Journal of Computer Science 8 (1): 99-106, 2012
ISSN 1549-3636
© 2012 Science Publications

Common Modeling Language for Model Checkers

'Pathiah Abdul Samat afidbdullah Mohd Zin
Faculty of Computer Science and Information Tecbgy
University Putra Malaysia, Serdang
“Faculty of Technology and Information Science,
University Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia

Abstract: Problem statement: There are many different model checkers that haenldeveloped.
Each of the model checkers is based on differepititanguages and they are suitable for model
checking different types of systems. Thus it is amant for us to choose the right model checker or
modeling and verifying a given system. However, mg\¥rom one model checker to another is not an
easy task since we have to deal with different inpnguagesApproach: In order to solve the
problem we propose a common modeling languageashmsed on UML state chart. Some translation
rules for translating the model described in thememn modeling language into the input languages of
model checkers are also presentesults. The result of the case study shows that our agprbas
been successfully applied in modeling the contysteam through the process of transformation and
translation.Conclusion: Common modeling language can be used as a frahtt@melp users to
properly model a system before it is translated input language of model checkers.

Key words Model checking, UML state chart, Computational Tkegic (CTL), Linear Temporal Logic
(LTL), Probabilistic Computation Tree Logic (PCTL)

INTRODUCTION model checkers have their own input languages for
modeling the system and for describing properties o
Model checking is an automatic technique forsystem. The SMV language, for example, is based on
checking properties of software and hardware systenfinite state transition relational model. Propestad the
(Clarke, 1997; Berarat al., 2010). There are several model to be verified are specified in a temporaido
steps in using model checker. The first step ipecify  known as Computational Tree Logic (CTL). SPIN
the properties of the system to be checked. Thesaccepts design specifications written in the veation
properties are written in the form of temporal tgi language Promela and it accepts correctness claims
statements. The second step is to construct a formapecified in the syntax of standard Linear Temporal
model by using the input language of the modelLogic (LTL). UPPAAL provides system validation and
checker. The verification process is then carriedhy  verification of real-time system. Systems to befiext
the model checker. Once verification process iscan be represented with a collection of timed aatam
completed, the system will produce either true didel  PRISM known as probabilistic model checking is an
satisfied the property, or false if it does not.d¥ilmodel  automatic procedure for establishing if a desired
checkers will also produce a counterexample if theproperty holds in a probabilistic system model.
property is not satisfied by the model. This Properties to be checked against the constructetkimo
counterexample is a state sequence that violates tlare specified using temporal logic Probabilistic
model of the system. This implies that, a modetkbe = Computation Tree Logic (PCTL).
will check whether a model satisfies a given proper Model checkers are developed for modeling
by exploring all possible behaviors of the system. different types of systems. Therefore, one model
There are many model checking systems that havehecker may be more suitable for modeling a certain
been developed, for SMV (McMillan, 1999), type of system compared to other model checkens. Fo
UPPAAL (Bengtsson et al., 1996), SPIN example, SPIN is more suitable for modeling and
(Holzmann, 2004) and PRISM (Marta, 2003). All verifying distributed systems, while PRISM is
Corresponding Author: Pathiah Abdul Samat, Faculty of Computer Scienctlaformation Technology,
University Putra Malaysia, 43400 Serdang, Selandataysia
99




J. Computer Sci., 8 (1): 99-106, 2012

specifically designed for probabilistic systemsughit MATERIALSAND METHODS
is important for users to choose the right modelckler
for modeling and verifying a specific system. Description of statechart: A statechart diagram is a

However, moving from one model checker tographical state based notation for representingtes.
another is not an easy task. We need to trandfete tUsing a statechart for modeling a system can rethece
formal model of a system into the language of tioeleh number of states needed to represent a system and

checker that we are using. Our previous study {&ath therefore ma](e_ it easier to be understooql.
and Zin, 2010; Pathiah and Zin, 201dhows that Many variations of statecharts are available arela¥

translating a formal model into the language ofadeh the most popular is the UML statechart. A .UML LAt
. . (Von der Beeck, 2001; Harel, 1987) is a complete

checker can be very challenging. First and foremest oo jhical characterization of all the desired bigiawf an
need to understand different types of notation an@pject during its lifecycle. To be more precisefatechart
symbols of the input languages. Formalizing theconveys how an object behaves through time asult ofs
properties is also difficult since different modéleckers its reaction to events from the rest of the unizers
use different types of temporal logic. A UML statechart consists of states and transition

In order to solve the problem, we propose aA state describes a situation where an objectfiestis
Common Modeling language (CM) for model checkerssome condition, performs some activities, or wéots
A method for translating a model described in Ckbin Some events. States can be classified as follows:

a specific model checker is also proposed. Thegefor , A simple state is a state not composed of any sub
user can describe the model of the system by SMg states

He can then use the proposed translation method © Ap OR state is composed to AND/OR states. If OR
translate the CM model into the language of the  state is active, only one of its sub states is/acti
selected model checker. Thus, by using this appreac « An AND state is composed of several concurrent
user can use the most suitable model checker for regions such as OR states graphically separated by
modeling and verifying a system. Since statechart dotted lines. If an AND state is active, all its
diagram is considered to be one of the most popular regions are active

graphical representations of a system, our propGdéd ° The root state is state at the outermost levehef t

is based on the statechart diagram. statecraft diagram, but is always drawn explicitly

An active configuration is a maximal collection of
Related works: A few studies related to model checking active states. A transition is purposely to spewfyen
and statechart are available. One of the studys&on and to which states the object can change. A simple
translating UML statechart to Extended Hierarchicaltransition indicates that the system may changstéte
Automata or EHA, (Dongt al., 2001; Sarat al., 2007) and perform a sequence of actions when a specified
EHA which was proposed by Holzmann (2004) isevent occurs and a specified guard condition is
actively used as an intermediate format to magtkie. ~ satisfied. Such transition represents a directicgiship
statechart to finite state machine system suchehgled — between a source state vertex and a target staexve

Transition System (LTS), Kripke Structure and manyProposed method: We propose a common modeling
others. The main theoretical work behind the EHASS language that is based on basic features of UML

formal operational semantics which precisely deeCri giaiechart. Since a system can normally be deccetpos
the semantics of UML statechart. The advantageHR E  into 4 number of hierarchical sub-systems, our psed
is that its operational semantics is formally digtt to  common modeling language is obtained by extending

avoid misinterpretation. the statechart to include hierarchical and intéatien
Another related study is about translatinigalculus  petween state hierarchies.

to the input languages of model checkers (Latalid a L . .
Massink, 2001; Lam and Padget, 200d¥alculus plays Def_|n|t|on 1: Formally, common modeling language is
an important role as an intermediate representatioﬁefIneOI as:
between UML statechart and the input languages of CM=<S,$, Sc, G, T, L, R, Root>
model checkers. One of the advantages of this
representation is that its formulizations are cépald  Where:
providing various types of well-defined behavioral S = finite set of states, where each state, samosl
equivalences of statechart diagram. as one of the two state types: {AND, OR}

100



J. Computer Sci., 8 (1): 99-106, 2012

= Set of initial states (SO S). $ forms a valid B
initial transition relation

S
S. = Set of states that forms a valid state configuratio
G
T
L

El F G
g E4

= Finite set of triggers A
= Finite set of transition relation, T x&xS’ £
= S-S is the state level function. Ifi$'L(s), then oo
s’ is an immediate descendant of s. The function E ES
of L describes a hierarchical state of the model -
R = Relation between one levels to another

There are two types of CM states: AND and OR'Fig 1- Statechart model
AND state is a state that is used for modeling the = ™
concurrency by composing several simultaneously o
active sub CM. The AND state is a parent stateuto s Bl
CM state machine that are concurrently active. Jiite
CM may interact with each other via triggers whéck
generated by other active components of the CM. The
descendants of an AND state must always be ORsstate
An OR state is a state that supports one of steide
another state to provide hierarchy in the model.G% M2 E'g M3 N
state has sub-states that are related to each logheen P " s " »
exclusive-OR relationship. The leaf states of a CM B4 i
must always be OR states. A CM, at any time, may
have multiple active states which are known asagest
configuration. A state configuration always congain
one sub-state for each OR state and all sub-states
each AND state.

Consider the statechart model in Fig. 1. The CM ﬁggmg
hierarchical structure graph of statechart moddFim A(CM-3)
1 is shown in Fig. 2.

The operation of a CM is described by using step  an active CM interacts through events. An event
semanticg The state configuration of CM alwaysmay trigger a transiton to occur in synchronous
starts with an AND state. If the current Statecomponents of the system in the following steparif
configuration contains more than one AND state, allyyent trigger a transition from a state, s andréiselt of
of sub CM of the AND states will take place at thehe transition is sub CM then the state, s is datie
same time. For example, the state configuration fogyper state. As an example, B is super state 0f2CM-
the Fig. 2 might be (B, F, H) or (B, G, I). In CM,  ang CM-3. These situations create inter-level itams
transition will always occur at each step in eachpier-level transition cross state hierarchy bouieda If
active state configuration. If no explicity moddle 4 transition is leaving a super state, s, therfithegy of
transitions are enabled, then an implicit transitio 5| transitions contained the sub hierarchy of s is
will be fired. The synchronization of CMs allows it gyppressed which is represented as dotted lingir2F
to be “flattened” into sequential automata presegvi Thjs creates the relation, R between super stateds
the model semantics. Each of single flatten CM issyp hierarchy and vice versa depending on the messa
equivalent to a finite automata. received. At the same time, the level, L is creafete

The single flatten component of the hierarchynumber given to the level is based on the priority
structure graph is defined as CMs = <§GST> where  |eaving the super state. The example of level, & ar
S is a finite set of state, % initial state, G is a finite  cM-1, CM-2 and CM-3 where CM-1 is top level and
set of triggers and T is the transitions. For eXxamp CM-2 and CM-3 is sub level of CM-1. The Relation, R
CMs for Fig. 2 are: between levels is said as follows:

101

[y

B2 L

Yy
y

Fig. 2: Example of common modeling language
hierarchy structure graph

({A,B},B,{E1,E2} {(A,E1,B),(B,E2,A)})
({F.G}F{E3,E4}{(F,E3,G),(G,E4,F)})
({H,I},H{E5,EB}{(H, E5,I),(1,E6,H)}).



J. Computer Sci., 8 (1): 99-106, 2012

CM-1: receive message from CM-2 and CM-3 Gr : oi..0n4q; i Gris integer type
CM-2: receive message from CM-1 Gr: {g1,-.-.0}; if Gr is enumerated type
CM-3: receive message from CM-1 Gr: {}; if Gr is boolean type

;I;;ﬁrs]?a?(i)?wno;rgm tc(:)NilnSSt Iléihgl}gg;r%fdsel\sﬁc\;ib\?vet?i?s Rule 2 is used, if and only if the represented
need to define I-SMV, the SMV input Ianguag’e. module exists and either-g} or Gr{}.

Definition 2: Let I-SMV be the input language of SMV Rule 3 (state change): Let Tr be the set of transitions.

that consists of four tuples: In CM, the state changes might occur with or withou
a trigger, Gr. This implies that the state changes
<M, V, N, Y> between the source state, Ss and target stateittst w
or without trigger. The state changes in I-SMV are
Where: defined as follows:
M = Set of finite modules
V = Set of finite state variables next (St):=
N = Set of next states case{
Y = Relation between one module to another Tr: St; if gre Gr, Gr# {}
. . Tr: Ss; if gre Gr, Gr = {}
As the input language for SMV, I[-SMV, is défault: St:

modular. The high level module is called as a medul Y
main. The other modules are called sub modules. In '

module, M, there are state variables, V to desdtiee i .
module. A state evolves from one state to another. The first statement defines the state changeeddys

through a next operator, N. The relation, Y, betwee triggered transitions while the second statemeimetethe
one module to another is described by using a ket tate changes caused by null-triggered transitions.

parameter. The translation from CM to I-SMV is _
represented by a set of rules. Rule 4 (Relation between modules): Let R, R, be

state variables for Lgvand Ley. Let R, and R, be state
Rulesfrom CM to I-SMV: In I-SMV, the level, L of CM  variables for Ley, The relation between those levels is
corresponds to the module, M. The set of statesnds defined as follows:
triggers, G correspond to the state variables, We T

transition, T corresponds to the next state, Ntly,athe Module main()

relation between levels, R corresponds to the iselat St-Lew: Lev,(St-Lev, .R,, St-Ley, .Ry);

between modules, Y. In this study, there are falasrfor St-Lew: Levy(St-Lev.R;);

mapping CM to I-SMV. The rules are defined as fotio St-Ley,: Lew,(St-Lew.Ry);

Rule 1(module): Let Lev is the set of levels in CM. St-Lew , St-Ley, St-Ley, are state variables in the
Each LeyO Lev is modeled as module declaration in I-main module. In I-SMV the arguments to a module is
SMV as follows: defined by state variable of destination messaligfed

by state variable of source destination message.
Module Ley(arg,...,argi+1) . ]
Trandlation from CM to |I-PRISM: The translation
If Lev; O Lev does not exist, then the executionprocess follows the same approach as SMV. First, we
must be terminated. In I-SMV, arip reference to the need to define I-PRISM, the input language for RIS
actual parameter of a module in the main module.
Definition 3: I-PRISM is the input language of PRISM,
Rule 2 (Variable): Let St be the set of states andi€sr  \hich consists of four tuples:

the set of triggers in CM. Sl St is declared inside a

module as follows: <P,Q,H, C>
St: s..sn.q; if Stisinteger type Where:
St: {s1,..,S}; if Stis enumerated type P = Set of finite modules,
St {4 if St is boolean type Q = Set of finite state variables
H = Set of commands
Gr,OGr is declared inside a module as follows: C = Relation between one module to another

102



J. Computer Sci., 8 (1): 99-106, 2012

I-PRISM is also modular. However, a module, P is  The first statement defines the state changesddys
not allowed to produce a sub-module. Thereforepfll triggered transitions while the second statemefimatethe
the modules are in the same level of hierarchyaIn state changes caused by null-triggered transitions.
module, there are state variables, Q which is used
model a module of a system. The state changes aRule 8 (synchronization): Let Lv,, Lvy,, Lv, are levels
described by a set of commands, H. The relation, @ CM.. Suppose Lyand Ly have relation, R with Ly
from one module to another is stated by synchreonizethen we said both of lvand Ly can be synchronized

called as system .. endsystem construct.

Rulesfrom CM to |-PRISM: In I-PRISM, the level, L
of CM corresponds to the module, Lv. The set akesta
S and triggers, G corresponds to the state vagabMe
and Er. The transition, T corresponds to the conaman
Sr. Lastly, the relation between levels, R corresisao
the relation between modules,;Lifhe proposed rules
for the mapping are as follows:

Rule 5 (module.endmodule): Let Lv be the set of
level, L in CM. Each LvO Lv is modeled as module
declaration as follows:

module Ly

endmodule

If Lv; O Lv does not exist, the translation process is

terminated.

Rule 6 (state variable): Let Vr be the set of states, S
and Er is the set of triggers G in CM. Both of (W'r

and ErQ0 Er are declared within a module as variable

declaration as follows:

Vr; : [0..n+1] init O; Vr is integer type
Er, : [0..n+1] init O; Er is integer type

In our case, n is an integer value starting frota 8
large prime number. In I-PRISM, init is the
initialization which automatically assigns the valaf
variables to 0.

Rule 7 (commands): Let Sr be the set of transitions T.
In CM, the state changes might occur with or withau
trigger ir. This implies that, the state changbésveen
source state, ss and target state, st with or witho
trigger. In I-PRISM, the state changes are repitesen
as a command, Sr which is defined as follows:

Sr is either:

[1 Vi = ss and Exir : Vr;'=st; if EF# 0
or:

[ Vi = ss: Vr=st; if Ef =0

103

with Lv,. In I-PRISM, the synchronization of LvLv,
Lv. are defined as follows:

system

(L (Il Lwe) [] Lva)
endsystem

The symbol ||| implies that jvand L are
alternately synchronized with Lv We assume
synchronization is the same as relation between
modules in SMV.

RESULTS

The translation from CM to input language of model
checkers starts by modeling the behavior of a Byt
a statechart diagram. In this example, an elexatstiem
which was previously modeled and verified usingrfou
model checkers is chosen for modeling and
translation process. Fig. 3 shows the UML stateichar
diagram for an elevator system.

As shown in Fig. 3, there is only one AND state
(Onl) and two OR state (Open/Close and
Levell/Level2). There are only two basic statesQOn
and free) and this model has only two regions fitise
one is shown as dotted line in On1 state and ther as
the outermost. The flatten CM of the elevator sysie
shown in Fig. 4.

Onl

——— downemd
0on2

upemd

closecmd

Fig. 3: Statechart model of elevator system



J. Computer Sci., 8 (1): 99-106, 2012

Al-1

Rule 2 is regarding the variables declared in each
module. All the states, S and triggers, Gr in CM ar

N o | N
| oot | | Oon2
g I |

2

free |

Al2 Al3

opn [ Cloe

Fig. 4: The flatten CM of the elevator system

Based on the Fig. 4, each flatten CMs=($.& T)
is obtained as follows:

CMs(AJ-1) = ({free, On1,0n2},0n1,
{opencmd,closecmd,upcmd,downcmd},
{(On1,opencmd,free),(free,closecmd,Onl),
(On1,upcmd,On2), (On2,downcmd,On1)})

CMs(AJ-2)=({Open,Close},Open,{open,close},
{(Open,close, Close),(Close,open,Open)})

CMs(AJ-3) = ({Levell,Level2},Levell {up,down},
{(Levell,up,Levell),(Level2,down,Levell)})
The relation, R between CMs is obtained as

follows: For:

AJ-1: receive message from AJ-2 and AJ-3
AJ-2: receive message from AJ-1
AJ-3: receive message from AJ-1

We use the rules for translating the CM of the
elevator system into the input language of SMV and
PRISM.

From CM to SMV: By using Rule 1, each level in CM
is translated into a module in SMV input language.
Each module name is followed by a list of arguments
arg in I-SMV. So in this example, there are three
modules which are stated as AJ-1, AJ-2 and AJ-8 Th
arguments are created based on relation, R in &Rofe
the modules.

Module AJ-2(aj-1)
Module AJ-3(aj-1)
Module AJ-1(aj-2, aj-3)
104

translated as follow:

Module AJ-2(aj-1)

VAR
state: {Open, Close};
trigger2: {close, open};

Module AJ-3(aj-1)

VAR
state: {Levell, Level2};
trigger3: {up, down};

Module AJ-1(aj-2, aj-3)

VAR
state: {On1, free, On2};
trigger5: {closecmd, opencmd};
trigger6: {downcmd, upcmd};

The transition, T which is stated in Rule 3 is

translated to next state in SMV. In SMV, transition
each level is written as follow:

Module AJ-3(aj-1)
next (state) := case
((state = level 2) and (aj_1.trigger6 = dowal)):
levell,;
((state = levell) and (aj_1.trigger6 = upcmd)):
level2;
1: state;
esac;

Module AJ-2(aj-1)
next (state) := case
((state = open) and (aj_1.trigger5 = closegmd
Close;
((state = Close) and (aj_1.trigger5 = opesigm
Open;
1: state;
esac;

Module AJ_1(aj_2, aj_3):

next (state) := case
(((state = free) and (trigger5 = closecmd)) |
((state = On2) and (trigger6 = downcmd))): On1;
((state = On1) and (trigger5 = opencmd)gefr

((state = On1) and (trigger6 = upcmd)) : On2;

1: state;

esac;



J. Computer Sci., 8 (1): 99-106, 2012

Relation between levels which is stated in Ruls 4
translated into module main. Based on Rule 4, the s
variables of Module main are defined as a call nedu
for corresponding level. The argument in each call
module is state variable of source state followgdt®
message passing. The following codes describeéaelat
between levels:

AJ_1 trigger5:[0..1] init closecmd;
AJ_1 trigger6:[0..1] init downcmd;

endmodule

Rule 7 is about a command. Each transition is
mapped to a command in the PRISM input language.

The commands in each module are coded below:

Module main:

VAR
Aj-2: AJ-2 (aj-1)
Aj-3: AJ-3 (aj-1)
Aj-1: AJ-1 (aj-2, aj-3)

Based on the above codes, aj-1, aj-2 and aj-3 are
state variables and used as arguments modules AJ-

AJ-2 and AJ-3.

From CM to PRISM: We use Rule 5 to Rule 8 to
translate CM to the input language of PRISM. Byngsi
Rule 5, level, L in CM is mapped to modules in
PRISM. Modules in PRISM are coded below:

module AJ-2

endmodule
module AJ-3
endmodule

module AJ-1

endmodule

Rule 6 is about state variable. Similar to SM\dfes$
and triggers are mapped to state variables in PRI
state variable for each module is coded below:

Module AJ_2
AJ_2_state:[0..1] init Open;
AJ_2 trigger3:[0..1] init close;

endmodule

Module AJ_3
AJ_3_state:[0..1] init levell;
AJ_3_trigger3:[0..1] init up;

endmodule

Module AJ_1.:
AJ_1 state:[0..2] init onl;

105

Module AJ_2:

[1 (AJ_2_state = Open) -> (AJ_2_state' = Close );
[1 (AJ_2_trigger3=close )->(AJ_2_state' =Close );
[1 (AJ_2_state = Close ) ->(AJ_2_state' = Open );
[ (AJ_2_trigger3=open )->(AJ_2_state' = Open);
1, endmodule

Module AJ-3:

[1(AJ_3_state= Levell ) -> (AJ_3_state' =Level2);
[1(AJ_3_trigger3=up ) -> (AJ_3 _state' = Level2);
[I( AJ_3_state = Level2)-> (AJ_3_state' =Levell);
[1(AJ_3_trigger3=down )->(AJ_3 state' = Levell);
endmodule

Module AJ_1.:

[J(AJ_1_state = free)->(AJ_1_state' = Onl);
[I(AJ_1_trigger5=closecmd)->(AJ_1_state'=0n1l);
[I(AJ_1_state = Onl) -> (AJ_1_state' = free );
[I(AJ_1_trigger5=opencmd)->(AJ_1_state' =free);
[J(AJ_1_state = On2)->(AJ_1_state' = Onl);
[I(AJ_1_trigger6=downcmd)->(AJ_1 state'=Onl);
[I(AJ_1_state =On1)->(AJ_1_state' = On2);
[I(AJ_1_trigger6 = upcmd )->(AJ_1_state' = On2);
endmodule

Based on the above codes, the commands are
executed with or without triggers.

Lastly is the synchronization between modules.
Based on Rule 8, relation between levels of hiénais
used to map the synchronization in the PRISM input
language. Since AJ-2 and AJ-3 is alternately
synchronized with AJ-1, the synchronization of
modules is coded below:

system
((AJ_2]] AJ_3) || AJ_1)
endsystem
DISCUSSION

The study describes the proposed common



J. Computer Sci., 8 (1): 99-106, 2012

modeling language. CM for model checkers togetheBerard, B., M. Bidoit, A. Finkel and F. Laroussirgée
with a set of rules for translating from the langeanto al., 2010. Systems and Software Verification:
the input language of two model checkers SMV and  Model-checking Techniques and Tools. 1st Edn.,
PRISM. The result of of the case study shows that  Springer Publishing Company, Incorporated,
the proposed method for translating the model ISBN: 3642074782, pp: 196.
described in CM into the input languages of SMV Clarke, E.M., 1997. Model Checking. Lec. Notes
and PRISM is feasible. Comput. Sci., 1346: 54-56. DOI:
One of the property of the system can be  10.1007/BFb0058022
described as follows: When the cabin arrives at th&ong, W., J. Wang, X. Qi and Z. Qi, 2001. Model
requested floor, the door is opened. Checking QML Stgtechart. IEEE Proceeding of the
We have model checked the SMV codes obtained ~ 8th  Asia-Pacific = Software  Engineering
from the translation process together with thevab gﬁnferenc%%l? el%Bﬁ-?é ;IEESE 128?2”“ Society,
property by using SMV model checker. The INa, p- 563. " K '

L ~ Harel, D., 1987. Statecharts: A visual formalismm fo
verification result shows that the above propedy i complex system. J. Sci. Compt. Program., 8: 231-

satisfied TRUE. The number of BDD nodes is 74 and 273. DO|Z10.1016/0167-6423(87)90035-9

model checking time is 0.015 second whereagjolzmann, G.J., 2004. The SPIN Model Checker:
verification time by the system is 0.01 second. The  Primer and Reference Manual. 1st Edn., Addison-
number of transition relation is 12. A similar Wesley, Boston, ISBN: 0321228626, pp: 596.

verification process was done for PRISM. Lam, V.S.W. and J. Padget, 2004. Symbolic model
checking of UML statechart diagrams with an
CONCLUSION integrated approach. Proceedings of the 11th IEEE

International Conference and Workshop on the
This study describes a common modeling language  Engineering of Computer-Based System, May 24-
for model checkers. This language relies on UML 27, IEEE Xploor, USA., pp: 337-346. DOL:
statechart features with some extension such astabe 10-1109/ECBS-2004-_1316717 i
hierarchy and inter-relation transition. We havsoal Latella, D. and M. Massink, 2001. A forma_l testing
proposed translation rules for mapping the model Lrame\(vork. for - UML statecharfc d"_’*gfams
described in the common modeling language into the ehaviours: From theory to automatic verification.

) Proceedings of the 6th IEEE International
input language of SMV and PRISM model checkers. Symposium on High-Assurance System

The feasibility of the proposed method has been  Epgineering Symposium, (HISES’ 01), IEEE

demonstrated by using a case study. Xploor, Boco Raton, pp: 11-12. DOI:
Currently, we are in the process of carrying oud t 10.1109/HASE.2001.966803

more activities in order to enhance our proposedMarta, K., 2003. Model checking for probability and

method. The first activity is to expand the promgbse Time: From theory to practice. Proceedings 18th

method to include two more model checkers: SPIN and  |EEE Symposium on Logic in Computer Science,
UPPAAL. The second activity is to develop a softvar June 22-25, IEEE Computer Society, Ottawa,

tool that can help users to translate the modedritesi M M(':IﬁnadI?’Lpp:lggsla. IgBN: 0';695'3884}12 MV, 1
in the common modeling language into the input chrfian, ®.L., - Getting Started wit - 1st

lanauages of model checkers Edn. Cadence Berkeley Labs, USA., pp: 1-90.
guag ) Sara, V.L. and H. Albert, 2007. $\.: System

REFERENCES verification through logic tool support for verifig
sliced hierarchical statecharts. LNCS, 4409: 142-
Bengtsson, J., K. Larsen, F. Larsson, P. Petterasdn 155. DOI: 10.1007/978-3-540-719889
W. Yi, 1996. UPPAAL- A tool suite for automatic Von der Beeck, M., 2001. Formalization of UML-
verification of real-time systems. Hybrid Syst., IlI statecharts. Lec. Notes Comput. Sci., 2185: 406-
1066: 232-243. DOI: 10.1007/BFb0020949 421. DOI: 10.1007/3-540-45441-1_30

106



