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Abstract: Problem statement: There are many different model checkers that have been developed. 
Each of the model checkers is based on different input languages and they are suitable for model 
checking different types of systems. Thus it is important for us to choose the right model checker or 
modeling and verifying a given system. However, moving from one model checker to another is not an 
easy task since we have to deal with different input languages. Approach: In order to solve the 
problem we propose a common modeling language that is based on UML state chart. Some translation 
rules for translating the model described in the common modeling language into the input languages of 
model checkers are also presented. Results: The result of the case study shows that our approach has 
been successfully applied in modeling the control system through the process of transformation and 
translation. Conclusion: Common modeling language can be used as a front end to help users to 
properly model a system before it is translated into input language of model checkers. 
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INTRODUCTION 
 
 Model checking is an automatic technique for 
checking properties of software and hardware systems 
(Clarke, 1997; Berard et al., 2010). There are several 
steps in using model checker. The first step is to specify 
the properties of the system to be checked. These 
properties are written in the form of temporal logic 
statements. The second step is to construct a formal 
model by using the input language of the model 
checker. The verification process is then carried out by 
the model checker. Once verification process is 
completed, the system will produce either true if model 
satisfied the property, or false if it does not. Most model 
checkers will also produce a counterexample if the 
property is not satisfied by the model. This 
counterexample is a state sequence that violates the 
model of the system. This implies that, a model checker 
will check whether a model satisfies a given property 
by exploring all possible behaviors of the system.  
 There are  many model checking systems that have 
been developed,  for SMV (McMillan, 1999),  
UPPAAL    (Bengtsson    et al.,      1996), SPIN 
(Holzmann, 2004) and PRISM (Marta, 2003). All 

model checkers have their own input languages for 
modeling the system and for describing properties of 
system. The SMV language, for example, is based on a 
finite state transition relational model. Properties of the 
model to be verified are specified in a temporal logic, 
known as Computational Tree Logic (CTL). SPIN 
accepts design specifications written in the verification 
language Promela and it accepts correctness claims 
specified in the syntax of standard Linear Temporal 
Logic (LTL). UPPAAL provides system validation and 
verification of real-time system. Systems to be verified 
can be represented with a collection of timed automata. 
PRISM known as probabilistic model checking is an 
automatic procedure for establishing if a desired 
property holds in a probabilistic system model. 
Properties to be checked against the constructed model 
are specified using temporal logic Probabilistic 
Computation Tree Logic (PCTL). 
 Model checkers are developed for modeling 
different types of systems. Therefore, one model 
checker may be more suitable for modeling a certain 
type of system compared to other model checkers. For 
example, SPIN is more suitable for modeling and 
verifying distributed systems, while PRISM is 
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specifically designed for probabilistic systems. Thus, it 
is important for users to choose the right model checker 
for modeling and verifying a specific system. 
 However, moving from one model checker to 
another is not an easy task. We need to translate the 
formal model of a system into the language of the model 
checker that we are using. Our previous study (Pathiah 
and Zin, 2010; Pathiah and Zin, 2011) shows that 
translating a formal model into the language of a model 
checker can be very challenging. First and foremost, we 
need to understand different types of notation and 
symbols of the input languages. Formalizing the 
properties is also difficult since different model checkers 
use different types of temporal logic. 
 In order to solve the problem, we propose a 
Common Modeling language (CM) for model checkers. 
A method for translating a model described in CM into 
a specific model checker is also proposed. Therefore, a 
user can describe the model of the system by using CM. 
He can then use the proposed translation method to 
translate the CM model into the language of the 
selected model checker. Thus, by using this approach a 
user can use the most suitable model checker for 
modeling and verifying a system. Since statechart 
diagram is considered to be one of the most popular 
graphical representations of a system, our proposed CM 
is based on the statechart diagram. 
  
Related works: A few studies related to model checking 
and statechart are available. One of the study focuses on 
translating UML statechart to Extended Hierarchical 
Automata  or EHA, (Dong et al., 2001; Sara et al., 2007) 
EHA which was proposed by Holzmann (2004) is 
actively used as an intermediate format to map the UML 
statechart to finite state machine system such as Labeled 
Transition System (LTS), Kripke Structure and many 
others. The main theoretical work behind the EHA is its 
formal operational semantics which precisely describe 
the semantics of UML statechart. The advantage of EHA 
is that its operational semantics is formally described to 
avoid misinterpretation.  
 Another related study is about translating π-calculus 
to the input languages of model checkers (Latella and 
Massink, 2001; Lam and Padget, 2004). π-calculus plays 
an important role as an intermediate representation 
between UML statechart and the input languages of 
model checkers. One of the advantages of this 
representation is that its formulizations are capable of 
providing various types of well-defined behavioral 
equivalences of statechart diagram. 

MATERIALS AND METHODS 
 

Description of statechart: A statechart diagram is a 
graphical state based notation for representing a system. 
Using a statechart for modeling a system can reduce the 
number of states needed to represent a system and 
therefore make it easier to be understood.  
 Many variations of statecharts are available and one of 
the most popular is the UML statechart. A UML statechart 
(Von der Beeck, 2001; Harel, 1987) is a complete 
graphical characterization of all the desired behaviors of an 
object during its lifecycle. To be more precise, a statechart 
conveys how an object behaves through time as a result of 
its reaction to events from the rest of the universe.  
 A UML statechart consists of states and transitions. 
A state describes a situation where an object satisfies 
some condition, performs some activities, or waits for 
some events. States can be classified as follows: 
 
• A simple state is a state not composed of any sub 

states 
• An OR state is composed to AND/OR states. If OR 

state is active, only one of its sub states is active 
• An AND state is composed of several concurrent 

regions such as OR states graphically separated by 
dotted lines. If an AND state is active, all its 
regions are active 

• The root state is state at the outermost level of the 
statecraft diagram, but is always drawn explicitly 

 
 An active configuration is a maximal collection of 
active states. A transition is purposely to specify when 
and to which states the object can change. A simple 
transition indicates that the system may change its state 
and perform a sequence of actions when a specified 
event occurs and a specified guard condition is 
satisfied. Such transition represents a direct relationship 
between a source state vertex and a target state vertex. 
 
Proposed method: We propose a common modeling 
language that is based on basic features of UML 
statechart. Since a system can normally be decomposed 
into a number of hierarchical sub-systems, our proposed 
common modeling language is obtained by extending 
the statechart to include hierarchical and inter-relation 
between state hierarchies. 
 
Definition 1: Formally, common modeling language is 
defined as: 
 

CM = <S, S0, Sc, G, T, L, R, Root> 
 
Where: 
S = finite set of states, where each state, s is declared 

as one of the two state types: {AND, OR} 
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S0 = Set of initial states (S0 ⊆ S). S0 forms a valid 
initial transition relation 

Sc = Set of states that forms a valid state configuration 
G = Finite set of triggers 
T = Finite set of transition relation, T = S×G×S’ 
L = S→S is the state level function. If s’⊆ L(s), then 

s` is an immediate descendant of s. The function 
of L describes a hierarchical state of the model 

R = Relation between one levels to another 

 
 There are two types of CM states: AND and OR. 
AND state is a state that is used for modeling the 
concurrency by composing several simultaneously 
active sub CM. The AND state is a parent state to sub 
CM state machine that are concurrently active. The sub 
CM may interact with each other via triggers which are 
generated by other active components of the CM. The 
descendants of an AND state must always be OR states. 
An OR state is a state that supports one of state inside 
another state to provide hierarchy in the model. An OR 
state has sub-states that are related to each other by an 
exclusive-OR relationship. The leaf states of a CM 
must always be OR states. A CM, at any time, may 
have multiple active states which are known as a state 
configuration. A state configuration always contains 
one sub-state for each OR state and all sub-states for 
each AND state.  
 Consider the statechart model in Fig. 1. The CM 
hierarchical structure graph of statechart model in Fig. 
1 is shown in Fig. 2.  
 The operation of a CM is described by using step 
semantics. The state configuration of CM always 
starts with an AND state. If the current state 
configuration contains more than one AND state, all 
of sub CM of the AND states will take place at the 
same time. For example, the state configuration for 
the Fig. 2 might be (B, F, H) or (B, G, I). In CM, a 
transition will always occur at each step in each 
active state configuration. If no explicitly modeled 
transitions are enabled, then an implicit transition 
will be fired. The synchronization of CMs allows it 
to be “flattened” into sequential automata preserving 
the model semantics. Each of single flatten CM is 
equivalent to a finite automata.  
 The single flatten component of the hierarchy 
structure graph is defined as CMs = <S, So,G,T> where 
S is a finite set of state, So is initial state, G is a finite 
set of triggers and T is the transitions. For example, 
CMs for Fig. 2 are: 

   
 
Fig. 1: Statechart model 
 

 
 
Fig. 2: Example of common modeling language 

hierarchy structure graph 
   
 A(CM-1) = ({A,B},B,{E1,E2},{(A,E1,B),(B,E2,A)}) 
 A(CM-2) = ({F,G},F,{E3,E4},{(F,E3,G),(G,E4,F)})  
 A(CM-3) = ({H,I},H,{E5,E6},{(H, E5,I),(I,E6,H)}).  
 
 An active CM interacts through events. An event 
may trigger a transition to occur in synchronous 
components of the system in the following step. If an 
event trigger a transition from a state, s and the result of 
the transition is sub CM then the state, s is called as 
super state. As an example, B is super state of CM-2 
and CM-3. These situations create inter-level transition. 
Inter-level transition cross state hierarchy boundaries. If 
a transition is leaving a super state, s, then the firing of 
all transitions contained the sub hierarchy of s is 
suppressed which is represented as dotted line in Fig. 2. 
This creates the relation, R between super state s and 
sub hierarchy and vice versa depending on the message 
received. At the same time, the level, L is created. The 
number given to the level is based on the priority 
leaving the super state. The example of level, L are 
CM-1, CM-2 and CM-3 where CM-1 is top level and 
CM-2 and CM-3 is sub level of CM-1. The Relation, R 
between levels is said as follows: 
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    CM-1: receive message from CM-2 and CM-3 
    CM-2: receive message from CM-1 
    CM-3: receive message from CM-1 
 
Translation from CM to I-SMV: To describe the 
translation of CM to input language of SMV, we first 
need to define I-SMV, the SMV input language. 
 
Definition 2: Let I-SMV be the input language of SMV 
that consists of four tuples: 
 

<M, V, N, Y> 
 
Where: 
M = Set of finite modules 
V = Set of finite state variables 
N = Set of next states 
Y = Relation between one module to another 
 
 As the input language for SMV, I-SMV, is 
modular. The high level module is called as a module 
main. The other modules are called sub modules. In a 
module, M, there are state variables, V to describe the 
module. A state evolves from one state to another 
through a next operator, N. The relation, Y, between 
one module to another is described by using a set of 
parameter. The translation from CM to I-SMV is 
represented by a set of rules. 
  
Rules from CM to I-SMV: In I-SMV, the level, L of CM 
corresponds to the module, M. The set of states, S and 
triggers, G correspond to the state variables, V. The 
transition, T corresponds to the next state, N. Lastly, the 
relation between levels, R corresponds to the relation 
between modules, Y. In this study, there are four rules for 
mapping CM to I-SMV. The rules are defined as follows: 
 
Rule 1(module): Let Lev is the set of levels in CM. 
Each Levi ∈ Lev is modeled as module declaration in I-
SMV as follows: 
 
 Module Levi(argi,…,arg i+1) 
 
 If Levi ∈ Lev does not exist, then the execution 
must be terminated. In I-SMV, argi is reference to the 
actual parameter of a module in the main module. 
 
Rule 2 (Variable): Let St be the set of states and Gr is 
the set of triggers in CM. Sti ∈ St is declared inside a 
module as follows: 
 
 Sti : s1..s n+1;  if St is integer type 
 Sti: {s1,..,sn}; if St is enumerated type 
 Sti: {}; if St is boolean type 
 
Gri∈ Gr is declared inside a module as follows: 

 Gri : g1..gn+1;   if Gr is integer type 
 Gri: {g1,..,gn}; if Gr is enumerated type 
 Gri: {};  if Gr is boolean type 
 
 Rule 2 is used, if and only if the represented 
module exists and either St≠{} or Gr≠{}. 
 
Rule 3 (state change): Let Tr be the set of transitions. 
In CM, the state changes might occur with or without 
a trigger, Gr. This implies that the state changes is 
between the source state, Ss and target state, St with 
or without trigger. The state changes in I-SMV are 
defined as follows: 
 
 next (St):= 
     case{ 
  Tri: St; if gr ∈ Gr, Gr ≠ {}  
 Trj: Ss; if gr ∈ Gr, Gr = {}   
          default: St; 
     }; 
  
 The first statement defines the state changes caused by 
triggered transitions while the second statement defines the 
state changes caused by null-triggered transitions. 
 
Rule 4 (Relation between modules): Let Ra, Rb, be 
state variables for Leva and Levb. Let Rc and Rd be state 
variables for Levcg. The relation between those levels is 
defined as follows: 
 
 Module main() 
 St-Levc: Levc(St-Leva .Ra, St-Levb .Rb); 
  St-Leva: Leva(St-Levc.Rc); 
 St-Levb: Levb(St-Levc.Rd); 
   
 St-Levc , St-Leva , St-Levb are state variables in the 
main module. In I-SMV the arguments to a module is 
defined by state variable of destination message followed 
by state variable of source destination message. 
 
Translation from CM to I-PRISM: The translation 
process follows the same approach as SMV. First, we 
need to define I-PRISM, the input language for PRISM.  
  
Definition 3: I-PRISM is the input language of PRISM, 
which consists of four tuples: 
 

<P, Q, H, C> 
 
Where: 
P = Set of finite modules, 
Q = Set of finite state variables 
H = Set of commands 
C = Relation between one module to another 
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 I-PRISM is also modular. However, a module, P is 
not allowed to produce a sub-module. Therefore, all of 
the modules are in the same level of hierarchy. In a 
module, there are state variables, Q which is used to 
model a module of a system. The state changes are 
described by a set of commands, H. The relation, C 
from one module to another is stated by synchronizer 
called as system .. endsystem construct. 
  
Rules from CM to I-PRISM: In I-PRISM, the level, L 
of CM corresponds to the module, Lv. The set of states, 
S and triggers, G corresponds to the state variables, Vr 
and Er. The transition, T corresponds to the command, 
Sr. Lastly, the relation between levels, R corresponds to 
the relation between modules, Lvi. The proposed rules 
for the mapping are as follows:  
 
Rule 5 (module..endmodule): Let Lv be the set of 
level, L in CM. Each Lvi ∈ Lv is modeled as module 
declaration as follows: 
 
 module Lvi 
 …. 
 endmodule 
 
If Lv i ∈ Lv does not exist, the translation process is 
terminated. 
 
Rule 6 (state variable): Let Vr be the set of states, S 
and Er is the set of triggers G in CM. Both of Vri∈Vr 
and Eri ∈ Er are declared within a module as variable 
declaration as follows: 
 
 Vri : [0..n+1] init 0; Vr is integer type 
 Eri :  [0..n+1] init 0; Er is integer type 
 
 In our case, n is an integer value starting from 0 to a 
large prime number. In I-PRISM, init is the 
initialization which automatically assigns the value of 
variables to 0.  
 
Rule 7 (commands): Let Sr be the set of transitions T. 
In CM, the state changes might occur with or without a 
trigger ir. This implies that, the state change is between 
source state, ss and target state, st with or without 
trigger. In I-PRISM, the state changes are represented 
as a command, Sr which is defined as follows: 
 
     Sr is either: 
          [] Vri = ss and Eri=ir : Vri`=st; if Eri ≠ 0  
     or: 
          [] Vri = ss: Vri`=st; if Eri =0 

 The first statement defines the state changes caused by 
triggered transitions while the second statement defines the 
state changes caused by null-triggered transitions. 
 
Rule 8 (synchronization): Let Lva, Lvb, Lvc are levels 
in CM.. Suppose Lvb and Lvc  have relation, R with Lva, 
then we said both of Lvb and Lvc  can be synchronized 
with Lva. In I-PRISM, the synchronization of Lva, Lvb, 
Lvc are defined as follows: 
 
 system 
      ((Lvb ||| Lvc) || Lva) 
 endsystem 
 
 The symbol  |||  implies that Lvb and Lvc are 
alternately synchronized with  Lva. We assume 
synchronization is the same as relation between 
modules in SMV. 
 

RESULTS 
 
 The translation from CM to input language of model 
checkers starts by modeling the behavior of a system into 
a statechart diagram. In this example, an elevator system 
which was previously modeled and verified using four 
model checkers is chosen for modeling and 
translation process. Fig. 3 shows the UML statechart 
diagram for an elevator system.  
 As shown in Fig. 3, there is only one AND state 
(On1) and two OR state (Open/Close and 
Level1/Level2). There are only two basic states (On2 
and free) and this model has only two regions, the first 
one is shown as dotted line in On1 state and the other is 
the outermost. The flatten CM of the elevator system is 
shown in Fig. 4.  
 

  
 
Fig. 3: Statechart model of elevator system 
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Fig. 4: The flatten CM of the elevator system 
 
 Based on the Fig. 4, each flatten CMs=(S, S0, G, T) 
is obtained as follows: 
 
   CMs(AJ-1) = ({free, On1,On2},On1, 
 {opencmd,closecmd,upcmd,downcmd},  
 {(On1,opencmd,free),(free,closecmd,On1),  
 (On1,upcmd,On2), (On2,downcmd,On1)}) 
 
   CMs(AJ-2)=({Open,Close},Open,{open,close},  
 {(Open,close, Close),(Close,open,Open)})  
 
   CMs(AJ-3) = ({Level1,Level2},Level1,{up,down}, 
 {(Level1,up,Level1),(Level2,down,Level1)}) 
 
 The relation, R between CMs is obtained as 
follows: For:  
 
   AJ-1: receive message from AJ-2 and AJ-3  
   AJ-2: receive message from AJ-1 
   AJ-3: receive message from AJ-1 
 
 We use the rules for translating the CM of the 
elevator system into the input language of SMV and 
PRISM. 
 
From CM to SMV: By using Rule 1, each level in CM 
is translated into a module in SMV input language. 
Each module name is followed by a list of arguments, 
argi in I-SMV. So in this example, there are three 
modules which are stated as AJ-1, AJ-2 and AJ-3. The 
arguments are created based on relation, R in Rule 4 of 
the modules. 
  
  Module AJ-2(aj-1) 
 Module AJ-3(aj-1) 
 Module AJ-1(aj-2, aj-3) 

 Rule 2 is regarding the variables declared in each 
module. All the states, S and triggers, Gr in CM are 
translated as follow: 
 

Module AJ-2(aj-1)  
VAR 
    state: {Open, Close}; 
     trigger2: {close, open}; 
 
Module AJ-3(aj-1)  
VAR 
     state: {Level1, Level2}; 
     trigger3: {up, down}; 
 
Module AJ-1(aj-2, aj-3)  
VAR 
      state: {On1, free, On2}; 
      trigger5: {closecmd, opencmd}; 
      trigger6: {downcmd, upcmd}; 

 
 The transition, T which is stated in Rule 3 is 
translated to next state in SMV. In SMV, transition for 
each level is written as follow: 
 
  Module AJ-3(aj-1) 
  ….. 
     next (state) := case 
       ((state = level 2) and (aj_1.trigger6 = downcmd)):  
             level1; 
    ((state = level1) and (aj_1.trigger6 = upcmd)):  
             level2; 
      1: state; 
       esac; 
 
 Module AJ-2(aj-1) 
 …… 
      next (state) := case 
      ((state = open) and (aj_1.trigger5 = closecmd)):  
               Close; 
       ((state = Close) and (aj_1.trigger5 = opencmd)):  
          Open; 
 1: state; 
      esac; 
  
 Module AJ_1(aj_2, aj_3): 
 ……. 
  next (state) := case 

    (((state = free) and (trigger5 = closecmd)) |   
    ((state = On2) and (trigger6 = downcmd))): On1; 

      ((state = On1) and (trigger5 = opencmd)) : free; 
      ((state = On1) and (trigger6 = upcmd)) : On2; 
     1: state; 
 esac; 
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 Relation between levels which is stated in Rule 4 is 
translated into module main. Based on Rule 4, the state 
variables of Module main are defined as a call module 
for corresponding level. The argument in each call 
module is state variable of source state followed by its 
message passing. The following codes describe relation 
between levels: 
 

 Module main: 
 VAR 
     Aj-2: AJ-2 (aj-1) 
     Aj-3: AJ-3 (aj-1) 
     Aj-1: AJ-1 (aj-2, aj-3) 

 
 Based on the above codes, aj-1, aj-2 and aj-3 are 
state variables and used as arguments modules AJ-1, 
AJ-2 and AJ-3. 
 
From CM to PRISM: We use Rule 5 to Rule 8 to 
translate CM to the input language of PRISM. By using 
Rule 5, level, L in CM is mapped to modules in 
PRISM. Modules in PRISM are coded below: 
 

module AJ-2 
….. 
endmodule 
 
module AJ-3 
…. 
endmodule 
 
module AJ-1 
…………. 
endmodule 

 
 Rule 6 is about state variable. Similar to SMV, states 
and triggers are mapped to state variables in PRISM. The 
state variable for each module is coded below: 
 

Module AJ_2 
AJ_2_state:[0..1] init Open; 
AJ_2_trigger3:[0..1] init close; 
…. 
endmodule 
 
Module AJ_3 
AJ_3_state:[0..1] init level1; 
AJ_3_trigger3:[0..1] init up; 
…. 
endmodule 
 
Module AJ_1: 
AJ_1_state:[0..2] init on1; 

AJ_1_trigger5:[0..1] init closecmd; 
AJ_1_trigger6:[0..1] init downcmd; 
…………. 
endmodule 

 
 Rule 7 is about a command. Each transition is 
mapped to a command in the PRISM input language. 
The commands in each module are coded below: 
 
 Module AJ_2: 
 …. 
 [] (AJ_2_state = Open ) -> (AJ_2_state' = Close ); 
 [] (AJ_2_trigger3=close )->(AJ_2_state' =Close ); 
 [] (AJ_2_state = Close ) ->(AJ_2_state' = Open ); 
 [] (AJ_2_trigger3=open )->(AJ_2_state' = Open ); 
 endmodule 
 
 Module AJ-3: 
 …. 
 [](AJ_3_state= Level1 ) -> (AJ_3_state' =Level2 ); 
 [](AJ_3_trigger3= up ) -> (AJ_3_state' = Level2 ); 
 []( AJ_3_state = Level2)-> (AJ_3_state' =Level1 ); 
 [](AJ_3_trigger3=down )->(AJ_3_state' = Level1 ); 
 endmodule 
 
 Module AJ_1: 
 ……… 
 [](AJ_1_state = free)->(AJ_1_state' = On1 ); 
 [](AJ_1_trigger5=closecmd)->(AJ_1_state'=On1 ); 
 [](AJ_1_state = On1) -> (AJ_1_state' = free ); 
 [](AJ_1_trigger5=opencmd)->(AJ_1_state' =free ); 
 [](AJ_1_state = On2)->(AJ_1_state' = On1); 
 [](AJ_1_trigger6=downcmd)->(AJ_1_state'=On1); 
 [](AJ_1_state =On1)->(AJ_1_state' = On2); 
 [](AJ_1_trigger6 = upcmd )->(AJ_1_state' = On2); 
 endmodule 
  
 Based on the above codes, the commands are 
executed with or without triggers. 
 Lastly is the synchronization between modules. 
Based on Rule 8, relation between levels of hierarchy is 
used to map the synchronization in the PRISM input 
language. Since AJ-2 and AJ-3 is alternately 
synchronized with AJ-1, the synchronization of 
modules is coded below: 
 

system 
     ((AJ_2 ||| AJ_3) || AJ_1) 
endsystem 

 
DISCUSSION 

 
 The study describes the proposed common 
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modeling language. CM for model checkers together 
with a set of rules for translating from the language into 
the input language of two model checkers SMV and 
PRISM. The result of  of the case study shows that 
the proposed method for translating the model 
described in CM into the input languages of SMV 
and PRISM is feasible.  

One of the property of the system can be 
described as follows: When the cabin arrives at the 
requested floor, the door is opened.  

We have model checked the SMV codes obtained 
from the translation process   together with the above 
property by using SMV model checker. The 
verification result shows that the above property is 
satisfied TRUE. The number of BDD nodes is 74 and 
model checking time is 0.015 second whereas 
verification time by the system is 0.01 second. The 
number of transition relation is 12. A similar 
verification process was done for PRISM. 

 
CONCLUSION 

 
 This study describes a common modeling language 
for model checkers. This language relies on UML 
statechart features with some extension such as the state 
hierarchy and inter-relation transition. We have also 
proposed translation rules for mapping the model 
described in the common modeling language into the 
input language of SMV and PRISM model checkers. 
The feasibility of the proposed method has been 
demonstrated by using a case study.  
 Currently, we are in the process of carrying out two 
more activities in order to enhance our proposed 
method. The first activity is to expand the proposed 
method to include two more model checkers: SPIN and 
UPPAAL. The second activity is to develop a software 
tool that can help users to translate the model described 
in the common modeling language into the input 
languages of model checkers. 
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