
Journal of Computer Science 8 (1): 99-106, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Pathiah Abdul Samat, Faculty of Computer Science and Information Technology,
 University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

99

Common Modeling Language for Model Checkers

1Pathiah Abdul Samat and 2Abdullah Mohd Zin

1Faculty of Computer Science and Information Technology,
University Putra Malaysia, Serdang

2Faculty of Technology and Information Science,
University Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia

Abstract: Problem statement: There are many different model checkers that have been developed.
Each of the model checkers is based on different input languages and they are suitable for model
checking different types of systems. Thus it is important for us to choose the right model checker or
modeling and verifying a given system. However, moving from one model checker to another is not an
easy task since we have to deal with different input languages. Approach: In order to solve the
problem we propose a common modeling language that is based on UML state chart. Some translation
rules for translating the model described in the common modeling language into the input languages of
model checkers are also presented. Results: The result of the case study shows that our approach has
been successfully applied in modeling the control system through the process of transformation and
translation. Conclusion: Common modeling language can be used as a front end to help users to
properly model a system before it is translated into input language of model checkers.

Key words: Model checking, UML state chart, Computational Tree Logic (CTL), Linear Temporal Logic

(LTL), Probabilistic Computation Tree Logic (PCTL)

INTRODUCTION

 Model checking is an automatic technique for
checking properties of software and hardware systems
(Clarke, 1997; Berard et al., 2010). There are several
steps in using model checker. The first step is to specify
the properties of the system to be checked. These
properties are written in the form of temporal logic
statements. The second step is to construct a formal
model by using the input language of the model
checker. The verification process is then carried out by
the model checker. Once verification process is
completed, the system will produce either true if model
satisfied the property, or false if it does not. Most model
checkers will also produce a counterexample if the
property is not satisfied by the model. This
counterexample is a state sequence that violates the
model of the system. This implies that, a model checker
will check whether a model satisfies a given property
by exploring all possible behaviors of the system.
 There are many model checking systems that have
been developed, for SMV (McMillan, 1999),
UPPAAL (Bengtsson et al., 1996), SPIN
(Holzmann, 2004) and PRISM (Marta, 2003). All

model checkers have their own input languages for
modeling the system and for describing properties of
system. The SMV language, for example, is based on a
finite state transition relational model. Properties of the
model to be verified are specified in a temporal logic,
known as Computational Tree Logic (CTL). SPIN
accepts design specifications written in the verification
language Promela and it accepts correctness claims
specified in the syntax of standard Linear Temporal
Logic (LTL). UPPAAL provides system validation and
verification of real-time system. Systems to be verified
can be represented with a collection of timed automata.
PRISM known as probabilistic model checking is an
automatic procedure for establishing if a desired
property holds in a probabilistic system model.
Properties to be checked against the constructed model
are specified using temporal logic Probabilistic
Computation Tree Logic (PCTL).
 Model checkers are developed for modeling
different types of systems. Therefore, one model
checker may be more suitable for modeling a certain
type of system compared to other model checkers. For
example, SPIN is more suitable for modeling and
verifying distributed systems, while PRISM is

J. Computer Sci., 8 (1): 99-106, 2012

100

specifically designed for probabilistic systems. Thus, it
is important for users to choose the right model checker
for modeling and verifying a specific system.
 However, moving from one model checker to
another is not an easy task. We need to translate the
formal model of a system into the language of the model
checker that we are using. Our previous study (Pathiah
and Zin, 2010; Pathiah and Zin, 2011) shows that
translating a formal model into the language of a model
checker can be very challenging. First and foremost, we
need to understand different types of notation and
symbols of the input languages. Formalizing the
properties is also difficult since different model checkers
use different types of temporal logic.
 In order to solve the problem, we propose a
Common Modeling language (CM) for model checkers.
A method for translating a model described in CM into
a specific model checker is also proposed. Therefore, a
user can describe the model of the system by using CM.
He can then use the proposed translation method to
translate the CM model into the language of the
selected model checker. Thus, by using this approach a
user can use the most suitable model checker for
modeling and verifying a system. Since statechart
diagram is considered to be one of the most popular
graphical representations of a system, our proposed CM
is based on the statechart diagram.

Related works: A few studies related to model checking
and statechart are available. One of the study focuses on
translating UML statechart to Extended Hierarchical
Automata or EHA, (Dong et al., 2001; Sara et al., 2007)
EHA which was proposed by Holzmann (2004) is
actively used as an intermediate format to map the UML
statechart to finite state machine system such as Labeled
Transition System (LTS), Kripke Structure and many
others. The main theoretical work behind the EHA is its
formal operational semantics which precisely describe
the semantics of UML statechart. The advantage of EHA
is that its operational semantics is formally described to
avoid misinterpretation.
 Another related study is about translating π-calculus
to the input languages of model checkers (Latella and
Massink, 2001; Lam and Padget, 2004). π-calculus plays
an important role as an intermediate representation
between UML statechart and the input languages of
model checkers. One of the advantages of this
representation is that its formulizations are capable of
providing various types of well-defined behavioral
equivalences of statechart diagram.

MATERIALS AND METHODS

Description of statechart: A statechart diagram is a
graphical state based notation for representing a system.
Using a statechart for modeling a system can reduce the
number of states needed to represent a system and
therefore make it easier to be understood.
 Many variations of statecharts are available and one of
the most popular is the UML statechart. A UML statechart
(Von der Beeck, 2001; Harel, 1987) is a complete
graphical characterization of all the desired behaviors of an
object during its lifecycle. To be more precise, a statechart
conveys how an object behaves through time as a result of
its reaction to events from the rest of the universe.
 A UML statechart consists of states and transitions.
A state describes a situation where an object satisfies
some condition, performs some activities, or waits for
some events. States can be classified as follows:

• A simple state is a state not composed of any sub

states
• An OR state is composed to AND/OR states. If OR

state is active, only one of its sub states is active
• An AND state is composed of several concurrent

regions such as OR states graphically separated by
dotted lines. If an AND state is active, all its
regions are active

• The root state is state at the outermost level of the
statecraft diagram, but is always drawn explicitly

 An active configuration is a maximal collection of
active states. A transition is purposely to specify when
and to which states the object can change. A simple
transition indicates that the system may change its state
and perform a sequence of actions when a specified
event occurs and a specified guard condition is
satisfied. Such transition represents a direct relationship
between a source state vertex and a target state vertex.

Proposed method: We propose a common modeling
language that is based on basic features of UML
statechart. Since a system can normally be decomposed
into a number of hierarchical sub-systems, our proposed
common modeling language is obtained by extending
the statechart to include hierarchical and inter-relation
between state hierarchies.

Definition 1: Formally, common modeling language is
defined as:

CM = <S, S0, Sc, G, T, L, R, Root>

Where:
S = finite set of states, where each state, s is declared

as one of the two state types: {AND, OR}

J. Computer Sci., 8 (1): 99-106, 2012

101

S0 = Set of initial states (S0 ⊆ S). S0 forms a valid
initial transition relation

Sc = Set of states that forms a valid state configuration
G = Finite set of triggers
T = Finite set of transition relation, T = S×G×S’
L = S→S is the state level function. If s’⊆ L(s), then

s` is an immediate descendant of s. The function
of L describes a hierarchical state of the model

R = Relation between one levels to another

 There are two types of CM states: AND and OR.
AND state is a state that is used for modeling the
concurrency by composing several simultaneously
active sub CM. The AND state is a parent state to sub
CM state machine that are concurrently active. The sub
CM may interact with each other via triggers which are
generated by other active components of the CM. The
descendants of an AND state must always be OR states.
An OR state is a state that supports one of state inside
another state to provide hierarchy in the model. An OR
state has sub-states that are related to each other by an
exclusive-OR relationship. The leaf states of a CM
must always be OR states. A CM, at any time, may
have multiple active states which are known as a state
configuration. A state configuration always contains
one sub-state for each OR state and all sub-states for
each AND state.
 Consider the statechart model in Fig. 1. The CM
hierarchical structure graph of statechart model in Fig.
1 is shown in Fig. 2.
 The operation of a CM is described by using step
semantics. The state configuration of CM always
starts with an AND state. If the current state
configuration contains more than one AND state, all
of sub CM of the AND states will take place at the
same time. For example, the state configuration for
the Fig. 2 might be (B, F, H) or (B, G, I). In CM, a
transition will always occur at each step in each
active state configuration. If no explicitly modeled
transitions are enabled, then an implicit transition
will be fired. The synchronization of CMs allows it
to be “flattened” into sequential automata preserving
the model semantics. Each of single flatten CM is
equivalent to a finite automata.
 The single flatten component of the hierarchy
structure graph is defined as CMs = <S, So,G,T> where
S is a finite set of state, So is initial state, G is a finite
set of triggers and T is the transitions. For example,
CMs for Fig. 2 are:

Fig. 1: Statechart model

Fig. 2: Example of common modeling language

hierarchy structure graph

 A(CM-1) = ({A,B},B,{E1,E2},{(A,E1,B),(B,E2,A)})
 A(CM-2) = ({F,G},F,{E3,E4},{(F,E3,G),(G,E4,F)})
 A(CM-3) = ({H,I},H,{E5,E6},{(H, E5,I),(I,E6,H)}).

 An active CM interacts through events. An event
may trigger a transition to occur in synchronous
components of the system in the following step. If an
event trigger a transition from a state, s and the result of
the transition is sub CM then the state, s is called as
super state. As an example, B is super state of CM-2
and CM-3. These situations create inter-level transition.
Inter-level transition cross state hierarchy boundaries. If
a transition is leaving a super state, s, then the firing of
all transitions contained the sub hierarchy of s is
suppressed which is represented as dotted line in Fig. 2.
This creates the relation, R between super state s and
sub hierarchy and vice versa depending on the message
received. At the same time, the level, L is created. The
number given to the level is based on the priority
leaving the super state. The example of level, L are
CM-1, CM-2 and CM-3 where CM-1 is top level and
CM-2 and CM-3 is sub level of CM-1. The Relation, R
between levels is said as follows:

J. Computer Sci., 8 (1): 99-106, 2012

102

 CM-1: receive message from CM-2 and CM-3
 CM-2: receive message from CM-1
 CM-3: receive message from CM-1

Translation from CM to I-SMV: To describe the
translation of CM to input language of SMV, we first
need to define I-SMV, the SMV input language.

Definition 2: Let I-SMV be the input language of SMV
that consists of four tuples:

<M, V, N, Y>

Where:
M = Set of finite modules
V = Set of finite state variables
N = Set of next states
Y = Relation between one module to another

 As the input language for SMV, I-SMV, is
modular. The high level module is called as a module
main. The other modules are called sub modules. In a
module, M, there are state variables, V to describe the
module. A state evolves from one state to another
through a next operator, N. The relation, Y, between
one module to another is described by using a set of
parameter. The translation from CM to I-SMV is
represented by a set of rules.

Rules from CM to I-SMV: In I-SMV, the level, L of CM
corresponds to the module, M. The set of states, S and
triggers, G correspond to the state variables, V. The
transition, T corresponds to the next state, N. Lastly, the
relation between levels, R corresponds to the relation
between modules, Y. In this study, there are four rules for
mapping CM to I-SMV. The rules are defined as follows:

Rule 1(module): Let Lev is the set of levels in CM.
Each Levi ∈ Lev is modeled as module declaration in I-
SMV as follows:

 Module Levi(argi,…,arg i+1)

 If Levi ∈ Lev does not exist, then the execution
must be terminated. In I-SMV, argi is reference to the
actual parameter of a module in the main module.

Rule 2 (Variable): Let St be the set of states and Gr is
the set of triggers in CM. Sti ∈ St is declared inside a
module as follows:

 Sti : s1..s n+1; if St is integer type
 Sti: {s1,..,sn}; if St is enumerated type
 Sti: {}; if St is boolean type

Gri∈ Gr is declared inside a module as follows:

 Gri : g1..gn+1; if Gr is integer type
 Gri: {g1,..,gn}; if Gr is enumerated type
 Gri: {}; if Gr is boolean type

 Rule 2 is used, if and only if the represented
module exists and either St≠{} or Gr≠{}.

Rule 3 (state change): Let Tr be the set of transitions.
In CM, the state changes might occur with or without
a trigger, Gr. This implies that the state changes is
between the source state, Ss and target state, St with
or without trigger. The state changes in I-SMV are
defined as follows:

 next (St):=
 case{
 Tri: St; if gr ∈ Gr, Gr ≠ {}
 Trj: Ss; if gr ∈ Gr, Gr = {}
 default: St;
 };

 The first statement defines the state changes caused by
triggered transitions while the second statement defines the
state changes caused by null-triggered transitions.

Rule 4 (Relation between modules): Let Ra, Rb, be
state variables for Leva and Levb. Let Rc and Rd be state
variables for Levcg. The relation between those levels is
defined as follows:

 Module main()
 St-Levc: Levc(St-Leva .Ra, St-Levb .Rb);
 St-Leva: Leva(St-Levc.Rc);
 St-Levb: Levb(St-Levc.Rd);

 St-Levc , St-Leva , St-Levb are state variables in the
main module. In I-SMV the arguments to a module is
defined by state variable of destination message followed
by state variable of source destination message.

Translation from CM to I-PRISM: The translation
process follows the same approach as SMV. First, we
need to define I-PRISM, the input language for PRISM.

Definition 3: I-PRISM is the input language of PRISM,
which consists of four tuples:

<P, Q, H, C>

Where:
P = Set of finite modules,
Q = Set of finite state variables
H = Set of commands
C = Relation between one module to another

J. Computer Sci., 8 (1): 99-106, 2012

103

 I-PRISM is also modular. However, a module, P is
not allowed to produce a sub-module. Therefore, all of
the modules are in the same level of hierarchy. In a
module, there are state variables, Q which is used to
model a module of a system. The state changes are
described by a set of commands, H. The relation, C
from one module to another is stated by synchronizer
called as system .. endsystem construct.

Rules from CM to I-PRISM: In I-PRISM, the level, L
of CM corresponds to the module, Lv. The set of states,
S and triggers, G corresponds to the state variables, Vr
and Er. The transition, T corresponds to the command,
Sr. Lastly, the relation between levels, R corresponds to
the relation between modules, Lvi. The proposed rules
for the mapping are as follows:

Rule 5 (module..endmodule): Let Lv be the set of
level, L in CM. Each Lvi ∈ Lv is modeled as module
declaration as follows:

 module Lvi
 ….
 endmodule

If Lv i ∈ Lv does not exist, the translation process is
terminated.

Rule 6 (state variable): Let Vr be the set of states, S
and Er is the set of triggers G in CM. Both of Vri∈Vr
and Eri ∈ Er are declared within a module as variable
declaration as follows:

 Vri : [0..n+1] init 0; Vr is integer type
 Eri : [0..n+1] init 0; Er is integer type

 In our case, n is an integer value starting from 0 to a
large prime number. In I-PRISM, init is the
initialization which automatically assigns the value of
variables to 0.

Rule 7 (commands): Let Sr be the set of transitions T.
In CM, the state changes might occur with or without a
trigger ir. This implies that, the state change is between
source state, ss and target state, st with or without
trigger. In I-PRISM, the state changes are represented
as a command, Sr which is defined as follows:

 Sr is either:
 [] Vri = ss and Eri=ir : Vri`=st; if Eri ≠ 0
 or:
 [] Vri = ss: Vri`=st; if Eri =0

 The first statement defines the state changes caused by
triggered transitions while the second statement defines the
state changes caused by null-triggered transitions.

Rule 8 (synchronization): Let Lva, Lvb, Lvc are levels
in CM.. Suppose Lvb and Lvc have relation, R with Lva,
then we said both of Lvb and Lvc can be synchronized
with Lva. In I-PRISM, the synchronization of Lva, Lvb,
Lvc are defined as follows:

 system
 ((Lvb ||| Lvc) || Lva)
 endsystem

 The symbol ||| implies that Lvb and Lvc are
alternately synchronized with Lva. We assume
synchronization is the same as relation between
modules in SMV.

RESULTS

 The translation from CM to input language of model
checkers starts by modeling the behavior of a system into
a statechart diagram. In this example, an elevator system
which was previously modeled and verified using four
model checkers is chosen for modeling and
translation process. Fig. 3 shows the UML statechart
diagram for an elevator system.
 As shown in Fig. 3, there is only one AND state
(On1) and two OR state (Open/Close and
Level1/Level2). There are only two basic states (On2
and free) and this model has only two regions, the first
one is shown as dotted line in On1 state and the other is
the outermost. The flatten CM of the elevator system is
shown in Fig. 4.

Fig. 3: Statechart model of elevator system

J. Computer Sci., 8 (1): 99-106, 2012

104

Fig. 4: The flatten CM of the elevator system

 Based on the Fig. 4, each flatten CMs=(S, S0, G, T)
is obtained as follows:

 CMs(AJ-1) = ({free, On1,On2},On1,
 {opencmd,closecmd,upcmd,downcmd},
 {(On1,opencmd,free),(free,closecmd,On1),
 (On1,upcmd,On2), (On2,downcmd,On1)})

 CMs(AJ-2)=({Open,Close},Open,{open,close},
 {(Open,close, Close),(Close,open,Open)})

 CMs(AJ-3) = ({Level1,Level2},Level1,{up,down},
 {(Level1,up,Level1),(Level2,down,Level1)})

 The relation, R between CMs is obtained as
follows: For:

 AJ-1: receive message from AJ-2 and AJ-3
 AJ-2: receive message from AJ-1
 AJ-3: receive message from AJ-1

 We use the rules for translating the CM of the
elevator system into the input language of SMV and
PRISM.

From CM to SMV: By using Rule 1, each level in CM
is translated into a module in SMV input language.
Each module name is followed by a list of arguments,
argi in I-SMV. So in this example, there are three
modules which are stated as AJ-1, AJ-2 and AJ-3. The
arguments are created based on relation, R in Rule 4 of
the modules.

 Module AJ-2(aj-1)
 Module AJ-3(aj-1)
 Module AJ-1(aj-2, aj-3)

 Rule 2 is regarding the variables declared in each
module. All the states, S and triggers, Gr in CM are
translated as follow:

Module AJ-2(aj-1)
VAR
 state: {Open, Close};
 trigger2: {close, open};

Module AJ-3(aj-1)
VAR
 state: {Level1, Level2};
 trigger3: {up, down};

Module AJ-1(aj-2, aj-3)
VAR
 state: {On1, free, On2};
 trigger5: {closecmd, opencmd};
 trigger6: {downcmd, upcmd};

 The transition, T which is stated in Rule 3 is
translated to next state in SMV. In SMV, transition for
each level is written as follow:

 Module AJ-3(aj-1)
 …..
 next (state) := case
 ((state = level 2) and (aj_1.trigger6 = downcmd)):
 level1;
 ((state = level1) and (aj_1.trigger6 = upcmd)):
 level2;
 1: state;
 esac;

 Module AJ-2(aj-1)
 ……
 next (state) := case
 ((state = open) and (aj_1.trigger5 = closecmd)):
 Close;
 ((state = Close) and (aj_1.trigger5 = opencmd)):
 Open;
 1: state;
 esac;

 Module AJ_1(aj_2, aj_3):
 …….
 next (state) := case

 (((state = free) and (trigger5 = closecmd)) |
 ((state = On2) and (trigger6 = downcmd))): On1;

 ((state = On1) and (trigger5 = opencmd)) : free;
 ((state = On1) and (trigger6 = upcmd)) : On2;
 1: state;
 esac;

J. Computer Sci., 8 (1): 99-106, 2012

105

 Relation between levels which is stated in Rule 4 is
translated into module main. Based on Rule 4, the state
variables of Module main are defined as a call module
for corresponding level. The argument in each call
module is state variable of source state followed by its
message passing. The following codes describe relation
between levels:

 Module main:
 VAR
 Aj-2: AJ-2 (aj-1)
 Aj-3: AJ-3 (aj-1)
 Aj-1: AJ-1 (aj-2, aj-3)

 Based on the above codes, aj-1, aj-2 and aj-3 are
state variables and used as arguments modules AJ-1,
AJ-2 and AJ-3.

From CM to PRISM: We use Rule 5 to Rule 8 to
translate CM to the input language of PRISM. By using
Rule 5, level, L in CM is mapped to modules in
PRISM. Modules in PRISM are coded below:

module AJ-2
…..
endmodule

module AJ-3
….
endmodule

module AJ-1
………….
endmodule

 Rule 6 is about state variable. Similar to SMV, states
and triggers are mapped to state variables in PRISM. The
state variable for each module is coded below:

Module AJ_2
AJ_2_state:[0..1] init Open;
AJ_2_trigger3:[0..1] init close;
….
endmodule

Module AJ_3
AJ_3_state:[0..1] init level1;
AJ_3_trigger3:[0..1] init up;
….
endmodule

Module AJ_1:
AJ_1_state:[0..2] init on1;

AJ_1_trigger5:[0..1] init closecmd;
AJ_1_trigger6:[0..1] init downcmd;
………….
endmodule

 Rule 7 is about a command. Each transition is
mapped to a command in the PRISM input language.
The commands in each module are coded below:

 Module AJ_2:
 ….
 [] (AJ_2_state = Open) -> (AJ_2_state' = Close);
 [] (AJ_2_trigger3=close)->(AJ_2_state' =Close);
 [] (AJ_2_state = Close) ->(AJ_2_state' = Open);
 [] (AJ_2_trigger3=open)->(AJ_2_state' = Open);
 endmodule

 Module AJ-3:
 ….
 [](AJ_3_state= Level1) -> (AJ_3_state' =Level2);
 [](AJ_3_trigger3= up) -> (AJ_3_state' = Level2);
 [](AJ_3_state = Level2)-> (AJ_3_state' =Level1);
 [](AJ_3_trigger3=down)->(AJ_3_state' = Level1);
 endmodule

 Module AJ_1:
 ………
 [](AJ_1_state = free)->(AJ_1_state' = On1);
 [](AJ_1_trigger5=closecmd)->(AJ_1_state'=On1);
 [](AJ_1_state = On1) -> (AJ_1_state' = free);
 [](AJ_1_trigger5=opencmd)->(AJ_1_state' =free);
 [](AJ_1_state = On2)->(AJ_1_state' = On1);
 [](AJ_1_trigger6=downcmd)->(AJ_1_state'=On1);
 [](AJ_1_state =On1)->(AJ_1_state' = On2);
 [](AJ_1_trigger6 = upcmd)->(AJ_1_state' = On2);
 endmodule

 Based on the above codes, the commands are
executed with or without triggers.
 Lastly is the synchronization between modules.
Based on Rule 8, relation between levels of hierarchy is
used to map the synchronization in the PRISM input
language. Since AJ-2 and AJ-3 is alternately
synchronized with AJ-1, the synchronization of
modules is coded below:

system
 ((AJ_2 ||| AJ_3) || AJ_1)
endsystem

DISCUSSION

 The study describes the proposed common

J. Computer Sci., 8 (1): 99-106, 2012

106

modeling language. CM for model checkers together
with a set of rules for translating from the language into
the input language of two model checkers SMV and
PRISM. The result of of the case study shows that
the proposed method for translating the model
described in CM into the input languages of SMV
and PRISM is feasible.

One of the property of the system can be
described as follows: When the cabin arrives at the
requested floor, the door is opened.

We have model checked the SMV codes obtained
from the translation process together with the above
property by using SMV model checker. The
verification result shows that the above property is
satisfied TRUE. The number of BDD nodes is 74 and
model checking time is 0.015 second whereas
verification time by the system is 0.01 second. The
number of transition relation is 12. A similar
verification process was done for PRISM.

CONCLUSION

 This study describes a common modeling language
for model checkers. This language relies on UML
statechart features with some extension such as the state
hierarchy and inter-relation transition. We have also
proposed translation rules for mapping the model
described in the common modeling language into the
input language of SMV and PRISM model checkers.
The feasibility of the proposed method has been
demonstrated by using a case study.
 Currently, we are in the process of carrying out two
more activities in order to enhance our proposed
method. The first activity is to expand the proposed
method to include two more model checkers: SPIN and
UPPAAL. The second activity is to develop a software
tool that can help users to translate the model described
in the common modeling language into the input
languages of model checkers.

REFERENCES

Bengtsson, J., K. Larsen, F. Larsson, P. Pettersson and

W. Yi, 1996. UPPAAL- A tool suite for automatic
verification of real-time systems. Hybrid Syst. III,
1066: 232-243. DOI: 10.1007/BFb0020949

Berard, B., M. Bidoit, A. Finkel and F. Laroussinie et
al., 2010. Systems and Software Verification:
Model-checking Techniques and Tools. 1st Edn.,
Springer Publishing Company, Incorporated,
ISBN: 3642074782, pp: 196.

Clarke, E.M., 1997. Model Checking. Lec. Notes
Comput. Sci., 1346: 54-56. DOI:
10.1007/BFb0058022

Dong, W., J. Wang, X. Qi and Z. Qi, 2001. Model
Checking UML Statechart. IEEE Proceeding of the
8th Asia-Pacific Software Engineering
Conference, Dec. 4-7, IEEE Computre Society,
China, pp: 363. ISBN: 0-7695-1408-1

Harel, D., 1987. Statecharts: A visual formalism for
complex system. J. Sci. Compt. Program., 8: 231-
273. DOI:10.1016/0167-6423(87)90035-9

Holzmann, G.J., 2004. The SPIN Model Checker:
Primer and Reference Manual. 1st Edn., Addison-
Wesley, Boston, ISBN: 0321228626, pp: 596.

Lam, V.S.W. and J. Padget, 2004. Symbolic model
checking of UML statechart diagrams with an
integrated approach. Proceedings of the 11th IEEE
International Conference and Workshop on the
Engineering of Computer-Based System, May 24-
27, IEEE Xploor, USA., pp: 337-346. DOI:
10.1109/ECBS.2004.1316717

Latella, D. and M. Massink, 2001. A formal testing
framework for UML statechart diagrams
behaviours: From theory to automatic verification.
Proceedings of the 6th IEEE International
Symposium on High-Assurance System
Engineering Symposium, (HISES’ 01), IEEE
Xploor, Boco Raton, pp: 11-12. DOI:
10.1109/HASE.2001.966803

Marta, K., 2003. Model checking for probability and
Time: From theory to practice. Proceedings 18th
IEEE Symposium on Logic in Computer Science,
June 22-25, IEEE Computer Society, Ottawa,
Canada, pp: 351. ISBN: 0-7695-1884-2

McMillan, K.L., 1999. Getting Started with SMV. 1st
Edn. Cadence Berkeley Labs, USA., pp: 1-90.

Sara, V.L. and H. Albert, 2007. SVt L: System
verification through logic tool support for verifying
sliced hierarchical statecharts. LNCS, 4409: 142-
155. DOI: 10.1007/978-3-540-71998-4-9

Von der Beeck, M., 2001. Formalization of UML-
statecharts. Lec. Notes Comput. Sci., 2185: 406-
421. DOI: 10.1007/3-540-45441-1_30

