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Abstract: Problem statement: Traveling Salesman Problem (TSP) is a famous Nié peaoblem.
Many approaches have been proposed up to dateofdng TSP. We consider a TSP tour as a
dependent variable and its corresponding distas@andependent variable. If a predictive funttio
can be formulated from arbitrary sample tours,dpgmal tour may be predicted from this function.
Approach: In this study, a combined procedure of the NeaNmighbor (NN) method, Gaussian
Process Regression (GPR) and the iterated locallsesaproposed to solve a deterministic symmetric
TSP with a single salesman. The first tour in thengle is constructed by the nearest neighbor
algorithm and it is used to construct other towrshe random 2-exchange swap. These tours amd thei
total distances are training data for a Gaussiacgss regression model. A GPR solution is further
improved with the iterated 2-opt method. In themeuical experiments, our algorithm is tested on
many TSP instances and it is compared with the tBeAlorithm (GA) and the Simulated Annealing
(SA) algorithm. Results. The proposed method can find good TSP tours withimeasonable
computational time for a wide range of TSP tesbfmms. In some cases, it outperforms GA and SA.
Conclusion: Our proposed algorithm is promising for solving thSP.

Key words: Gaussian process regression, nearest neighbomteiter2-opt algorithm, genetic
algorithm, simulated annealing, traveling salesimaniblem

INTRODUCTION the cutting plane method (Dantzéy al., 1954) or the
branch and bound method (Littkt al., 1963). Other

The Traveling Salesman Problem (TSP) is one opeuristics and approximation algorithms include the
the most well-known NP-hard problems in the fiefd o nearest neighbor algorithm or the so-called gfe.edy
combinatorial optimization. The objective is todithe algor_lthm (BeI_Im_ore _and Nem_hauser, 19_68)' Lin-
shortest Hamiltonian cycle among cities, where the Kernighan heuristics (L_m_and Kernighan, 1973; gatm,
salesman visits each of the cities exactly once and 2000) and thé-opt heuristic (Helsgaun, 2009).
then returns to the starting city. Although its Moreover, many randomized approaches are
mathematical formulation is simple, the TSP isidifft Sho.Wf.‘ to perform well on the TSP, e.g., the anomyl
because it is combinatorial and the number of gt~ OPtimization (Dorigo and Gambardella, 1997)' tH@uta
increases exponentially with the number of cities. search (_Gendreaet aI.,. 1998), the genetic algorithm

TSP applications can be found in many ﬁelds(Chatterjeeet al., 1996; Moonet al., 2002),_the Cross
including job sequencing on a single machine off"trOPY methogh(_Boeztlal.,zg(())(?)S), thg" pﬁrt'd? vaarrg
assignment problems (Gilmore and Gomory, 1964)°Ptimization (Shiet al., ) and the simulate
material handling in a warehouse (Ratliff and annealing algorithm (Gerg al., 2011).

Rosenthal, 1983), genome rearrangement (Sankoff and o i

Blanchette, 1997), the drilling of printed circuiteards | "€ K€y contributions of this study: We propose an
(Duman and Or, 2004), transportation and Iogisticsalgor'th"?'c approa_lch for. solving a deterministicdan
problem (Rodriguez and Ruiz, 2012). symmetric TSP with a single salesman. The method

Several algorithms are designed to solve the TSintegrates the Gaussian Process Regression (GRIR) wi
problem. The exact algorithm would be to try allthe Nearest Neighbor algorithm (NN) and improves it
possible permutations (order combinations), but thesolution by using the iterated 2-opt method. The
brute force method takes more computational tinam th numerical experiments show that our approach can
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yield TSP tours within 1-12% of the optimal solutio Gaussian process. Gaussian Process (GP) is a
for the TSP with the size up to 2103 nodes. collection of random variables, any finite numbdr o
The study is organized as follows: Firstly, thewhich has a joint Gaussian distribution and it is
literature survey on GPR applications and a conzépt specified by its mean function and covariance fiomct
framework of GPR approach are described. Then, oufRasmussen and Williams, 2006). The mean function
GPR algorithm for solving TSP is explained and them(x) and covariance function k(x,x") are definedeal
comparing methods are also described in brief. tNexprocess as m(x) = E[f(x)] = 0 and k(x,x") = E[{f(x
the experimental results of all algorithms andm(x))(f(x)-m(x"))] Thus, we can write the Gaussian
discussion are presented. Lastly, this work isprocess as f(x) = GP[m(x), k(x,x"].
summarized in conclusion.
Gaussian process regression: Gaussian process
MATERIALSAND METHODS regression is a model to estimate the value of a
dependent variable or a response from some
observations of dependent variables at certainegahi
independent variables (Rasmussen and Williams,
2006). A training set Jof n observations is denoted as
Ts={(x;,y)|i =1,..,n}, where xis an input vector (in our
case, a traveling tour) of; mities and yis a response

Literature survey on GPR applications. The
Gaussian process regression is knows a
probabilistic approach for a regression model duist
practical and theoretical simplicity and excellent
generalization ability (Rasmussen and Williams,&00

For applications, GPR is employed in many flelds’(the total distance of the tour). The vector inmitall n

particularly in machine learning, e.g., to estiméte _ ) :
depth of a point in space from observing its imageobservanons are aggregated into tenmmatrix X and

position from two different cameras (Siazal., 2004), the total distances are aggregated into the column
to learn motion and observation non-parametricesyst VEctor y, so we can writes (X, y). The graphical
models for sequential state estimation and to ajiply Model of GPR is shown in Fig. 1 (Rasmussen and
algorithm to the problem of tracking an autonomousWilliams, 2006). _ _ .
micro-blimp (Ko et al., 2007), to find near optimal In the GPR model, the Gaussian basis function
sensor placements in the task as an instance afrthe @) is specified and it maps a nity input vector x
gallery problem (Krausest al., 2008). For traffic into N.-dimensional feature space. Let the matiX)
problems, GPR is applied to predict the travelimget be the aggregation of columng(x;) for all inputs in

for an arbitrary traffic path of downtown Kyoto in training data set. Therefore, the function ffxthe SLR

Japan (Ide and Kato, 2009). model (Eq. 1) becomeg(x)" w, where w is the vector
. . . of weight parameters.
The notations in this paper are as follows: Vectors For Gaussian distribution, the probability density

are represented by small Roman symbols, suchsas ¥f the observations given the parameters which is
and all ones are assumed to be column vectors. Thsstimated over all cases in a training set is:
transpose of vectors or matrices is denoted 'by

Matrices are represented by capitalized Roman o N

symbols, such as K, and the (i, j) element of arimét p(y1X,w) ‘D p(% Dx.w)~ N[ X wa?l),

is Ki;. The identity matrix is I. Finally, the estimated

value is denoted with a hat, e.§., where w is a bias and w ~ N(@,,). The posterior

. . _ distribution over the weights based on the Bayesian
Standard Linear Regresson (SLR): The standard jinear model is computed by Bayes' rule. The forin o

linear regression model with Gaussian noise is y Tosterior Gaussian distribution with mea® and

f(x)+e and Eq. 1: covariance matrix & is given as Eq. 2:
f(x)=x"w 1)
p(wlX,y)~ N(Vv: G;ZA'1Xy,A‘1) 2
where x is the input vector and w is a vector ofights

(parameters to be. .est|mated) of a linear mOde\I/vhere A=o
(Rasmussen and Williams, 2006). Nogséollows an

independent and identically distributed Gaussiar?006)-

distribution with zero mean and noise variance, that To make prediction for a test case, aII_ possible
parameter values are averaged and weighted by

is €~ N(O,Gﬁ) , where n is the sample size. posterior probability. The predictive distributiéor the
1750
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Observations

Gaussian field

Inputs

X1 X2 X Xy

Fig. 1: Graphical model for GPR

function valuef, £f (x ) at a single test point,xs given defined as k(X,X) and each of its elements are
determined by a covariance function of the pair of

inputs in training set, k().

The prior on the noisy observations, independent
and identically distributed Gaussian noise with
variance o’ , becomesK (X,X)+a’l . In addition, the

joint distribution of the observed response valaed
the response at the test location is:

by averaging the output of all possible linear niede
Thus, the Gaussian posterior is written as Eq. 3:

p(f, 1%, X, y) ~ N(c‘anTSA'IXy,xTSA"X S) (3)

The predictive distribution in (3) is also Gaussia
distribution, with a posterior mean of the weigfrtsm
(2) multiplied by the possible value, 1 a test case 2
(Rasmussen and Williams, 2006). Moreover, the {y}DN[o,l:K(X’X)mn' K (X,XS)D'
predictive variance is a quadratic form of the jjues K(xoX)  K(xyx)
value % in a test case multiplied with the posterior
covariance matrix. Hence, the predictive distribnti Thus, the predictive function value is Eq. 6:
becomes Eq. 4:

s

f,=K(X.x,) (K+a2) "y (6)
p(f, 1%, X,y) ~ N(o 7glA ®y,0TA 0 ) 4
Covariance function: Many choices of covariance
With © = oX), @ = ox) and functions are available for GP, for example, Matdass

T ot _ _ of covariance function, squared exponential cowada

A =0,"0® +X . On the right-hand side of (4), the function, rational quadratic covariance functionl @adial

A~ of size ixn is needed for making a prediction and it basis covariance function (Rasmussen and Williams,
may be inconvenient if n is large. However, tiignt ~ 2006)- In this study, the Squared Exponential (SE)
can be rewritten as Eq. 5: covariance function is chosen because it is thet mos
widely-used kernel; it is given by Eq. 7:

-1 2
N((Pl qu)(K +O'2n|) Y, & k(Xi,Xj)=0f2 ex{_(xiz—_xj)]+on26()§,)$) @)

(2
-1
@ Z,0,-0Z ok +al) 073 o
where §(x; x;) is the Kronecker delta function which
equals to 1 if and only if i = j and O otherwisedan is
where, the covariance matrix quszcb_ the characteristic length-scale.
Notice that in (5) the entries of matrices, in the
form of @' % o, (plZpCD, or ¢ X,0,, are the form GPR parameter estimation: The hyperparameters of
T ) o the covariance function (such as the characteristic
cp(xi) Z, cp(xs) where xand x are in a training set and length-scale ¢, signal variance of functionof) and

a test set, respectively. Let k&) be o(x)'Z,0(x.)  noise variances?) are determined by the maximum

and it is called a covariance function or a kerfwel likelihood method. The log marginal likelihood
prediction. Similarly, the covariance matrix K is function under the GP model is Eq. 8:
1751
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T

logp(y|X) = —%y a—%log|K +0?l

8
—%Iog 2r

where o = Ky, 8 is a vector ofs,0? and o®>. The
partial derivative of (8) with respect fbis minimized

iterating all search processes, leading to farebett
solutions (Lourencoet al., 2010). In this study, the
iterated 2-opt procedure is modified from the 2-opt
algorithm (Nuhoglu, 2007) by iterating the wholegess
until reaching another local optimum which is bette

Proposed GPR Algorithm: Our GPR algorithm for a
deterministic TSP with a single salesman is diviod

until converging to zero. This gives a vector ofthree phases: |, Il and Ill.

optimized hyperparameters.

Tour construction and representation: The sample

Phase I: We prepare the training datasetaiid the
testing dataset.

TSP tours are needed as an input to GPR. The nheares

neighbor algorithm (Nuhoglu, 2007) constructs tingt f

Input: Distance matrix (D) where ;Ds the distance

TSP tour which is subsequently used to constrdetrot from cityi to cityj:

tours by the 2-exchange method. The nearest neighb
algorithm starts at a chosen starting city and then
selects the next closest unvisited city until diles are

included in the tour. The total distance of a tour
depends on a chosen starting city (Laporte, 19D29.

2-exchange swapping strategy randomly selects two
cities in the tour and swaps them to get a new tour

(Larranagat al., 1999). .
A tour can be represented in many ways, e.g., path
representation, binary string representation, lyinare

matrix representation, edge recombination crossover
binary representation (Larranaggal., 1999). In this
work, the binary string representation is selected
encode all tours for GPR input because it is sinaple
performs well when making test prediction. Eacly @it

a tour is encoded as a string of fopbits and then a
complete tour becomes a string of npog bits
(Larranagaet al., 1999); that is, a tour42-1-3 is
represented by (011001000010).

Tour improvement: Many algorithms have been
proposed to improve a tour; for instanceopt .
algorithm,  Lin-Kernighan  heuristic, ~ simulated _
annealing algorithm and tabu search (Laporte, 1992)
We consider the iterated local search with the 2-
exchange neighborhood, or the iterated 2-opt alyori
because the 2-opt is one of the most famous simple
local searches (Johnson and McGeoch, 1997; Lourenco
et al., 2010). In the 2-opt algorithm, two edges are
deleted from a given tour, breaking it into two hzat
and then those paths are reconnected with two other
possible edges. If the new tour is shorter, itobess

the current tour. These steps are repeated until no
improvement can be made (i.e., reaching a locad
optimum). However, the 2-opt algorithm moves with a
neighborhood search by starting at the first nau i
continues the search process with the next renginin
nodes until all nodes are examined (Nuhoglu, 2005

Construct the first tour by using the nearest
neighbor algorithm and other tours from the first
tour by using the random 2-exchange swapping
strategy

Encode all tours as binary and aggregate them into
X

Calculate the total distance of each tour and
aggregate theminto y

Find a vector of test tour that has the minimum
total distance in X and encode it as binary veofor
Xsin (3)

Output: Binary matrix of tours (X), vector of obged
total distances (y) and binary vector of test oy

Phase II: The GPR model is used to predict thetlheng
of an optimal tour.

Input: Binary matrix of tours (X), vector of obsed
total distancegy) and binary vector of test to(x;):

Initialize the hyperparameters,6?,6?)

Compute the square exponential
function of every possible pairs; ) by (7)
Compute the log marginal likelihood for GPR as
specified in (8), and then computef/ (6)

Compute the squared difference between each
value in y and value of find identify thath-index

of minimum value; that is:

covariance

i =arg rr?in[( y- fs)z} .

Find the binary vector of tour (which belong to the
ith-index in X) to be the binary vector of predietiv
tour and decode it to the vector of the predictive
tour X (in cities’ number).

makes the solution boundary and it can be imprdmwed Output: Estimated optimal tou’ and its lengthy’
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Phase Ill: This phase implements the iterated 2-ophigh) and a schedule for gradually decreasing testyre.

algorithm to improvex™ from Phase II. It generates a new tour by randomly swapping twiesci
in a current tour and calculates the differencénlength

Input: Estimated optimal todr : of tour between the current tour and the new tewta If
the new tour is better than the current tour, éideepted as

« Start with X" and its first edge current tour; otherwise, the new tour is acceptétl &

« Select an edge (a, b) and search for another eddgobability given by:
(c, d) and then remove them to break the tour into
two paths exp[_ﬁj

» Calculate the sum of distances between these two T
edges and the sum of distances between edge (a,
and edge (b, d)

* Reconnect the tour by these modified edges, only i
the sum of distances between the two modified
edges is less than that of distances between the t
removed edges

v%ere, T is the current temperature, which is desed

Py a cooling rate in each iteration. These stegs ar
epeated until reaching the stopping criteria. His t
aper, we use SA from a MATLAB toolbox
Seshadri, 2006), where the main parameters are the
ainitial temperature (if), end temperature ¢l9,
(Eooling rate (Too) and the stopping criteria on the

the whole process until no improvement (reach &,umber of iteration

local optimum)
* Keep the best tour and set it as an initial tour fo Numerical experiments. Our GPR algorithm is
next iteration modified from the GPML toolbox (Rasmussen and
* Repeat Steps 2-6 until no improvement can beNickisch, 2010) which is implemented in MATLAB.
made. Return the resulting tour and its totalWe experiment all algorithms with 60 TSP test

distance problems, with the number of cities ranging fromt&6
2103 from the TSP library (Reinelt, 1995). The
Output: Resulting touk” and its total distancefl(). computation is done on PC running Intel(R) Pentium
Dual CPU 2 GHz. processor with 1 GB of memory.
Comparing methods: For the GPR algorithm, we use 50 sample tours

Classical genetic algorithm (GA): GA is a well- and the initial hyperparameters are:= 2, o; = 1 and

known search heuristic for solving optimization 42 = (by trial and error). Because our algorithmdsee
problems using techniques inspired by natural digyu a training data set which we create randomly, vpeae

(Chatterjeeet al., 1996). It involves three basic steps: o GpR algorithm on each TSP instance for ninegim
evaluation, crossover and mutation. In the firSpS® e ota) distances are averaged. Our GPR algorith
population of individual chromosomes is reproqucgqntegrates GPR with the Nearest Neighbor algorithm
and good chromosomes (based on their ObjeCtIV?NN) and the iterated 2-opt method, namely
function or “fitness” value) are selected for thexn NN+GPR-+Iterated 2-opt '
generation with some probability. Next, the crasso The GA is set with the following parameters:
step randomly selects pairs of survival chromosotoes pop_size = 100, p = 0.5, p, = 0.8 (Kirk, 2007) and the
the next generation and mates them for producing ne number of iter’ation _ '10000 (by triai and errorA
chromosomes. The mutation step randomly chooses rameters are:,J= 1000 and T, = 0.0025 (Gengt
int— nd — VY.

chromosome in the new generation completed by th 2011), Too = 0.97 and the number of iteration =
crossover and mutates it at a particular pointaforew 5554 (Sésh;ljri 2606)

population. The whole process is iterated ungktireng
the stopping criteria. In this study, we use Génira . } A
MATLAB toolbox (Kirk, 2007), where the main between the total distance of the resulting tour) @nd
parameters are population sizeef_size), probability  that of the actual optimal solutiony() for each
of crossover (g, probability of mutation () and the instance, given by:

stopping criteria on the number of iteration.

The performance of all algorithms is the deviation

*

Y« 10(
y

<>
*

Simulated Annealing Algorithm (SA): SA is a deviation (%) =

probabilistic method based on the process of nateri

annealing in metallurgy (Laporte, 1992). For thePTS

SA starts from a given initial tour (when temperatis  and the computational time is also considered.
1753
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Fig. 2: Comparison of the deviation from optimalsions among three algorithms
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Fig. 3: Comparison of the log scale of average ingntime among three algorithms

RESULTS

including the percentage of the deviation of their
solutions from the optimal solutions and the averag

The results of the proposed algorithm for eachrunning time, are shown in Table 2. The comparison

instance, including the best solution obtained frine
trials, the average performance of nine trials, 9686
confidence interval, the percentage of the deviatib
its solution from the optimal solution, and the iage
running time, are shown in Table 1. The percergage

plots of the deviation of all algorithms’ solutiofrem
optimal solutions and the log scale of average ingin
time among three algorithms are provided in Fignd

3, respectively. Comparing with GA and SA, the
proposed algorithm can find better solutions for 39
TSP instances (out of 60). The average running tifne

of the deviation are less than 12% and the averagel9 TSP instances are also less than one second.

running time is between 2 to 4, 520 sec. For & g
problem, the GPR algorithm can find an optimal
solution within 3 sec. In addition, for ulyssesi6,
ulysses?22, bays29, swiss42, pr107 and si535 prablem
the algorithm can find solutions that are within ¥
the optimal solutions. However, the worst cas¢hef
deviation from an optimal solution occurs in th&/7&38
instance, approximately 12%.

Although the proposed algorithm spends more rue tim
than both comparing algorithms in the remaining 11
TSP instances, the solutions obtained are better.

When the size of the test problem is bigger, our
proposed approach performs well while the
performance of GA and SA deteriorates, as shown in
Fig. 2. Figure 3 shows the average running time
consumed by the NN+GPR+lterated 2-opt algorithm
spends more run time than GA and SA when the

The summary results of the proposed algorithm problem size is larger than 535 cities, but theitsorh’s
and the comparing algorithms for each instance,quality is better.
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Table 1: Performance of our GPR algorithm

Optimal Best solutiorout of  Average 9 95% Confidence interval Deviation  Average running
Test problem  # of nodes solution(units)  9trials (units) (units) Lower (units) Upper (units) (%) time (sec.)
Ulysses16 16 6859 6909 6909.0 - - 0.7 3.3
grl7 17 2085 2085 2085.0 - - 0.0 2.3
gr21 21 2707 2816 2870.2 2854.6 2885.9 6.0 2.9
ulysses22 22 7013 7013 7032.3 7002.8 7061.8 0.3 4.2
gr24 24 1272 1272 1371.6 1342.9 1400.3 7.8 2.9
fri26 26 937 961 961.0 - - 2.6 3.2
bayg29 29 1610 1660 1666.2 1663.5 1668.9 35 3.8
bays29 29 2020 2035 2035.0 - - 0.7 3.6
dantzig42 42 699 736 739.0 736.8 741.2 5.7 6.3
swiss42 42 1273 1274 1283.9 1267.0 1300.8 0.9 55
att48 48 10628 10954 11142.2 11060.2 11224.2 4.8 6.9
gr48 48 5046 5286 5359.2 5324.2 5394.2 6.2 10.8
hk48 48 11461 12003 12003.0 - - 4.7 6.9
eil51 51 426 428 432.4 429.2 435.7 15 7.3
berlin52 52 7542 7596 7666.3 7504.1 7828.5 1.6 7.7
brazil58 58 25395 25699 25947.0 25875.5 26018.5 2.2 8.7
st70 70 675 711 725.0 718.6 731.4 7.4 11.3
eil76 76 538 558 567.8 561.0 574.5 55 12.8
pr76 76 108159 112220 113981.2 112450.7 115511.7 5.4 13.4
rat99 99 1211 1278 1311.0 1288.9 1333.1 8.3 19.7
kroA100 100 21282 21768 21956.8 21834.1 22079.4 3.2 19.2
kroB100 100 22141 22755 23133.0 22882.8 23383.2 4.5 17.4
kroC100 100 20749 22005 22013.9 22011.3 22016.5 6.1 18.3
kroD100 100 21294 22857 23268.6 23086.2 23450.9 9.3 18.3
kroE100 100 22068 22596 22729.0 22531.1 22926.9 3.0 18.7
rd100 100 7910 8311 8596.8 8388.4 8805.2 8.7 18.9
lin105 105 14379 14984 15070.7 15008.8 151325 4.8 20.2
prio7 107 44303 44573 44666.9 44553.6 44780.1 0.8 19.4
gri20 120 6942 7305 7469.8 7372.9 7566.7 7.6 24.7
priz4 124 59030 61746 61746.0 - - 4.6 23.7
bier127 127 118282 121772 124480.8 122390.8 126570.7 5.2 24.8
ch130 130 6110 6513 6630.2 6544.7 6715.7 8.5 31.2
pri36 136 96772 104093 105196.3 104454.0 105938.7 8.7 29.6
prid4 144 58537 60754 60754.0 - - 3.8 29.1
ch150 150 6528 6759 6772.3 6764.6 6780.0 3.7 37.7
kroA150 150 26524 28372 28860.2 28695.6 29024.8 8.8 38.5
kroB150 150 26130 27484 27688.8 27622.2 27755.3 6.0 37.3
pris2 152 73682 75774 75970.3 75810.2 76130.5 3.1 32.1
ul59 159 42080 44380 44899.7 44667.0 45132.4 6.7 355
sil75 175 21407 21656 21671.0 21665.2 21676.8 1.2 40.2
d198 198 15780 16042 16271.1 16082.4 16459.9 3.1 52.1
kroA200 200 29368 30457 30689.1 30559.9 30818.3 4.5 61.3
kroB200 200 29437 31731 31954.6 31879.9 32029.2 8.6 57.3
tsp225 225 3919 4137 4176.1 4158.7 4193.6 6.6 85.5
ts225 225 126643 130742 132839.0 132197.2 133480.8 4.9 55.1
pr226 226 80369 83184 84415.9 83937.8 84894.0 5.0 61.1
gil262 262 2378 2580 2623.0 2606.0 2640.0 10.3 95.2
a280 280 2579 2668 2713.6 2689.4 2737.7 5.2 102.8
lin318 318 42029 44229 45241.8 44787.8 45695.8 7.6 120.6
rd400 400 15281 16354 16491.1 16385.8 16596.4 7.9 232.1
pch442 442 50778 53799 54363.2 54100.8 54625.7 7.1 223.9
d493 493 35002 36553 36971.9 36706.1 37237.7 5.6 268.0
si535 535 48450 48771 48865.3 48827.1 48903.5 0.9 400.6
pa561 561 2763 2923 2946.8 2933.6 2959.9 6.7 338.2
d657 657 48912 52916 53281.7 53125.2 53438.1 8.9 533.0
rat783 783 8806 9779 9846.7 9809.8 9883.6 11.8 734.3
pri002 1002 259045 276226 279077.1 277476.5 280677.8 7.7 1426.0
d1291 1291 50801 53924 54545.3 54066.6 55024.0 7.4 1924.3
fla577 1577 [22204,22249] 23861 24099.7 23974.0 24225.3 8.5 4519.2
d2103 2103 [79952,80529] 82822 83161.7 83017.1 83306.2 4.0 3396.6

1755



J. Computer <ci., 8 (10): 1749-1758, 2012

Table 2: Comparison of the search performance

Deviation (%) Average running time (sec.)

NN+GPR+ NN+GPR+
Test problem # of nodes Iterated 2-opt GA SA lete-opt GA SA
ulysses16 16 0.7 0.0 0.8 3.3 225 6.8
gr17 17 0.0 0.1 14 23 275 3.9
gr21 21 6.0 0.4 2.8 2.9 29.4 3.0
ulysses22 22 0.3 0.4 2.3 4.2 42.2 8.3
gr24 24 7.8 0.4 7.4 2.9 29.2 27.1
fri26 26 2.6 0.0 6.7 3.2 60.3 39.7
bayg29 29 35 0.8 5.9 3.8 63.6 12.3
bays29 29 0.7 0.4 5.5 3.6 63.6 12.2
dantzig42 42 5.7 0.0 15.9 6.3 31.1 157.4
Sswiss42 42 0.9 25 15.1 55 31.2 17.8
att48 48 4.8 1.7 16.8 6.9 324 21.7
gr48 48 6.2 0.8 21.6 10.8 32.8 20.8
hk48 48 4.7 24 17.9 6.9 324 21.9
eil51 51 15 3.8 10.0 7.3 33.4 356.0
berlin52 52 1.6 35 22.9 7.7 33.3 233
brazil58 58 2.2 2.3 134 8.7 35.0 25.2
st70 70 7.4 41 26.1 11.3 37.8 585.0
eil76 76 55 5.0 185 12.8 39.4 803.1
pr76 76 5.4 9.0 16.4 134 39.2 36.5
rat99 99 8.3 7.1 41.6 19.7 45.8 45.2
kroA100 100 3.2 6.1 44.9 19.2 46.0 48.7
kroB100 100 45 6.4 37.9 17.4 455 48.2
kroC100 100 6.1 75 45.0 18.3 45.8 48.4
kroD100 100 9.3 5.2 42.1 18.3 45.8 49.6
kroE100 100 3.0 47 38.8 18.7 45.7 48.4
rd100 100 8.7 7.4 55.8 18.9 45.6 47.3
lin105 105 4.8 7.5 57.6 20.2 47.2 50.0
pr107 107 0.8 2.2 18.7 19.4 475 50.4
gr120 120 7.6 6.6 56.1 24.7 51.3 55.8
pri24 124 4.6 43 19.8 23.7 52.5 63.6
bier127 127 5.2 6.2 17.0 24.8 53.4 64.5
ch130 130 8.5 9.1 60.3 31.2 54.7 61.4
pr136 136 8.7 8.4 16.3 29.6 56.3 69.4
prl44 144 3.8 5.3 8.9 29.1 58.8 77.1
ch150 150 3.7 9.6 73.3 37.7 61.1 76.5
kroA150 150 8.8 8.7 53.0 38.5 60.8 80.0
kroB150 150 6.0 7.6 55.3 37.3 60.8 79.9
pri52 152 3.1 53 15.7 32.1 61.3 79.2
ul59 159 6.7 1.9 40.0 35.5 63.8 82.9
sil75 175 1.2 1.0 20.2 40.2 69.8 79.7
d198 198 3.1 53 54.1 52.1 78.0 106.8
kroA200 200 45 10.0 61.1 61.3 78.8 109.5
kroB200 200 8.6 104 63.7 57.3 79.0 109.6
tsp225 225 6.6 8.0 93.3 85.5 88.7 122.4
ts225 225 4.9 6.8 19.8 55.1 88.8 129.8
pr226 226 5.0 9.2 15.1 61.1 89.2 120.8
gil262 262 10.3 12.0 107.6 95.2 103.8 141.6
a280 280 5.2 6.8 122.7 102.8 111.2 152.0
[in318 318 7.6 121 69.4 120.6 129.0 208.9
rd400 400 7.9 213 126.8 2321 172.1 259.1
pch442 442 7.1 20.4 66.1 223.9 195.9 312.9
d493 493 5.6 16.7 60.9 268.0 2244 351.2
si535 535 0.9 5.5 47.4 400.6 252.0 309.6
pa561 561 6.7 22.8 129.2 338.2 268.4 855.2
dées57 657 8.9 414 78.1 533.0 337.6 527.7
rat783 783 11.8 90.6 158.3 734.3 437.6 561.3
pr1002 1002 7.7 19.4 34.9 1426.0 632.9 1185.2
d1291 1291 7.4 100.6 118.6 1924.3 962.6 1469.1
fl1577 1577 8.5 74.3 210.8 4519.2 1343.6 1605.7
d2103 2103 4.0 50.2 103.4 3396.6 2263.7 4083.5
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