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ABSTRACT 

We propose a clustering technique for entropy based text dis-similarity calculation of de-duplication 
system. Improve the quality of grouping; in this study we propose a Multi-Level Group Detection (MLGD) 
algorithm which produces a most accurate group with most closely related object using Alternative 
Decision Tree (ADT) technique. Our propose a two new algorithm; first one is Multi-Level Group 
Detection (MLGD) formation using Alternative Decision Tree (AD Tree), which will split the bunch of 
record into self-sized cluster to reduce the volume of data for text comparisons. Second one is 
calculating the dis-similarity percentage using entropy and Information Gain (IG). We show 
experimentally our proposed technique achieves higher average accuracy than existing traditional de-
duplication system. Further, our technique not required any manual tuning for clustering formations as 
well as dis-similarity calculation for any kind of business data. In this study, we have presented a new 
efficient method is introduced for clustering formation using ADTree algorithm for duplicate 
deduction. The new method offers more accuracy dis-similarity measure for each cluster data without 
manual intervention at the time of duplicate deduction. 
 
Keywords: Clustering Algorithm, Alternative Decision Tree Algorithm, Duplicate Detection, Efficient 

Method, Manual Intervention, Cluster Data, Similarity Measure, Clustering Formation 

1. INTRODUCTION 

 Improve a quality of data in data warehousing 
data cleansing is a very important task. Data cleansing 
deals with detecting and removing errors and 
inconsistent data. In data warehousing data from 
multiple source, which mean more than one data store 
location like different types of data base, flat file. 
Here we need transformation logic for converting 
source data into target database for standardize the 
record format as well as record value for detect a 
duplicate record. Therefore, data should be 
transformed and cleansed before loading into a target 
database. This process is usually called as Extract 
Transformation Loading (ETL) process. 
 Furthermore, data warehousing are used for decision 
making for real world business problem. So that 
correctness of data should be more important. Suppose, if 
anything wrong in the decision making or correctness of 

data then particular algorithm will produce a wrong result. 
However most of the existing cluster technique is 
designed for particular business problem. 
 In this study we propose a two new algorithm, First 
one is a clustering algorithm, which will overcome the 
existing clustering dis-advantage partition and 
hierarchical that may be either partition or hierarchical 
(Marrakchi et al., 2005). Second one is de-duplication 
algorithm, which will produce the dis-similarity, 
percentage of the pair of string in each cluster. 
 Here we introduced an efficient clustering 
mechanism as Multi-Level Group Detection using AD 
Tree for splitting a data into cluster, with most closely 
related object. Then we are applying the de-duplication 
mechanism in each clustered data, though this proposal 
method we can reduce the total time consumption for 
clustering formation and data comparison for de-
duplication than existing traditional clustering 
mechanism and de-duplication mechanism. 
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2. MATERIALS AND METHODS 

 This problem taken up is to improve the 
performance of detecting duplicate record. The 
performance of entropy based duplicate detection could 
be enhanced through various means. It could be in the 
form of predictive accuracy, comprehensibility, speed 
and scalability. This research concentrates on the 
performance enhancement of duplicate detection 
through Multi-Level clustering technique and 
implemented it by using decision tree framework. The 
goal of this work is to identify groups of similar entities 
in the presents of linked environment and searching 
methods should reduce the number unwanted 
comparison during de-duplication. In order to achieve 
this goal, in this study we propose a new technique, 
First one is a clustering algorithm, which will overcome 
the existing clustering disadvantage, that may be either 
partition or hierarchical. Second one is de-duplication 
algorithm, which will produce the dis-similarity 
percentage of the pair of string in each clustered group. 

2.1. Importance of the Work 

 Duplicate detection, which is an important subtask 
of data cleaning, Data integration and data quality are the 
two key components of a successful data warehouse as 
both completeness and accuracy of information are of 
paramount importance. Once this data is collected it can 
be made available both for direct analysis and for 
distribution to other, smaller data warehouses. 
 From a conceptual perspective, data warehouses 
store snapshots and aggregations of data collected from a 
variety of source systems. Data warehouses encompass a 
variety of subject areas. Each of these source systems 
could store the same data in different formats, with 
different editing rules and different value lists. For 
example, gender code could be represented in three 
separate systems as male/female, 0/1 and M/F 
respectively; dates might be stored in a year/month/day, 
month/day/year, or day/month/year format. In the United 
States “03062010” could represent March 6,2010 while 
in the United Kingdom it might represent June 3, 2010. 
 Data warehouses involve a long-term effort and 
they are usually built in an incremental fashion. In 
addition to adding new subject areas, at each iteration, 
the breadth of data content of existing subject areas is 
usually increased as users expand their analysis and 
their underlying data requirements. 

2.2. Duplicate Detection 

2.2.1. MLGD Formation Using ADTree 

 MLGD forms a tree for the clustering process 
(Perla and Belliveau, 2005). In the tree structure, the 
height of each level of nodes represents the dis-similar 
degree between each cluster. MLGD incorporate the 
futures of ADTree features and overcome the existing 
hierarchical clustering problem and reduce the time 
consumption for duplicate detection (Mirzaei and 
Rahmati, 2008) and number of record comparisons. Here 
we did not use any split algorithm for splitting data into a 
cluster; instead we are using ADTree technique for 
splitting a whole data into cluster. A condition predicates 
the attribute comparison value, here we are checking 
clustering index value contains the short_name value or 
not. ADTree divide the data based on short name; if 
cluster is already available with the short name then 
insert a record into a same cluster else create a new 
cluster with the new name of short name then insert 
into a new cluster. In each cluster sub-set short name 
pointing to the whole record. If cluster is already 
available then starts the de-duplication process else 
create a new cluster and then exit from the process.  

2.3. AD Tree Implementation Algorithm 

Initialize: Parent_List[n] ←0,  
  Child_List[n] ← 0,  
  Grant_child_list[n] ←0; 
Loop L1: while !endOfRecord[Record] 
  C1 ← Level_1_cluster_attr_value;  
 Position ← Size[Parent_List]+1;  
If(is_valid[ C1])  then 
C2 ← Level_2_cluster_attr_value; 
C3 ← Level_3_cluster_attr_value; 
Child_Position ← Size[Child_List]+1; 
Loop L2:while !endOfRecord[Record] 
If(!contains[parent_list, C2]) then 
Parent_List[Position]← Create new Cluster  
  C1, Parent_Position; 
 Child_List[n] ← Create new Cluster C2,  
  Child_Position; 
Grant_child_list[n]←Create new Cluster C3, 
Child_Position; 
Parent_List[Position]← Insert into new Cluster 
{Parent_Position, C1,vector[Record_Inform ation])}; 
Child_List[n] ← Insert into new Cluster 
{Child_Position, (C2,vector[Record_Information])}; 
Grant_child_list[n]← Insert into new Cluster 
{Child_Position,  (C2, vector[Record_Information])}; 
 Return new_cluster; 
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else 
Parent_List[Position] ← Insert into existing Cluster 
{Parent_Position, (C1,vector[Record_Information])}; 
Child_List[n] ← Insertinto existing Cluster 
{Child_Position,  (C2,vector[Record_Information])}; 
Grant_child_list[n] ←Insert into existing Cluster  
 Child_Position,(C2, ector[Record_Information])}; 
existing_Cluster ← call Dis-Similarity Calculation 
Algorithm {C1, vector [Record_Information]} 

 Return existing_Cluster; 
 endif 
Goto L2 
else 
 Return 0; 
 endif 
Goto L1 

2.4. Dis Similarity Calculation 

 The cluster formation method (Srinivas and Mohan, 
2010) mainly focus on form a similarity  value in single 
group, for this purpose we are using different method 
and result of each method is different cluster based on 
data and spread condition. Here, we outline our main 
algorithm and give optimizations that we use in the 
experiments. For ease of presentation, we shall first 
explain a MLGD using ADTree clustering algorithm 
(Zeng et al., 2009), called MLGD, that forms the 
technical core of our approach.  
 And shown how to use the clustering algorithm to 
calculate dis-similarity value for de-duplication. First 
we are constructing a truthtable  for each pair of string 
in the each cluster. Every Boolean function can be 
specified as a truthtable with the value of 0,1 and 
function has a “n” argument, then the total possible 
argument combinations are 2n. To construct the logical 
representation of two different string tokens truthtable. 
In pair of strings which one have more length Where 
Ci, i = 1…..n represents the i’th character of column. 
Rj, j = 1…..m represents the j’th character of row. 
 Then apply the truthtable value into entropy and 
gain formula. The output of gain will be a dis-similarity 
percentage. The gain values are compared with existing 
cluster gain value if it is greater than existing and length 
of current string is greater than existing cluster string 
then set current as “PRIMARY” else set the current as 
“SECONDARY” and its dis-similarity score. 

2.5. Truthtable Construction Algorithm 

Initialize: Row ← 0; Column ← 0 
Loop L1: While !empty(String_1) 
C1 ← String_1 [Row]; Row = Row + 1; 

Loop L2: While !empty(String_2) 
C2 ← String_2 [Column]; Column = Column + 1 
If C1 = C2 Then 
Truth [Row, Column] = 1 
Else Truth [Row, Column]=0 
Endif Goto L2 
Goto L1 

2.6. Dis-Similarity Calculation Algorithm 

Input:  
C1 ← {Short_Name}; C2 ← {Actual_name} 
VEC ← {Vector [Subject_Information]} 
Process: Loop L1: While !endOfVector[Record] 
Begin 

C3 ← VEC [C1].getActualName (); 
 p,n ← Call TruthTable Construction Algorithm 
(C1,C2); 
Entropy (pi,ni) ← -p log2(p)-n log2(n) 
Gaini ← ∑ (Entropy value of child dataset)-∑ 
(Entropy value of total dataset) * 100 
Loop L2: While !endOfVector[C1] 
Begin 
C4 ← VEC [C1].getDis_Sim_Score(); 
If(Gaini>C4 and Length(C3)> Length(C4)) 
Then 
  VEC ← Insert into Existing Cluster C2  
   And set it as “Primary” 

  VEC ← Update Existing Cluster C3 
   And set it as “Secondary” 
Else 

VEC ← Insert into Existing Cluster C2 
And set it as “Secondary” 

Endif 
 Goto L2 
Goto L1  
Return VEC 
 
2.7. Result Comparison 

 Table 1 and Fig. 1 show duplicate detection 
without grouping exponentially increase the number of 
iteration. Due to this large size of data, volume 
approach is not fit and also there is a chance to face an 
out of memory issue and its control is out of our hand. 
But duplicate detection with grouping gradually 
increases the number of iteration even, if we increase 
the data size. Throught grouping method may be able to 
control the out of memory issue. At the same time we 
can handle only one group for duplicate detection, as 
this control is in our hand. 
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Fig. 1. Number of Iteration between with grouping and without grouping 
 
Table 1. Total number of Iteration between with grouping and 

without grouping 
Record No of iteration  Without With 
volume (Croce) grouping grouping 
5 K 100 2.5 0.16 
10 K 300 10.0 0.37 
35 K 500 122.5 4.56 
50 K 700 250.0 9.30 
70 K 900 490.0 18.23 
80 K 1100 640.0 23.80 
100 K 1300 1000.0 37.19 

 
 None of the existing algorithm has this kind of 
fuctionality to find a duplicate value wihin that 
specified time line. 

3. RESULTS AND DISCUSSION 

 We show experimentally our proposed technique 
achieves higher average accuracy than existing traditional 
de-duplication system. Further, our technique not required 
any manual tuning for clustering formations as well as dis-
similarity calculation for any kind of business data. 
 ADTree_groupInductionAlgorithm () forms a tree for 
the clustering process. In the tree structure, the height of 
each level of nodes represents the dis-similar degree 
between each cluster. MLC incorporates the futures of 
ADTree features and it overcomes the existing 
hierarchical clustering problem and it reduces the time 
consumption for duplicate detection and number of record 
comparisons. Here we do not use any split algorithm for 
splitting data into a cluster; instead we are using ADTree 
technique for splitting a whole data into cluster. 
ADTree divides the data based on short name; if cluster 
is already available with the short name then insert a 
record into a same cluster else create a new cluster with 
the new name of short name and then insert into a new 

cluster. In each clusters sub-set short name pointing to 
the whole records If cluster is already available then 
starts the de-duplication process else create a new 
cluster and then exit from the process. 

3.1. Limitation 

 At present algorithm will not support for detect the 
duplicate of two diffent image and two different video file. 
Even though normal word is saved as a image file or video 
file, current algorithm wont support. 

3.2. Future Work 

 The present study can be extended in the following 
direction: The record hiding concept may be adopted to 
hide sensitive data to maintain the privacy of data. Future 
work will involve looking into ways to improve the 
scalability and to combine different de-duplication 
approaches into a cloud computing system. The algorithm 
may be extended to handle missing values, image value, 
video value in a natural way during grouping. To solve 
uncertainty grouping problem, the association rule mining 
may be integrated into grouping algorithm. This algorithm 
may be extended to grouping and to identify duplicate in 
web document, video text and image text. 

4. CONCLUSION 

 In this study, we have presented a new efficient 
method is introduced for clustering formation using 
ADTree algorithm for duplicate deduction. The new 
method offers more accuracy dis-similarity measure for 
each cluster data without manual intervention at the time 
of duplicate deduction. Compare to existing clustering 
algorithm either partition or hierarchical, our new method 
is more robust and easy to reach the solution of real world 
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complex business problem. If we apply the propose de-
duplication algorithm with this new method, surely it will 
reduce the total time consumption as well as avoid the 
unwanted record comparison. 
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