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ABSTRACT 

Track-to-Track correlation (or association) is an ongoing area of interest in the field of distributed 
multisensory information fusion. In order to perform accurately identifying tracks with common origin 
and get fast convergence, this study presents independent and dependent Bi-threshold Track Correlation 
Algorithms (called BTCAs), which are described in detail and the track correlation mass and 
multivalency processing methods are discussed as well. Then, Based on BTCAs, two modified Bi-
threshold Track Correlation Algorithms with average Test Statistic (called BTCA-TSs) are proposed. 
Finally, simulations are designed to compare the correlation performance of these algorithms with that of 
Singer’s and Bar-Shalom’s algorithms. The simulation results show that the performance of these 
algorithms proposed in this study is much better than that of the classical methods under the 
environments of dense targets, interfering, noise and track cross and so on. 
 
Keywords: Data Fusion, Track Correlation, Radar Network, Fuzzy Set 

1. INTRODUCTION 

Using data from multisensor system, the multitarget 
tracking technology has been largely applied to military 
affairs and public affairs. In some applications, the data is 
collected by many sensors distributed over a large area. In 
view of the security, viability and communication 
bandwidth of such a multisensor system, it’s unreliable to 
process these data with centralized method. However, the 
distributed structure of processing method is appreciable. 

Track-to-trackassociatio n problem (You et al., 1996; 
Singer and Kanyuck, 1971; Bar-Shalom and Fortmann, 
1988; Gul, 1994; Kosoka, 1983; You et al., 1989; 
Bowman, 1979; Chang and Youens, 1982; Bar-Shalom 
and Chen, 2004; Kaplan et al., 2008; Tian and Bar-
Shalom, 2011; Bar-Shalom and Campo, 1986;  Mori et 

al., 2011; Osbome et al., 2011; Wang et al., 2012; La 
Scala and Farina, 2002; Bar-Shalom, 2008) is a crux of 
distributed multisensor system. It’s a problem of how to 
decide whether two tracks coming from different sensor 
systems represent the same target. The issue of track-
to-track association was first considered in presented by 
Singer and Kanyuach (1971), assuming tracks with 
independent estimation errors (Singer’s algorithm). Then, 
Bar-Shalom extended to the case of correlated errors in 
(Bar-Shalom and Fortmann, 1988) (Bar-Shalom’s 
algorithm) and Kosaka presented the Nearest Neighbor 
(NN algorithm) in (Gul, 1994). A K-Nearest Neighbor 
algorithm was given in (Kosoka, 1983) and Bowman 
proposed a Maximum likelihood algorithm in (You et al., 
1989). Chang and Youens (1982) transformed track-to-
track association into Multidimensional assignment 
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problem and get it resolved with Hunger/Munker method 
(Bowman, 1979). 

In these algorithms above, Singer’s algorithm, Bar- 
Shalom’s algorithm and NN algorithm are usually 
applied to the actual system. However, these 
algorithms will lead to false correlation or missing 
correlation when under the environments of dense 
targets, interfering, noise, track cross and so on. To 
resolve these problems of Singer’s algorithm and Bar-
Shalom’s algorithm and in view of history information 
of tracks, several bi-threshold track correlation 
algorithms based on the double threshold detection 
method are proposed in this study. Besides, effective 
track correlation mass management and multivalency 
processing methods are discussed as well to get higher 
correlation precision and faster convergence. 

1.1. System Description 

The dynamics of target can be modeled in the 
discrete form as follows Equation (1): 
 
X(k 1) F(k)X(k) G(k)V(k) k 1,2.....,+ = + =   (1) 
 
Where: 
X(k)∈Rn = The state vector at time k 
V(k)∈Rn = A sequence of zero-mean, white 

Gaussian process noise with 
covariance matrix  

Q(k) and F(k)∈Rn,n = The transition matrix of the 
system 

G(k )∈Rn,h = The noise distribution matrix 
 

The initial state vector is assumed normally 
distributed with mean  µ and covariance P(0). Therefore, 
one knows that Equation (2): 
 

klE[V(k)] 0, E[V(k)V(k)] Q(k)= = δ   (2) 
 

The measurement of node i at time k is given by 
Equation (3): 
 

( ) ( ) ( ) ( )i i iZ k H k X k W k= +   (3) 
 
where, Wi(k) is a sequence of zero-mean, white, 
Gaussian measurement noise vector with covariance Ri(k), 
Hi(k)∈Rm,n is the measurement vector of the ith node at 2 
time k and I = 1, 2,…,,M. This study only discusses the 
situation of M = 2. Assuming that the measurement noise 
sequences are independent Equation (4): 
 

i i i i
klE[W (k)] 0,E[W (k)W (k) ']R (k)= δ   (4) 

 
Each node processes its observations locally to 

produce the state estimation and prediction of a target by 

using Kalman filter. Assume that the tracks of targets 
had been initialed by using some multitarget tracking 
algorithms and the state estimation of targets gained in 
each node would be communicated to a central 
processor, where track fusion takes places. The state 
estimation of the tth target from the ith sensor can be 
written as follows Equation (5): 
 

i i i
t t t

i i i
t t

X (k 1 K 1) X (k 1 K) K (k 1)

[Z (k 1) H (k 1)X (k 1 k)]

+ + = + + +

+ − + +

⌢ ⌢

⌢
i

  (5) 

 
One-step prediction of the state is Equation (6): 

 
i i
t tX (k 1 k) F(k)X (k k)+ =
⌢ ⌢

 (6) 

 
and the one-step prediction covariance is Equation (7): 

 
i i
t tP (k 1 k) F(k)P (k k)F'(k) G(K)F(k)G '(K)+ = +  (7) 

 
the filter gain is Equation (8): 

 

 
i i i ' i i
t t t

i ' i 1

K (k 1) P (k 1 k)H (k 1)[H (k 1)P

(k 1 k)H (k 1) R (k 1)]−

+ = + + +

+ + + +i

  (8) 

 
and the update state covariance is Equation (9): 
 

i i i i
t t t

i

P (k 1 k 1) [I K (k 1)H (k 1)P (k 1 k)]

i 1,2,....,M, t 1,2,....,n

+ + = − + + +

= =
  (9) 

 
1.2. BI-Threshold Track Correlation Algorithms 

1.2.1. Independent and Dependent Bi-threshold 
Track Correlation Algorithm 

There is a double threshold detection signal 
processing method in the automatic radar detection 
theory (La Scala and Farina, 2002). Based on the double 
threshold detection method, independent and dependent bi-
threshold track correlation algorithms are proposed here. 

Define the sets of track number initialed by node 1 
and node 2 Equation (10): 
 

1 1 ' 2 2U {1,2,....,n } U {1,2,....,n }= =  (10) 
 

Let �
1

iX (l) denotes the state of target i estimated by 
node 1. Assume that for the same time one has an 

estimate �
2

jX (l)  of target j from node 2. Denote ijt (l)ɵ as 

the estimation of ijt (l)ɵ and Equation (11 and 12): 
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1 2
ij i jt̂ (l) X (l) X (l)= −

⌢ ⌢
 (11) 

 
1 2

ij i j 1 2t (l) X (l) X (l) (i U , j U )= − ∈ ∈
⌢ ⌢

 (12) 
 
where, Xi and Xj are the corresponding true states. One 

wants to test for the “same target” hypothesis �
1

i0H : X (l) and 

�
2

jX (l) are the estimations of the same target Vs. 

�
1

i1H : X (l) and �
2

jX (l) are the estimations of different 

targets. Then, the problem of track correlation becomes 
the hypothesistesting problem. 

The Independent Bi-threshold Track Correlation 
Algorithm (IBTCA) can be described as follows. 

Using the test variable of Singer’s algorithm 
Equation (13 and 14): 
 

1 2 1
ij ij i j ij(l) t (l) '[P (l) P (l)] t (l)l 1,2,....,R−ξ = + =

⌢ ⌢
  (13) 

 

 
ij ij

ij ij

m (l) m (l 1) 1

m (0) 0, if (l)

 = − +


= ξ < δ

  (14) 

 
where, 1

iP (l) is the estimation error covariance of node 1 

corresponding to target i and mii  (l) denotes the 
correlation mass that track i from node 1 correlated 
with track j from node 2 till time l. The first threshold 
is set as follow Equation (15): 
 

ij 0P{ (l) H }ζ > δ = α  (15) 
 
where, α is, say, 0.05. Then the test of H0 vs. H1 is as follow 
Equation (16): 
 

1 ijaccept H if m (R) L<  (16) 
 

However, H0 may not be accepted if mij (l)≥L, l = 
L, L+1,…,R for that there may be more than one track 
will be correlated with track i. This problem is treated 
in the following part. 

In the Dependent Bi-threshold Track Correlation 
Algorithm (DBTCA), the test variable of Bar- shalom’s 
algorithm is used Equation (17): 
 

 
1 2 12

ij ij i j ij

12 ' 1
i ij

(l) t (l) '[P (l) P (l) P (l)

P (l)] t (l) l 1,2.....R−

ψ = + −

− =

⌢

⌢  (17) 

 
where, 12

ijP (l)  denotes the cross-covariance Equation (18): 
 

 
12 1 1 12
ij i ij

2 2
i j

P (l) [I K (l)H (l)][ (l 1)P (l) '(l 1)

G(l 1)Q (l 1)G '(l 1)][I K (l)H (l)]

= − Φ − Φ −

+ − − − −
  (18) 

which is a linear recursion with initial condition 
12
ijP (0) 0= . Under the Gaussian distributed assumptions, 

ζij (l) and ψij (l) is chi-square distributed with x n 
degrees of freedom. The x n here denotes the dimension 
of state estimation vector. 

1.3. Track Mass Designing 

Two kinds of track mass are designed here. One of 
them is track correlation mass and the other one is 
track separation mass. Similar to the association mass 
(La Scala and Farina, 2002; Bar-Shalom, 2008), the track 
correlation mass mii  (l) denotes the times of track i from 
node 1 correlated with track j from node 2 till time l 
and the separation mass of track i and j is defined as 
follow Equation (19): 
 

ij ij

ij ij ij

D (l) D (l 1) 1

D (0) 0, (l) or (l)

 = − +


= ζ ≥ δ ψ ≥ δ

  (19) 

 
From (18) one can see that if Equation (20): 

 

ijD (l 1) R L(WhereR andL havebeen set)− > −   (20) 

 
The correlation test would not be performed between 

track i and j at time l. Since mij (l = R)<L (track i and j 
are uncorrelated) must be in existence if Dij >R-L at time 
l 1. Similarly, the correlation between track i and j will 
be nearly confirmed if Equation (21): 
 

ijm (l 1) L− ≥  (21) 

 
The correlation test between track i and j would be 

cease at time l if only one track (j) can satisfy (20), then 
track i and j would be regarded as the correlated track and 
performed no correlation test any more. However, if there 
are more than one track (j) can suffice (20), the correlation 
test should be performed last l = R to give a precise 
correlation mass for the multivalency processing latter. On 
the other hand, the track I with no other track correlated 
till l=R will be performed test in the next cycle. 

1.4. Multivalency Processing Method 

There are two situations where multivalency 
processing method applied, one of them is l = R and 
the other is l<R. In case one, there are more than one 
track (j) suffice for mij (l = R)≥L thus will be 
correlated with track i. In this case, track j* which 
maximize the track correlation mass mij(l) will be 
correlated with track i Equation (22): 



Liu Yu et al. / Journal of Computer Science 9 (12): 1695-1709, 2013 

 
1698 Science Publications

 
JCS 

 { }ij 1 2 qj* arg max m (l R) j j , j ,...., j= = ∈  (22) 

 
where, {j1,j2,..,jq}is the set of track (j) correlated with 
track i. When there are more than one track can 
maximize track correlation mass mij (l), the track j• will 
be accepted if Equation (23 and 24): 
 

 { }
R

* * *
ij ij* 1 2 qj*

l 1

1
(R) min (l) j* j , j ,...j (IBTCA)

R =

ζ = ζ ∈∑i   (23) 

 

{ }
R

* * *
ij ij* 1 2 qj*

l 1

1
(R) min (l) j* j , j ,...j (DBTCA)

R =

ψ = ψ ∈∑i   (24) 

 
In case two, the correlation test will be ceased if (19) 

is sufficed. Otherwise, a temp system track will be set. 
Corresponding to a given track i, the track j* is accepted 
if j* argmax mij(l) . 

If there are more than one track (j*) accepted, the 
multivalency processing method will be applied. In this 
case, the track j will be correlated with track i if 
**argmin Dij (l). However, if there are more than one 
track which can be correlated with track i, the track jp 
will be accepted if Equation (25): 
 

ɶ { }
l

ijP 1 2 r
j* q 1

1
j arg min x (q) j j , j ,...., j

l
• • • •

=

= ∈∑ i   (25) 

 
Where Equation (26): 
 
ɶ � �

ij i jx (q) X (q) X (q)• •= −  (26) 
 
and { }1 2 rj , j ,...., j• • • is the set of track (j*) can 

satisfy**argmin Dij (l). 
Once j is correlated with track i, the correlation test 

would not be performed to track i or j at time l. Since the 
data of track transformed seriatim by each sensor, set of 
L/R should be dynamic, such as 1/1, 2/2, 2/3, 3/4, 3/5, 
4/5, 4/6, 5/7, 6/8 and so on. Also one can see that 
Singer’s and Bar-Shalom’s algorithm is a specific 
presentation of independent and dependent bi-threshold 
track correlation algorithm when L/R = 1/1. 

1.5. Estimation to Sans Correlation Probability 

Let Pt (A) denote the probability of statistical distance 
from the same target accepted by the first threshold. 
According to the rule of x2 test, Pt (A) = α (α is set in 
(15)). Assuming that the cumulative R estimation error 
swatches are statistical independent, Pt(A = Y) is 
binomial distributed Equation (27): 

A R A A L 1
tP (A R L 1) (1 ) (1 )− −= − + = α − α = α − α  (27) 

 
Then, the sans probability can be estimated as follow 

Equation (28): 
 

 ɵ
R

A A R A
s t R

A R L 1

P P (A y) C (1 ) −

= − +

= ≥ = α − α∑   (28) 

 
where, L is the second threshold. From (28) one can 
calculate the sans probability in the case of L/R = 3/4 

and L/R = 6/8: ɵ sP (3/ 4) 0.002256 ɵ sP (6/8) = 0.000102. 
Therefore, (28) can be used to set the value of L/R. 

1.6. Modified Bi-Threshold Algorithms Based 
On Average Test Statistic 

Bar-Shalom and Campo (1986), a new state statistic 
for correlation hypothesis is defined as follows Equation 
(29): 
 

 

k
1

ij ijij
l 1

1
ij ijij ij

(k) t (l) 'C (l)t (l)

(k 1) t (k) 'C (k)t (k)

−

=

−

λ =

= λ − +

∑ ɵ ɵ

ɵ ɵ

  (29) 

 
where, 1 1 2

ij j jC (k) P (l) P (l)− = +  and λij (0) = 0. Under the 

Gaussian distributed assumptions, the individual terms 
Equation (30): 
 

1
ij ijij ij(K) t (k) 'C (k)t (k)−ε = ɵ ɵ  (30) 

 
Known as the normalized estimation error squared, 

are each chi-square distributed with x n degrees of 
freedom, where x denotes the dimension of state 
estimation vector. It should be noticed that the sum of 
chi-square variables (λij  (k)) as an approximately chi-
square distribution with x kn degrees of freedom (and 
thus approximately mean x kn and variance 2 x kn) 
(Bar-Shalom, 2008). 

Next, a modified function based on average test 
statistic for independent bi-threshold correlation 
(IBCTA-ATS) is defined as follows Equation (31): 
 

ij
ij

k
1 2

ij i j ij ij
l 1

(k)
(k)

k
1 ˆ ˆt (l) P (l) P (l) t (l), (0) 0
k =

λ
ϕ =

 = + ϕ = ∑
 (31) 

 
Approximately, ϕij (k) is a chi-square distributed 

random variable with x n degrees of freedom, which can 
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be used for correlation hypothesis test. Then the test of 
H0 vs. H1 is as follows Equation (32):  
 

0 ij 1 2accept H if (k) (k), i U , j Uϕ ≤ δ ∈ ∈  (32) 

 
The threshold is set such that Equation (33): 

 

{ }ij 0P (k) (k) Hϕ > δ = α  (33) 

 
where, α is the significance level with α = 0.05. 

In IBCTA-ATS, track mass and multivalency 
processing method is as showed before. 

In view of the dependence between the estimation 
errors from the two track files arises from the common 
process noise,a dependent sbi-threshold correlation 
algorithm based on Average Test Statistic (DBCTA-ATS) 
is presented here. All steps of hypothesis test for track 
correlation are as described in IBCTA-ATS with the 
following modifications. With theknown cross-covariance 

12
ijP (l) , test statistic in (31) is modified to Equation (34): 

 

ij

k
1 2 12 12 '

ij iji j ij ij
l 1

1
(k)

k

t (l) '[P (l) P (l) P (l) P (l)]t (l)
=

γ =

• + − −∑ ɵ ɵ

 (34) 

 
We all known that the optimal test would require 

using the entire database through time k and this is not 
easy to realize. However, the history information of 
track has been used in the four algorithms proposed in 
this study and the computation and memory 
requirements of these new algorithms will not grow 
obviously since each test statistic (as showed in (13), 
(17), (31) and (32)) has a recursive structure. 

1.7. Simulation 

One has run simulations to compare the 
correlative performance of four bi-threshold track 
correlation algorithms here with the Singer’s and 
Bar-Shalom’s algorithm. 

1.8. Simulation Model and Parameter Settings 

There are two nodes considered in the simulations 
and a 2-D radar is set in each node. A Monte Carlo 
simulation with 50-runs was carried out for two 
environments. In case 1, there are 60 targets and there 
are 120 targets that composed of a lots maneuvering, 
cross and split targets in case 2. The maneuvers of these 

targets are random and the initial positions of these 
targets are normally distributed in a region illustrated in 
Fig. 1. The initial velocity and azimuth of these targets 
are uniformly distributed in 4~1200 m sec−1 and 0~2 π, 
respectively. Figure 1, r1, r2 denote the observation 
radius, ' '

1 2r , r denote the radius of undetectable area and 

o ',o ''  are the coordination origin of nodes. Where '
1r  = 

110, '
2r =120, 1 '

1r = 2, '
2r = 2.5, a = b = 125, c = 235, d = 

130, x1 = 380, y1 = 270 km. 
The state vector in (1) is X = (x,x,y,y)’, the transition 

matrix and noise distribution matrix is Equation (35): 
 

1 T 0 0 T / 2 0

0 1 0 0 1 0
F(k) G(k)

0 0 1 T 0 T / 2

0 0 0 1 0 1

   
   
   =
   
   
   

  (35) 

 
where, T is the sample interval and T = 4s.  

The measurement vector in (2) is Z =(x,y)’, the 
measurement matrix is Equation (36): 
 

 
1 0 0 0

H
0 0 1 0

 
=  
 

  (36) 

 
And Equation (37): 
 

 

11

22

2
11

2
22

q (k)
Q(k)

q (k)

q (k) 15 10 x(k)

q (k) 15 10 y(k)

−

−

  
=  
   

 = ×


= ×



ɺ

ɺ

  (37) 

 

 
 
Fig. 1. The observation area of sensors 
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The noise process standard deviations of rang and 
azimuth measurements from each sensor are assumed to 
be 170m and 0.017rad, 180m and 0.017rad, respectively. 
The measurement noise covariance matrix is Equation 
(38 and 39): 
 

2
x xy

2
yx y

(k) (k)
R(k)

(k) (k)

 σ σ
=  

σ σ  
  (38) 

 

 

2 2 2 2 2 2
x P

2 2 2 2 2 2
y P

2 2 2 2 2
xy P

(k) cos (k) p (k) sin (k)

(k) sin (k) p (k) cos (k)

(k) [ p (k) ]sin (k)cos (k)

θ

θ

θ

σ = σ θ + σ θ
σ = σ θ + σ θ


σ = σ − σ θ θ

  (39) 

 
where, σxy (k) = σyx (k) and 2 2

p, θσ σ denote the noise process 

standard deviations of rang and azimuth measurements and 

ρ(k)、θ(k) denote the rang and azimuth measurements. 
Assuming that all of the measurements have been 
associated to the track correctly, the initial setting of filter is 
given as follows Equation (40 and 41): 
 

 

ɵ

ɵ

ɵ

ɵ

1

1 1

2

2 2

x(11) z (1)

x(11) [z (1) z (0)] / T

y(11) z (1)

y(11) [z (1) z (0)] / T

 =

 = −


=

 = −

ɺ

ɺ

  (40) 

 

 

2 2
x x xy xy

2 2 2 2
x x xy xy

2 2
yx yx y y

2 2 2 2
yx yx y y

P(11)

(1) (1) / T (1) (1) / T

(1) / T 2 (1) / T (1) / T 2 (1) / T

(1) (1) / T (1) (1) / T

(1) / T 2 (1) / T (1) / T 2 (1) / T

=

 σ σ σ σ
 
σ σ σ σ 
 
σ σ σ σ 
 
σ σ σ σ  

  (41) 

1.9. System Flow Chart of Bi-threshold 
Algorithm 

The System Flow Chart of the Dependent Bi-
threshold Algorithm is given in Fig. 2. 

1.10. Results and Analysis 

With 1-run simulation, Table 1 and 2 show Ec and 
Ee of Singer’s, Bar-Shalom’s and bi-threshold track 
correlation algorithms in case 1 and case2, respectively. 
Figure 3-5 show the correct correlation ratio in case 1 
and case 2, respectively. Figure 4-6 show the error 
correlation ratio in case 1 and case 2, respectively. From 
these simulation results one can see that correlative 
performance of Bar-Shalom’s algorithm is a little better 
than that of Singer’s algorithm. Also one can see that 
correlative performance of the four bi-threshold track 
correlation algorithms proposed in this study is much 
better than that of Singer’s and Bar-Shalom’s algorithm, 
especially in the case 2 where there exists a heavy target 
density and a lot of maneuvering targets, where the 
improvement ratio of Ec reaches about 30 to 45% 
respectively. In addition, the correlation performances of 
independent bi-threshold algorithms are a litter better 
than that of dependent bi-threshold algorithm. 

However, the L/R ruler must be set before the 
execution of these bi-threshold algorithms. With gradual 
growth of targets in simulation, Figure 7-14 show the 
correlation result of different algorithms proposed in this 
study with 3/4 rules and 6/8 rulers respectively. One can 
see that the correlation performance of bi-threshold 
algorithms with 6/8 rules is a litter better than that of 
bithreshold algorithms with 3/4 rules from these 
simulation results. 

 
Table 1. Ec and Ee of each algorithm in case 1 (L/R = 6/8) 
  Ec      Ee 
  -------------------------------------------------------------------------------- ------------------------------------------------------------------ 
  Bar-      Bar- 
 Singre’s Singre’s   IBTAC- DBTCA- Singre’s Singre’s   IBTCA- DBTCA- N = 60 
L algorithm algorithm IBTCA DBTCA ATS ATS algorithm algorithm IBTCA DBTCA ATS ATS Nl 
1 0.6667 0.7000 0.6667  0.7000 0.8950 0.8950 0.2667 0.1833 0.2667 0.1833 0.1013 0.1013 60 
2 0.6780 0.7458 0.8305 0.8475 0.9210 0.9237 0.2712 0.1864 0.1695 0.1525 0.0753 0.0727 59 
3 0.6780 0.7458  0.8644 0.8644 0.9430 0.9240 0.2712 0.1864 0.1356 0.1356 0.0533 0.0723 59 
4 0.6780 0.7458  0.8983 0.8656 0.9523 0.9260 0.2712 0.2034 0.1017 0.1334 0.0440 0.0703 59 
5 0.6780 0.7458  0.9322 0.8814 0.9613 0.9327 0.2712 0.2034 0.0678 0.1186 0.0350 0.0637 59 
6 0.6667 0.7368  0.9298 0.8896 0.9707 0.9463 0.2807 0.2105 0.0702 0.1104 0.0257 0.0500 57 
7 0.6545 0.7273  0.9455 0.8909 0.9770 0.9570 0.2909 0.2182 0.0545 0.1091 0.0193 0.0393 55 
8 0.6415 0.7170  0.9434 0.8868 0.9770 0.9570 0.3019 0.2264 0.0566 0.1132 0.0193 0.0393 53 
9 0.6415 0.7170  0.9434 0.9057 0.9770 0.9570 0.3019 0.2264 0.0566 0.0943 0.0193 0.0393 53 
10 0.6257 0.7059  0.9412 0.9216 0.9770 0.9570 0.3137 0.2353 0.0588 0.0784 0.0193 0.0393 51 
11 0.6257 0.7059  0.9412 0.9216 0.9770 0.9570 0.3137 0.2353 0.0588 0.0784 0.0193 0.0393 51 
12 0.6257 0.7059  0.9412 0.9216 0.9770 0.9570 0.3137 0.2353 0.0588 0.0784  0.0193 0.0393 51 
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Fig. 2. The system flow chart of dependent bi-threshold track correlation algorithm (Notice: Ec, Ee and Es denote the correct, error 

and sans correlate ratio) 
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Fig. 3. Correct correlation ratio versus time (case1) 
 

 
 

Fig. 4. Error correlation ratio versus time (case1) 
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Fig. 5. Correct correlation ratioversus time (case2) 
 

 
 

Fig. 6. Error correlation ratio versus time (case2) 
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Fig. 7. Correct correlation ratio versus time (N = 30) 

 

 

 
Fig. 8. Error correlation ratio versus time (N = 30) 
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Fig. 9. Correct correlation ratio versus time (N = 90) 

 

 
 

Fig. 10. Error correlation ratio versus time (N = 90) 
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Fig. 11. Correct correlation ratio versus time (N = 150) 
 

 
 

Fig. 12. Error correlation ratio versus time (N = 150) 
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Fig. 13. Correct correlation ratio versus time (N = 210) 
 

 
 

Fig. 14. Error correlation ratio versus time (N = 210) 
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Table 2. Ec and Ee of each algorithm in case 2(L/R = 6/8) 
  Ec      Ee 
  ------------------------------------------------------------------------- --------------------------------------------------------------------- 
  Bar-      Bar- 
 Singre’s Singre’s   IBTAC- DBTCA- Singre’s Singre’s   IBTCA- DBTCA-  
L algorithm algorithm IBTCA DBTCA ATS ATS algorithm algorithm IBTCA DBTCA ATS ATS N = 120 
1  0.5083 0.5083 0.5083 0.5083 0.8112 0.8112 0.4000 0.3833 0.4000 0.3833 0.1870 0.1870 120 
2  0.5083  0.5250 0.7167  0.7417 0.8720  0.8762 0.4083  0.4083  0.2833  0.2583 0.1262 0.1220 120 
3  0.5083  0.5250 0.7919  0.7667 0.9098  0.8827 0.4083 0.4167 0.2083 0.2333 0.0883 0.1155 120 
4  0.5083 0.5250 0.8000 0.7833 0.9315 0.8843 0.4167 0.4333 0.2000 0.2167 0.0667 0.1138 120 
5 0.5042  0.5210 0.8487  0.8319 0.9463  0.8905 0.4202  0.4370  0.1513  0.1681 0.0518 0.1077 119 
6 0.4912  0.5000  0.8684  0.8596 0.9590 0.9153 0.4386 0.4561 0.1316 0.1404 0.0392 0.0828 114 
7 0.4867  0.4956  0.8761 0.8584 0.9648 0.9185 0.4425 0.4602 0.1239 0.1416 0.0333 0.0797 113 
8  0.4821 0.4911 0.8929 0.8750 0.9645 0.9177 0.4464 0.4732 0.1071  0.1250 0.0337  0.0805 112 
9  0.4771  0.4862 0.9083  0.8716 0.9645  0.9177 0.4587  0.4771  0.0917  0.1284 0.0337  0.0805 109 
10 0.4762 0.4857 0.9048 0.8857 0.9645 0.9177 0.4667 0.4857 0.0952  0.1143 0.0337  0.0805 105 
11 0.4712  0.4808  0.9038  0.8750 0.9645 0.9177 0.4712 0.5000 0.0962 0.1250 0.0337 0.0805 104 
12  0.4660  0.4757  0.9029  0.8738 0.9645  0.9177 0.4757  0.5049  0.0971  0.1262 0.0337  0.0805 103 

Notice: Nl denotes the number of target in the common surveillance 
 

2. CONCLUSION 

Four bi-threshold track correlation algorithms are 
proposed and compared with the Singer’s and Bar-
Shalom’s algorithm in this study. According to the 
simulation results, the difference between correlative 
performances of these algorithms is not so obvious 
when there are a few targets in surveillance and the 
difference between correlative performances of these 
algorithms will increase with the environments getting 
more complex. Therefore, the bithreshold algorithms 
present a better general correlative performance in 
dense multitarget environments, more cross, split and 
maneuvering track situations. To Singer’s and Bar- 
Shalom’s algorithm, the correlative performance of 
Bar-Shalom’s algorithm is a little better than that of 
Singer’s algorithm. To the bi-threshold algorithms, the 
correlative performance of independent algorithm is 
better than that of dependent algorithm and the bi-
threshold algorithms with 6/8 6 rules has a better 
correlative performance than the bi-threshold algorithms 
with 3/4 rules. Though the simulations is performed in 
the case of correlating the data between congeneric 
sensors, these Four bi-threshold track correlative 
algorithms here can also resolve the problem of 
correlating tracks between heterogeneous sensors. 
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