
Journal of Computer Science 8 (2): 265-271, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Noriyani Mohd Zin, Faculty of Computer Systems and Software Engineering,
 University Malaysia Pahang, 26300 Kuantan, Malaysia

265

Solving Two Deadlock Cycles through

Neighbor Replication on Grid Deadlock Detection Model

1Noriyani Mohd Zin, 2A. Noraziah, 1Ahmed N. Abdalla, 2Ainul Azila CheFauzi
1Faculty of Computer Systems and Software Engineering,
University Malaysia Pahang, 26300 Kuantan, Malaysia
2Faculty of Electric and Electronic, University Malaysia

Pahang, 26300 Kuantan, Pahang, Malaysia

Abstract: A data grid is compose of hundreds of geographically distributed computers and storage
resources usually locate under different places and enables users to share data and other resources.
Problem statement: Data replication is one of the mechanisms in managing data grid architecture that
receive particular attention since it can provide efficient access to data, fault tolerance, reduce access
latency and also can enhance the performance of the system. However, during transaction deadlock
may occur that can reduce the throughput by minimizing the available resources, so it becomes an
important resource management problem in distributed systems. Approach: The Neighbor Replication
on Grid Deadlock Detection (NRGDD) transaction model has been developed to handle two deadlock
cycle problems on grid. By deploying this method, the transactions communicate with each other by
passing the probe messages. The victim message has been used to detect the deadlock when the
number of waiting resource by other transaction is highest and become as the cause of deadlock
occurs. In addition, this transaction must be aborted to solve the problem. Results: NRGDD
transaction model are able to detect and solve more than one cycle of deadlocks. Conclusion: NRGDD
has resolve the deadlock problem by sending the minimum number of probes message to detect the
deadlock and it can resolve the deadlock to ensure the transaction can be done smoothly.

Key words: Replication, Distributed system, NRGDD, Probe message, Deadlock cycles

INTRODUCTION

 Data grid (Muruganantham et al., 2010) is the
solutions that enable especially researcher to make their
research on their specific fields. The researcher can
know the latest issues that has been done by other
researcher according to their fields of research such as
method, technology, application and etc that has been
used in enhancing the research fields. The concept of
the computing grid arose from the need to share
computing power, mostly for the jobs that use read only
data sets as input (output from scientific experiments)
(Noraziah et al., 2009; Radi et al., 2008). Consequently,
the primary design of data management tools for grid
computing was used to manage read-only data sets. A
data grid is composed of hundreds of geographically
distributed computers and storage resources usually
located under different places and enables users to share
data and other resources. The required for data grids
because of the data is being produced at a tremendous
rate and volume especially from scientific experiments
in the fields of high-energy physics, molecular docking,
computer micro-tomography and many others (Ahmad
et al., 2010a; 2010b). The grid computing requirements

are more complex than distributed computing even
though it is quite similar to normal distributed
computing. Distributed computing refers to managing
hundreds or thousands of computer systems that are
individually more limited in their memory and
processing power (Sashi and Thanamani, 2010).
However, grid computing concentrates on the efficient
use of a pool of heterogeneous systems with optimal
workload management.
 The major problem on grid environment is data
management. In grid computing, there is no limitation
on the number of users, departments or organizations.
Besides that, the size of the data managed by data grids
is continuously growing (Perez et al., 2010). In Data
Grid, when a user requests a data, a large amount of
bandwidth could be spent to send the data from the
server to the client. Furthermore, the delay involved
could be high (Bsoul et al., 2010). Data grid not only
deals with efficient management but it is also deals with
the placement and replication of large amounts of data.
 Data replication (Sleit et al., 2007; Noraziah et al.,
2007) is one of the technique or key components in data
grid to increase availability and reliability of the data.
Besides that, replication method can increase the

J. Computer Sci., 8 (2): 265-271, 2012

266

system scalability, performance and fault tolerance
(Fauzi et al., 2011; Mohammed, 2007). To speed up
data access for data grid systems, data can be replicated
in multiple locations, so that a user can access the data
from nearby locations (Sashi and Thanamani, 2010).
Furthermore, replication can reduce access latency;
improve data locality, increase robustness, scalability
and performance for distributed applications (Radi et
al., 2008). Organizations need to provide current data to
users who may be geographically remote and request
distributed data around multiple sites in data grid
(Ahmad et al., 2010a). A data grid is composed of
hundreds of geographically distributed computers and
storage resources usually located under different places
and enables users to share data and other resources.
Replication strategies determine when and where to
create a replica, taking into account of the factors such
as request number of the data, network conditions,
storage availability of nodes, etc (Perez et al., 2010;
Sun et al., 2009).
 Read-One-Write-All (ROWA), Branch Replication
Scheme (BRS), Hierarchical Replication Scheme
(HRS) and Neighbor Replication on Grid (NRG) are the
example of existing replication techniques. In ROWA
technique (Noraziah et al., 2010) read operation has
low communication cost. Meanwhile, this technique
restricts the availability of write operations since they
cannot be executed at the failure of any copy. In BRS
technique (Perez et al., 2010), the clients that who
request for the data file, the replicas are created as close
as possible to them. The root replica grows toward the
clients in a branching way, slip replicas into several sub
replicas (Ahmad et al., 2010c; 2010d). In this
technique, the replica tree will be growing based on
the client needs. In HRS technique, a hierarchical
replication consists of a root database server and one
or more database servers organized into a hierarchy
topology (Perez et al., 2010). Using this technique, the
data will be replicated or copy at all sites and has the
highest storage of use. Neighbor Replication on Grid
(NRG) considers only neighbors obtain a data copy
where the neighbors are assigned with binary vote one
and zero otherwise (Ahmad et al., 2010c; 2010d).
NRG requires significantly lower communication cost
for an operation, while providing high system
availability, due to the minimum number of quorum
size required executing the transaction (Noraziah et
al., 2009).
 In replication, the concurrency control and
deadlock (Senouci et al., 2007, Mohammed, 2007)
handling is the most important problem that must have
manages when sharing any data in distributed systems.
The lock mechanism is use when the transaction make

request to get a data. If the data is available, the
transaction that make a request will get a lock for that
data, otherwise it will wait until the data is unlock or
released then it can be acquired again. In this situation,
a deadlock may occur in which every transaction
involve in the deadlock are waiting to grant the data
that has been lock by other transaction that make a
circular wait until an action is taken to detect and
resolve deadlock problems. Deadlock can reduce the
throughput by minimizing the available resources, so it
becomes an important resource management problem in
distributed systems (Srinivasan and Rajaram, 2011).
There are two major deficiencies in deadlock where any
other process cannot grant all the resources that held by
the deadlocked processes and the deadlock persistence
time will added to the reaction time of each process
involved in the deadlock.
 In this study, without lost of generality the terms
nodes is used to indicate as transaction for the
explanation. The new model namely Neighbor
Replication Grid Deadlock Detection (NRDGG) (Zin et
al., 2011b) is proposed to detect and solve the deadlock.
NRGDD model is formed by combining the Multi-
Cycle Deadlock Detection and Recovery (MC2DR)
algorithm (Razzaque et al., 2007) and Neighbor
Replication on Grid (NRG) replication model
(Noraziah et al., 2009). NRG has been proposed in
our previous work. NRG able to maximize the write
availability with low communication cost due to the
minimum number of quorum size required. However,
the study not discuss on how to resolve the deadlock
detection. The purpose of this research is to show
how the new algorithm can detect the existence of
real deadlock and resolve it through the NRG
replication model.

MATERIALS AND METHODS

 Deadlock occurs when different set of transaction
waiting for each other to obtain the same resource, thus
the transaction become stuck. This part describes NRG
Deadlock Detection (NRGDD) transaction model
which involves T as a transaction, D is the union of all
data object manages by all transaction T of NRG and x
represents one data object (or data file) in D to be
modified by an element of Tα, Tβ, Tγ, Tδ and Tθ.
Consider λ = α, β, γ, δ, θ where it represent different
group for the transaction T. Meanwhile, PM is a probe
message. It contain a set of probe messages where PM
= { InitID, VictimID, DepCnt, RouteString}. Table 1
shows the probe message details description.

J. Computer Sci., 8 (2): 265-271, 2012

267

Table 1: Probe message
Probe message Descriptions
InitID Contains the identity of initiator
 of the algorithm
VictimID A node or transaction that detects the
 deadlock sends the victim message to
 the node or transaction that cause of
 deadlock occurs. This node will be
 victimized for deadlock resolution.
DepCnt The number of successor represent as
 a node or transaction which is waiting
 for resource.
RouteString The node or transaction IDs visited
 by another node‘s (transaction’s)
 probe message in order.

Fig. 1: Different set of transaction request a different site

Define the following probe message:

a) NRG transaction elements Tα = {Tαx,PM |
PM=InitID, VictimID, DepCnt, RouteString}
where Tαx,PMis a probe message elements of
Tαtransaction.

b) NRG transaction elements Tβ = {Tβx,PM |
PM=InitID, VictimID, DepCnt, RouteString}
where Tβx,PMis a probe message elements of
Tβtransaction.

c) NRG transaction elements Tγ = {Tγx,PM |
PM=InitID, VictimID, DepCnt, RouteString}
where Tγx,PMis a probe message elements of
Tγtransaction.

d) NRG transaction elements Tδ = {Tδx,PM |
PM=InitID, VictimID, DepCnt, RouteString}
where Tδx,PMis a probe message elements of
Tδtransaction.

e) NRG transaction elements Tθ = {Tθx,PM |
PM=InitID, VictimID, DepCnt, RouteString}
where Tθx,PMis a probe message elements of
Tθtransaction.

Each node or transaction has a probe message
storage structure also known as ProbeS, at most one
probe message will be store on ProbeS at particular
time. The history of ProbeS is independent; when the
deadlock has been detected the probe message is erased
from ProbeS. Meanwhile, transaction Tλx,PM that detects
the deadlock send a victim message to the transaction
found to be victimized for the deadlock resolution.
Victim message will be used for deleting probes from
respective storage entries.

NRGDD transaction model consider different set
of transactions Tα, Tβ, Tγ, Tδ and Tθ. All elements Tα,
Tβ, Tγ, Tδ and Tθ may request data object x
simultaneously at any site of S(B) either at the same or
different site. Each set of transactions communicate
with each other by message passing. Each of them bring
the elements of probe message or PM where PM =
{ InitID, VictimID, DepCnt, RouteString}. At most one
probe message will be store in probe storage, ProbeS.

An illustration example: Let us illustrate the working
of new algorithm for detecting deadlock, through an
example.
 Consider the situation shown in Fig. 1. A different
set of transactions Tα, Tβ, Tγ, Tδ and Tθ request a lock
from a set of sited where S(Bx) = {A,B,C,D,E}. Each
site contain replicated of data x. If the transaction of
Tαx,PM get lock from site i Є S(Bx) and other transaction
will get lock from other site j Є S(Bx) | j ≠ i.
 Each sites i Є S(Bx) has its own Lock Manager
(LM) that process a request for a lock from the
transaction either the lock can be granted or not. The
lock is granted immediately when it is free otherwise;
the lock manager will send a reject message to the
requesting transaction or node ID, then inserts it into
the waiting list for the lock. Each node is uniquely
identified by its {site id: process id} pair and for the
simplicity of explanation a unique number has assigned
using integer numbers (0, 1, 2, 3, ..., n) to all transaction
or node. The transactions or nodes will create elements
of probe message (InitID, VictimID, DepCnt and
RouteString), Tλ = {T λx, PM | PM=InitID, VictimID,
DepCnt, RouteString}.

Implementation: In this phase, we present the
implementation of the system. The purpose of this
implementation is to illustrate that our system can
detect and resolve deadlock problems. This phase will
detect two existing cycle of deadlock, for the previous
research one cycle of deadlock has been detected (Zin
et al., 2011a). In implementation phase, based on the
NRG model we use a cluster with nine replication
servers that are logically connected to each other in the

J. Computer Sci., 8 (2): 265-271, 2012

268

form of two-dimensional 3×3 grid structure. Data
object e in this experiment represent the data object x in
NRGDD Transaction Model. Data e in site E will be
replicate to each site that adjacent with site E, which is
site B, D, F and H. Without lost of generality, five
different set of transaction Tα, Tβ, Tγ, Tδ and Tθ come to
update data e at replica B, D, E, F and H in the absence
of system failures shows in Fig. 2.

Without lost of generality assume that each
transaction as a node that brings the probe message.
Each node of transaction has its own node ID (0, 1, 2, 3,
4). Figure 3 shows that each transaction waiting for
each other to obtain the lock. Node 0, Tαe,PM(0,0,1,”0”) has
initiated the lock that waiting for another node, node 1.
Node 1, Tβe,PM(0,1,2,”01”) is waiting for node 2 and 3, node
3,Tγe,PM(0,1,2,”013”) is waiting for node 2 and node
2,Tδe,PM(0,1,2,”012”) is waiting for node 4,Tθe,PM(0,1,2,”0124”)
where it’s waiting for node 1.

Fig. 2: Different set of transaction request to update

data e at different sites

Fig. 3: Different set of transactions wait for each other

to update data e

In forwarding the probe message to other nodes,
a node must check the emptiness of its ProbeS first.
It will compare its own DepCnt value with probe’s
DepCnt value when its ProbeS is empty. If this
node’s DepCnt is higher, then probe’s VictimID and
DepCnt values are updated with this node’s ID and
DepCnt values respectively; otherwise the values are
kept intact. Before forwarding the probe message to
all successors (the node that it’s waiting) of this
node, probe’s RouteString field is updated by
appending this node’s ID at last of existing string
(i.e., concatenate operation). One copy of updated
probe message is saved in ProbeS of this node. For
example, in Fig. 3 node 0 has initiated execution and
send probe message (0,0,1,“0”) to its successor node
1. As node 1’s ProbeS is empty and DepCnt value is
2, it has updated the probe message, stored the
modified probe (0,1,2,“01”) in ProbeS and forwarded
to its successors 2 and 3. Nodes 2, 3 and 4 have updated
only the RouteS field of the probe message and
forwarded to their successors.

Deadlock is detected when RouteString of node 4,
Tθe,PM(0,1,2,”0124”) prefix with node 1, Tβe,PM(0,1,2,”01”) that
start with “01”. The probe message discards by the
node that has detected a deadlock. Deadlock cycle can
be detected at any node when the travelled path of
probe message makes a dependency cycle.

Deadlock is resolved by aborting at least one
node that involves in deadlock, hence other node can
get the lock that has been released. In resolving this,
the node with highest DepCnt value has selected as
the victim and its will sends a victim message to all
successors. If the detector node is not the initiator, it
also sends the victim message to all simply blocked
(node that is blocked but not a member of deadlock
cycle) nodes. On receiving of this message, the
victim node first send it to all of its successors or the
resources that is waiting for and then releases all
locks held by it and killed itself, other nodes delete
deadlock detection message from their ProbeS
memories.

 In Fig. 4 shows one deadlock cycle have
detected. Node 1 got back its forwarded probe and
detected one deadlock cycles {1, 2, 4, 1}.Meanwhile,
Fig. 5 shows the second deadlock cycle has detected.
Node 1 got back its forwarded probe and detected
one deadlock cycles {1, 3, 4, 1}.

Based on the Fig. 4 and Fig. 5, there are two
cycles of deadlock that send probe message to node 1.

J. Computer Sci., 8 (2): 265-271, 2012

269

Fig. 4: First cycle of the deadlock

Fig. 5: Second cycle of the deadlock

However, only one cycle will be detected as deadlock
cycle, if the probe message of deadlock cycle {1,2,4,1}
is receive first then from the node 3 is discarded or vice
versa. So, consider that Fig. 4 is the cycle of deadlock
that must be solve when the cycle in Fig. 5 has been
discarded. Node 1 has detected as a victim because it
has the highest DepCnt value amongst the members in
any of the cycles. And to resolve the deadlock
detection, node 1 as a victim killed itself or aborts the
lock and released it to another nodes. Node 1 is not the
initiator, so it has also sent the victim message to
simply blocked node 0. Nodes 4 stop further
propagation of victim message.

RESULT AND DISCUSSION

 In implementation, there are two cycles of deadlock
has been detected. However, only one cycle will be
solved and other cycle will discard. In the experiment
will consider that cycle in Fig. 4 is first receiving probe
message than Fig. 5. The Table 2 shows the result of the
two cycle deadlock that has been detected.

Table 2: Result for two deadlock cycles detection
Replica
Time B D F H
t1 unlock(e) unlock(e) unlock(e) unlock(e)
t2 Begin_tran Begin_tran Begin_tran Begin_tran
 saction saction saction saction
t3 Write Write Write Write
 lock(e), lock(e), lock(x), lock(x),
 counter _w counter _w counter _w counter _w
 =1 =1 =1 =1
t4 Wait Wait Wait wait
t5 Tβe,PM(0,1,2,” Tδe,PM(0,1,2,” Tγx,PM(0,1,2,” Tθx,PM(0,1,2,”

 01”) 012”) 013”) 0124”)
 Propagate lock:H Propagate
 lock: F lock: F
t6 Propagate Wait Wait
 lock: D
t7 Wait Propagate
 lock:H
t8 Propagate
 lock: B
t9 Receive Receive
 request request
 from H from D
 and
 propagate
 lock: B
t10 Receive
 2nd request
 from H

Table 3: Result for deadlock cycle resolution
Replica
Time B F H
t1 unlock(e) unlock(e) unlock(e)
t2 Begin_tran Begin_tran Begin_tran
 saction saction saction
t3 Write Write Write
 lock(e), lock(e), lock(e),
 counter _w counter _w counter _w
 =1 =1 =1
t4 Wait Wait wait
t5 Tβe,PM(0,1,1,” Tδe,PM(0,1,1,” Tγe,PM(0,1,1,”

 01”) 012”) 0123”)
 Propagate Propagate Propagate
 lock:FI lock: H lock: B
t6 Wait wait wait
t7
 Detect
 deadlock
 which is
 RouteString
 prefix with
 Tβe,PM(0,1,2,”01”)

 , send victim
 message:
 Tβe,PM(0,1,2,”01”)
t8 Receive
 Victim
 message Stop
t9 Propagate propagate
 victim victim
 message: message
t10 E, F Receive Receive
 victim victim
 message message
t11 abort or
 kill:
 Tβe,PM(0,1,2,”01”)
t12 Released: Wait to Release: H
 B lock H

J. Computer Sci., 8 (2): 265-271, 2012

270

 In Table 2 present that Fig. 4 will be solve and Fig. 5
will be discarded. At t9 the replica B receives requested
from replica H first after F requested for H then at t10
replica B receive request from H after D requested for H.
When cycle of the deadlock has been detected, the
resolve strategy will be applied. Table 3 shows the
results to resolve the deadlock cycle. At t5, node 4 from
replica H send probe message to B. Detect deadlock is
detected when RouteString from Tγe,PM(0, 1, 1, ”0123”) is
prefix with Tβe,PM (0, 1, 2, ”01”), which is “01”. Replica B
receive victim message from replica H and it will
propagate victim message to replica E and F and replica
F will stop propagate the victim message to other
replica. Then at time t11 the node 1, Tβe,PM(0, 1, 2, ”01”) will
be abort and killed. The lock at replica B will be
released at t12. Other node of transactions can request a
lock from replica B. Finally, the NRGDD can resolve
deadlock cycle after the cycle of deadlock has detected.

CONCLUSION

 Managing transaction in distributed databases is
important in order to ensure the transaction can occur
properly. The novel contribution of this study is a
mechanism to handle two deadlock cycles problem by
using Neighbor Replication on Grid Deadlock
Detection (NRGDD) transaction model. Normally, the
deadlock occurs when transaction in different set of
transactions request the same resources that obtain by
another transaction. NRGDD has resolve the deadlock
problem by sending the minimum number of probes
message to detect the deadlock and it can resolve the
deadlock to ensure the transaction can be done
smoothly.

REFERENCES

Ahmad, N., A.A.C. Fauzi, R.M. Sidek, N.M. Zin and

A.H. Beg, 2010a. Lowest Data Replication
Storage of Binary Vote Assignment Data Grid.
In: Networked Digital Technologies, Part II,
Zavoral F., (Eds.). Springer, ISBN: 3642143059,
pp: 466-473.

Ahmad, N., N.M. Zin, R. Mohd. S.M.F.J. Klaib and
M.H.A. Wahab, 2010b. Neighbour Replica
Transaction Failure Framework in Data Grid. In:
Networked Digital Technologies, Part II,
Zavoral F., (Eds.). Springer, ISBN: 3642143059,
pp: 488-495.

Ahmad, N., M.F.J. Klaib and R.M. Sidek, 2010c.
Failure semantic of neighbour replication grid
transaction model. Proceedings of the 10th IEEE
International Conference on Computer and
Information Technology June 29-July 1, IEEE
Xplore Press, Bradford, pp: 668-673. DOI:
10.1109/CIT.2010.132

Ahmad, N., A.N. Abdalla and R.M. Sidek, 2010d.Data
replication using read-one-write-all monitoring
synchronization transaction system in distributed
environment. J. Comput. Sc. 6: 1033-
1036.DOI:10.3844/jcssp.2010.1095.1098

Bsoul, M., A. Al-Khasawneh, E.E. Abdallah, Y. Kilani,
2010. Enhanced fast spread replication strategy for
data grid. J. Network Comput. Appli. 34: 575-580.
DOI: 10.1016/j.jnca.2010.12.006

Fauzi, A.A.C., A. Noraziah, N.M. Zain, A.H. Beg and
N. Khan et al., 2011. Handling fragmented
database replication through binary vote
assignment grid quorum. J. Comput. Sci., 7: 1338-
1342. DOI: 10.3844/jcssp.2011.1338.1342

Mohammed, T.S., 2007. Performance improvement and
deadlock prevention for a distributed fault
diagnosis algorithm. J. Comput. Sci. 3: 107-
112.DOI:10.3844/jcssp.2007.107.112

Muruganantham, S., P.K.Srivastha and Khanaa, 2010.
Object based middleware for grid computing. J.
Comput. Sci. 6: 336-340.
DOI:10.3844/jcssp.2010.336.340

Noraziah, A., M.M. Deris, M.Y.M. Saman, R.
Norhayati, M. Rabiei and W.N.W. Shuhadah,
2009. Managing transactions on grid-
neighbourreplication in distributed systems. Int. J.
Comput. Math., 86: 1624-1633. DOI:
10.1080/00207160801965198

Noraziah, A., M.M. Deris, N.A. Ahmed, M.Y.M.
Saman and R. Norhayati et al., 2007. Preserving
data consistency through neighbor replication on
grid daemon. Am. J. Applied Sci. 4: 751-758. DOI:
10.3844/ajassp.2007.751.758

Perez, J.M., F. García-Carballeira, J. Carretero, A.
Calderón and J. Fernández, 2010. Branch
replication scheme: A new model for data
replication in large scale data grids. Future
Generat. Comput. Syst., 26: 12-20. DOI:
10.1016/j.future.2009.05.015

Radi, M., A. Mamat, M.M. Deris, H. Ibrahim and S.
Shamala, 2008. Access weight replica consistency
protocol for large scale data grid. J. Comput. Sci. 4:
103-110.DOI:10.3844/jcssp.2008.103.110

Razzaque, M.A., M. Mamun-Or-Rashid and C.S. Hong,
2007. MC2DR: Multi-cycle deadlock detection and
recovery algorithm for distributed systems. High
Performance Comput. Commun., 4782: 554-
565.DOI: 10.1007/978-3-540-75444-2_53

J. Computer Sci., 8 (2): 265-271, 2012

271

Sashi, K. and A.S. Thanamani, 2010. Dynamic
replication in a data grid using a Modified BHR
Region Based Algorithm. Future Generat. Comput.
Syst. 27: 202-210. DOI:
10.1016/j.future.2010.08.011

Senouci, M., A. Liazid and D. Benhamamouch, 2007.
Towards an exclusion mutual tolerant algorithm to
failures. J. Comput. Sci. 3: 43-46.DOI:
10.3844/jcssp.2007.43.46

Sleit, A., W. AlMobaideen, S. Al-Areqi, A. Yahya,
2007. A dynamic object fragmentation and
replication algorithm in distributed database
systems. Am. J. Applied Sci. 4: 613-
618.DOI:10.3844/ajassp.2007.613.618

Srinivasan, S. and R. Rajaram, 2011. A decentralized
deadlock detection and resolution algorithm for
generalized model in distributed systems.
Distributed Parallel Databases, 29: 261-276. DOI
10.1007/s10619-011-7078-7

Sun, X., J. Zheng, Q. Liu and Y. Liu, 2009. Dynamic
data replication based on access cost in distributed
systems. Proceeding of the 4th International
Conference on Computer Sciences and
Convergence Information Technology, Nov. 24-26,
IEEE Xplore Press, Seoul, pp: 829-834.
DOI:10.1109/ICCIT.2009.198

Zin, N.M., A. Noraziah and A.A.C. Fauzi,
2011b.Neighbour replication on grid deadlock
detection framework. Digital Enterprise Inform.
Syst., 194: 350-357. DOI: 10.1007/978-3-642-
22603-8_32

Zin, N.M., A. Noraziah, A.H. Beg, A.A.C. Fauzi,
2011a. Deadlock Detection and Resolution in
Neighbour Replication on Grid. Proceedings of the
International Conference on Computer
Communication and Management, (CCM’2011),
IACST Press, Singapore, pp: 426-430.

