R. In case one, there are more thren

where, P?(l) denotes the cross-covariance Equation (18): ) ) )
track (j) suffice for m (I = R)=L thus will be

1 0y

P2()=[1 -KX)H ] &1 4)P, ) (1 ) correlated with track i. In this case, track j* whi
' o (18) maximize the track correlation mass;(th will be
+G(1-DQ (I-1)G(I- DI - Ki(HHAN] correlated with track i Equation (22):
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j =argmaxm, (I= R) jD{ i th} (22) P(A=R-L+1l)=a"(l-af™* =o*(@-a 27)

where, {j.j2...j}is the set of track (j) correlated with Th_en, the sans probability can be estimated asvioll
track i. When there are more than one track canEduation (28):
maximize track correlation mass; (I), the track J will

be accepted if Equation (23 and 24): = P (A2 y)= ZR: Co* (-a §* (28)
A=R-L+1
5 C1& . -
Z;+(R)= min=>"¢,. () Ofj;. i5r-..J,JUBTCA) (23)  where, L is the second threshold. From (28) one can
r R P
calculate the sans probability in the case of L/IB/4

_ 1R o and L/R = 6/8:P: (3/ 4) 0.002256° (6/8) = 0.000102.
b+(R) = ”}'”EE‘“W (07 Oj2.J---Jo }(DBTCA) (24) Therefore, (28) can be used to set the value of L/R

_ _ 1.6. Modified Bi-Threshold Algorithms Based

In case two, the correlation test will be ceasgd %) On Average Test Statistic

is sufficed. Otherwise, a temp system track will de.
Corresponding to a given track i, the track j* izepted Bar-Shalom and Campo (1986), a new state statistic
if j* argmax my(l) . for correlation hypothesis is defined as followsuEtion

If there are more than one track (j*) accepted, the(29):
multivalency processing method will be applied.this
case, the track j will be correlated with track fi i L PN
**argmin Dj (I). However, if there are more than one )‘ii(k)‘; ()’ C Ot
track which can be correlated with track i, theckrgp A A
will be accepted if Equation (25): =N (k=1 + 1 (K)'G™ (k)% (k)

(29)

where, C;*(k)= P ()+ P () and A; (0) = 0. Under the

Gaussian distributed assumptions, the individuainse
Equation (30):

i =argj*min%Z|) . (qﬂ 10{1 bl (29)
q=1

Where Equation (26):
S g, (K) =ti(k)'C; (k) (k) (30)
xi (@) = Xi (@) = X+ (q) (26)
Known as the normalized estimation error squared,

and {ilvi'z,----lj}} is the set of track (j*) can are each chi-square distributed with x n degrees of
. : freedom, where x denotes the dimension of state
satisfy**argmin G (I).

. . . . estimation vector. It should be noticed that the sf
Once jis correlated with track i, the correlation test

would not be performed to track i or j at time in& the chi-square variables\{ (k)) as an approximately chi-

data of track transformed seriatim by each serssirof square distri_bution with x kn degrees of_freedonmd(a
L/R should be dynamic, such as 1/1, 2/2, 2/3, 3/8, thus approximately mean x kn and variance 2 x kn)
4/5, 4/6, 5/7, 6/8 and so on. Also one can see thafBar-Shalom, 2008). _

Singer's and Bar-Shalom’s algorithm is a specific  N€xt, a modified function based on average test

track correlation algorithm when L/R = 1/1. (IBCTA-ATS) is defined as follows Equation (31):
1.5. Estimation to Sans Correlation Probability A (K)
(k) =—"=
Let R, (A) denote the probability of statistical distance B00== (31)

from the same target accepted by the first threshol
According to the rule of %test, R (A) = a (a is set in
(15)). Assuming that the cumulative dtimation error
swatches are statistical independent(AP=Y) is Approximately, ¢; (k) is a chi-square distributed
binomial distributed Equation (27): random variable with x n degrees of freedom, whiah

:%qu O[RO+R*M]T 0. (0)=0
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be used for correlation hypothesis test. Then d¢is¢ of targets are random and the initial positions ofs¢he

Hop vs. H, is as follows Equation (32): targets are normally distributed in a region ilfagtd in
Fig. 1. The initial velocity and azimuth of these targets

acceptH ifp; (kK)o (k),i0 Y, U (32) are uniformly distributed in 4~1200 m séand 0~2m,
respectively.Figure 1, r;, r, denote the observation

The threshold is set such that Equation (33): radius, r,,r,denote the radius of undetectable area and

0',0" are the coordination origin of nodes. Wheje

P{cbij (K)>3(K)| H)} =a (33) 110,r,=120, 1r,=2,r,=25,a=b = 125, ¢ = 235,d
130,x%; = 380,y; = 270 km.

where,a is the significance level with = 0.05. The state vector in (1) is X = (Xyy)’, the transition

In IBCTA-ATS, track mass and multivalency matrix and noise distribution matrix is Equatios)3
processing method is as showed before.

In view of the dependence between the estimation 1 TOO T/2 0
errors from the two track files arises from the coon 0100 1 0
process noise,a dependent shi-threshold correlation )| o ; | K= 5 1/ (39)
algorithm based on Average Test Statistic (DBCTASAT 000 1 0 1

is presented here. All steps of hypothesis testtrimrk
correlation are as described in IBCTA-ATS with the ] ]
following modifications. With theknown cross-covance ~ Where, T is the sample interval and T = 4s.

P2(l), test statistic in (31) is modified to Equatiod)3 The measurement vector in (2) is Z =(xy)’, the
measurement matrix is Equation (36):

1
Yy (K) =— to0o00
L~ ) 34 " {o 01 o} (30)
> (TP +PA() - R™() - R (01t ()
= And Equation (37):

We all known that the optimal test would require 0, (K)
using the entire database through timenkl this is not Q(k)=|: - :l
easy to realize. However, the history information o 02 (K)
track has been used in the four algorithms propased |./q,, (k) = 15x 10% (k) (37)

this study and the computation and memory 2.
. . . N k) =15x 107 'y(k
requirements of these new algorithms will not grow %:2(K) * y(K)

obviously since each test statistic (as showedlB),(
(17), (31) and (32)) has a recursive structure.

1.7. Simulation Y\

One has run simulations to compare the A
correlative performance of four bi-threshold track
correlation algorithms here with the Singer's and
Bar-Shalom’s algorithm.

1.8. Simulation Model and Parameter Settings

There are two nodes considered in the simulations
and a 2-D radar is set in each node. A Monte Carlo
simulation with 50-runs was carried out for two
environments. In case 1, there are 60 targets laewek t 0
are 120 targets that composed of a lots maneuvering
cross and split targets in case 2. The maneuvelteeeé  Fig. 1. The observation area of sensors
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The noise process standard deviations of rang and..9. System
azimuth measurements from each sensor are assomed t
be 170m and 0.017rad, 180m and 0.017rad, resphrctive
The measurement noise covariance matrix is Equation

(38 and 39):
2(k k
LAY (38)
0, (k) oy(k)
02(K) = 62c0s0 (K)+ [ (Kp¢ sirt® (k)
02 (k) = 02sin?6 (k) + p* (K)o cos'8 (K) (39)

02, (k) =[0% - p*(k)oZ]sin 8 (k) cosd (k)

where,o,y (K) = oy (k) and o;,0; denote the noise process
standard deviations of rang and azimuth measursnagut

Flow Chart of Bi-threshold

Algorithm

The System Flow Chart of the Dependent Bi-
threshold Algorithm is given ifig. 2.

1.10. Resultsand Analysis

With 1-run simulation,Table 1 and 2 show Ec and
Ee of Singer's, Bar-Shalom’s and bi-threshold track
correlation algorithms in case 1 and case2, resdgt
Figure 3-5 show the correct correlation ratio in case 1
and case 2, respectivelfrigure 4-6 show the error
correlation ratio in case 1 and case 2, respegtivebm
these simulation results one can see that comwelati
performance of Bar-Shalom’s algorithm is a littletter
than that of Singer’s algorithm. Also one can deat t

(k). 6(k) denote the rang and azimuth measurementscorrelative performance of the four bi-thresholdcke

Assuming that all of the measurements have bee

associated to the track correctly, the initialisgtof filter is
given as follows Equation (40 and 41):

x(1)=z (1)
x(U1)=1[z, W)-z O/ T

. (40)
yan=z @)

yUD=1z, -z O/ T

P@1)=

o;(1) o;@/T 0,1 o, M)/T

oX)/T 2021)/ T o, M)/T >, O)/T (41)

0,1 o, /T oi(1) o;)/T
0, )/T 20, )/T W)/T B2@A)/T

Table 1. Ec and Ee of each algorithm in case 1 (L/R = 6/8)

correlation algorithms proposed in this study ischu
"better than that of Singer’s and Bar-Shalom’s atjgor,
especially in the case 2 where there exists a heaggt
density and a lot of maneuvering targets, where the
improvement ratio of Ec reaches about 30 to 45%
respectively. In addition, the correlation perfornoes of
independent bi-threshold algorithms are a littetteve
than that of dependent bi-threshold algorithm.

However, the L/R ruler must be set before the
execution of these bi-threshold algorithms. Witadyral
growth of targets in simulatiorkigure 7-14 show the
correlation result of different algorithms proposedhis
study with 3/4 rules and 6/8 rulers respectivelpe@an
see that the correlation performance of bi-threghol
algorithms with 6/8 rules is a litter better thdratt of
bithreshold algorithms with 3/4 rules from these
simulation results.

Ec Ee
Bar- Bar-
Singre’s  Singre’s IBTAC- DBTCA- Singre's Singse’ IBTCA- DBTCA- N=60
L algorithm algorithm IBTCA DBTCA ATS ATS algorithm algorithm IBTCA DBTCA ATS ATS NI
1 0.6667 0.7000 0.6667  0.7000 0.8950 0.8950 0.26670.1833 0.2667 0.1833 0.1013 0.1013 60
2 0.6780 0.7458 0.8305 0.8475 0.9210 0.9237 0.27120.1864 0.1695 0.1525 0.0753 0.0727 59
3 0.6780 0.7458 0.8644 0.8644 0.9430 0.9240 0.27120.1864 0.1356 0.1356 0.0533 0.0723 59
4 0.6780 0.7458 0.8983 0.8656 0.9523 0.9260 0.27120.2034 0.1017 0.1334 0.0440 0.0703 59
5 0.6780 0.7458 0.9322 0.8814 0.9613 0.9327 0.27120.2034 0.0678 0.1186 0.0350 0.0637 59
6 0.6667 0.7368 0.9298 0.8896 0.9707 0.9463 0.28070.2105 0.0702 0.1104 0.0257 0.0500 57
7 0.6545 0.7273 0.9455 0.8909 0.9770 0.9570 0.29090.2182 0.0545 0.1091 0.0193 0.0393 55
8 0.6415 0.7170 0.9434 0.8868 0.9770 0.9570 0.30190.2264 0.0566 0.1132 0.0193 0.0393 53
9 0.6415 0.7170 0.9434  0.9057 0.9770 0.9570 0.30190.2264 0.0566 0.0943 0.0193 0.0393 53
10 0.6257 0.7059 0.9412 0.9216 0.9770 0.9570 @.313 0.2353 0.0588 0.0784 0.0193 0.0393 51
11 0.6257 0.7059 0.9412 0.9216 0.9770 0.9570 @.313 0.2353 0.0588 0.0784 0.0193 0.0393 51
12 0.6257 0.7059 0.9412 0.9216 0.9770 0.9570 @.313 0.2353 0.0588 0.0784 0.0193 0.0393 51
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START

Initializaion: /=0.5.L.R, m, (0y=0, D, (0)=0, }3}2 (M=0,iel,,jel,
m.(0)=0.F7(0)=0.i €U,.j €U,

( k=k+1 )

}

Xk /BB (00, X G 1 —1), Accepting the state estimation from X J0E), PR, X I (R E—1),
P/ k—=1)/ (H}(k), S (k) each sensor and performing subarea. PRk ik =1 CH (k) S;(k)
ielU, Setting up the stack, the track files Jjel,
and some initial data else.

!

From sensorl | I =INT@U-D/R). N =N, =N, =0 From sensor 2
S 5
Yesl >0 AND II=(I-1)/R
No

| m@v=1p0 D=0ictijct, F—
>< DOi:ltOnlk

!
»<_ Doj=ltony Yes

lNo

The calculation of }3;#_1: (k) (Corresponding to DBTCA) and test statistic:

r,(b)=1,(k)B; (b, (k)

r

@25@) NI D (k) =D, (k—D+1
qu

| m (k) =m,(k-1)+1 |

| Multivalency processing |

| Association and tracking initialization |
l‘
<

Cl'he caleulation of Ec, Ee aud;

| Track fusion / State estimation |
]

| Trackmg maitenance or termination |

END

Fig. 2. The system flow chart of dependent bi-threshadkrcorrelation algorithnfNotice: Ec, Ee and Es denote the correct, error
and sans correlate ratio)

////4 Science Publications 1701 JCS



Liu Yu et al. / Journal of Computer Science 9 (1595-1709, 2013

]. T T T ] T T
095k T i i o |
1L o T L ke |
—a—IBTCA-ATS
0.85F g DBTCA-ATS
. - - re e prmrinn Peeeean [ erpr. *
2 0.8F —a—IBTCA ]
1 £ ceedens DBTCA
0.75F gm-a.nw. 7
0.7_ 37 e - .. . n
0.65F ——ISTCA -
--#---DSTCA
0.6 —a—Singer’s i
- Bar-shalom’s
055 1 1 1 1 1 1
0 2 4 6 8 10 12
Step
Fig. 3. Correct correlation ratio versus time (casel)
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—m— Singer’s
025k -.m- Bar-Shalom’s
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Fig. 4. Error correlation ratio versus time (casel)
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1 T T T T T T
09} S e e @ e |
/---" orerrr Toiit GOttt TRalit e LUl
08k ' —s—IBTCA-ATS |
: ~—#- DBTCA-ATS
- -.---"‘.""..‘....-"‘.“.“*""..’
S -~ il ——IBTCA
0? = ! wesnghpers DBTCA -
——ISTCA
=@~ DSTCA
0.6 —&— Singer’s ™
~-~#- Bar-Shalom’s
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Fig. 5. Correct correlation ratioversus time (case2)
—®—IBTCA-ATS
e DBTCA-ATS
0.5 —+—IBTCA i =,
==wDBTCA T p—
o S —+—ISTCA
0.4F e DSTCA )
- —&—Singer’s
=5 -+-m-Bar-Shalom’s
03- .
021 ]
0.1r .
0 1 i i i 1
0 2 4 6 8 10 12

Step

Fig. 6. Error correlation ratio versus time (case2)
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0.981 4 —d—4——4——4—4—
0.964
0.94 -
" 0.92 1
[ 1 —a— IBTCA-ATS (3/4)
0.90+ —e— DBTCA-ATS (3/4)
k —a—IBTCA (3/4)
0.88 1 —w—DBTCA (3/4)
1 —4—IBTCA-ATS (6/8)
0.86- “P» " DBTCA-ATS6/8)
| —4—IBTCA 6/8)
0.84- —®*—DBTCA6/8)
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Step
Fig. 7. Correct correlation ratio versus time (N = 30)
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Fig. 8. Error correlation ratio versus time (N = 30)
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Fig. 9. Correct correlation ratio versus time (N = 90)
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Fig. 10. Error correlation ratio versus time (N = 90)
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Fig. 12. Error correlation ratio versus time (N = 150)
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Fig. 13. Correct correlation ratio versus time (N = 210)
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Table 2. Ec and Ee of each algorithm in case 2(L/R = 6/8)

Ec Ee
Bar- Bar-
Singre’'s  Singre’s IBTAC- DBTCA- Singre's Singse’ IBTCA- DBTCA-
algorithm algorithm IBTCA DBTCA ATS ATS algorithm algorithm IBTCA DBTCA ATS ATS N =120

0.5083 05083 0.5083 0.5083 0.8112 0.8112  0.40000.3833 0.4000 0.3833 0.1870  0.1870 120
0.5083 0.5250 0.7167 0.7417 0.8720 0.8762 0834 0.4083 0.2833  0.2583 0.1262  0.1220 120
0.5083 0.5250 0.7919 0.7667 0.9098 0.8827 0834  0.4167 0.2083  0.2333 0.0883  0.1155 120
0.5083 05250 0.8000 0.7833 0.9315 0.8843  0.41670.4333 0.2000  0.2167 0.0667  0.1138 120
0.5042 0.5210 0.8487 0.8319 0.9463 0.8905 0242 0.4370 0.1513 0.1681 0.0518  0.1077 119
0.4912 0.5000 0.8684 0.8596 0.9590 0.9153 8643 0.4561 0.1316  0.1404 0.0392  0.0828 114
0.4867 0.4956 0.8761 0.8584 0.9648 0.9185 6.442 0.4602 0.1239  0.1416 0.0333  0.0797 113
0.4821 0.4911 0.8929 0.8750 0.9645 0.9177  0.44640.4732 0.1071  0.1250 0.0337 0.0805 112
0.4771 0.4862 0.9083 0.8716 0.9645 0.9177 58074 0.4771 0.0917  0.1284 0.0337  0.0805 109
10 0.4762  0.4857 0.9048 0.8857 0.9645 0.9177  0.46670.4857 0.0952 0.1143 0.0337 0.0805 105
11 0.4712 0.4808 0.9038 0.8750 0.9645 0.9177 71@4  0.5000 0.0962  0.1250 0.0337  0.0805 104
12 0.4660 0.4757 0.9029 0.8738 0.9645 0.9177.4750 0.5049 0.0971 0.1262 0.0337  0.0805 103
Notice: NI denotes the number of target in the commonesllemce
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