
Journal of Computer Science 8 (10): 1749-1758, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Wanatchapong Kongkaew, Department of Industrial Engineering, Faculty of Engineering,
 Kasetsart University, Bangkok, 10900, Thailand

1749

A Gaussian Process Regression
Model for the Traveling Salesman Problem

Wanatchapong Kongkaew and Juta Pichitlamken

Department of Industrial Engineering,
Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand

Abstract: Problem statement: Traveling Salesman Problem (TSP) is a famous NP hard problem.
Many approaches have been proposed up to date for solving TSP. We consider a TSP tour as a
dependent variable and its corresponding distance as an independent variable. If a predictive function
can be formulated from arbitrary sample tours, the optimal tour may be predicted from this function.
Approach: In this study, a combined procedure of the Nearest Neighbor (NN) method, Gaussian
Process Regression (GPR) and the iterated local search is proposed to solve a deterministic symmetric
TSP with a single salesman. The first tour in the sample is constructed by the nearest neighbor
algorithm and it is used to construct other tours by the random 2-exchange swap. These tours and their
total distances are training data for a Gaussian process regression model. A GPR solution is further
improved with the iterated 2-opt method. In the numerical experiments, our algorithm is tested on
many TSP instances and it is compared with the Genetic Algorithm (GA) and the Simulated Annealing
(SA) algorithm. Results: The proposed method can find good TSP tours within a reasonable
computational time for a wide range of TSP test problems. In some cases, it outperforms GA and SA.
Conclusion: Our proposed algorithm is promising for solving the TSP.

Key words: Gaussian process regression, nearest neighbor, iterated 2-opt algorithm, genetic

algorithm, simulated annealing, traveling salesman problem

INTRODUCTION

 The Traveling Salesman Problem (TSP) is one of
the most well-known NP-hard problems in the field of
combinatorial optimization. The objective is to find the
shortest Hamiltonian cycle among nc cities, where the
salesman visits each of the nc cities exactly once and
then returns to the starting city. Although its
mathematical formulation is simple, the TSP is difficult
because it is combinatorial and the number of solutions
increases exponentially with the number of cities.
 TSP applications can be found in many fields
including job sequencing on a single machine or
assignment problems (Gilmore and Gomory, 1964),
material handling in a warehouse (Ratliff and
Rosenthal, 1983), genome rearrangement (Sankoff and
Blanchette, 1997), the drilling of printed circuits boards
(Duman and Or, 2004), transportation and logistics
problem (Rodriguez and Ruiz, 2012).
 Several algorithms are designed to solve the TSP
problem. The exact algorithm would be to try all
possible permutations (order combinations), but the
brute force method takes more computational time than

the cutting plane method (Dantzig et al., 1954) or the
branch and bound method (Little et al., 1963). Other
heuristics and approximation algorithms include the
nearest neighbor algorithm or the so-called greedy
algorithm (Bellmore and Nemhauser, 1968), Lin-
Kernighan heuristics (Lin and Kernighan, 1973; Helsgaun,
2000) and the k-opt heuristic (Helsgaun, 2009).
 Moreover, many randomized approaches are
shown to perform well on the TSP, e.g., the ant colony
optimization (Dorigo and Gambardella, 1997), the tabu
search (Gendreau et al., 1998), the genetic algorithm
(Chatterjee et al., 1996; Moon et al., 2002), the cross
entropy method (Boer et al., 2005), the particle swarm
optimization (Shi et al., 2007) and the simulated
annealing algorithm (Geng et al., 2011).

The key contributions of this study: We propose an
algorithmic approach for solving a deterministic and
symmetric TSP with a single salesman. The method
integrates the Gaussian Process Regression (GPR) with
the Nearest Neighbor algorithm (NN) and improves its
solution by using the iterated 2-opt method. The
numerical experiments show that our approach can

J. Computer Sci., 8 (10): 1749-1758, 2012

1750

yield TSP tours within 1-12% of the optimal solutions
for the TSP with the size up to 2103 nodes.
 The study is organized as follows: Firstly, the
literature survey on GPR applications and a conceptual
framework of GPR approach are described. Then, our
GPR algorithm for solving TSP is explained and the
comparing methods are also described in brief. Next,
the experimental results of all algorithms and
discussion are presented. Lastly, this work is
summarized in conclusion.

MATERIALS AND METHODS

Literature survey on GPR applications: The
Gaussian process regression is known as a
probabilistic approach for a regression model due to its
practical and theoretical simplicity and excellent
generalization ability (Rasmussen and Williams, 2006).
For applications, GPR is employed in many fields,
particularly in machine learning, e.g., to estimate the
depth of a point in space from observing its image
position from two different cameras (Sinz et al., 2004),
to learn motion and observation non-parametric system
models for sequential state estimation and to apply its
algorithm to the problem of tracking an autonomous
micro-blimp (Ko et al., 2007), to find near optimal
sensor placements in the task as an instance of the art-
gallery problem (Krause et al., 2008). For traffic
problems, GPR is applied to predict the traveling time
for an arbitrary traffic path of downtown Kyoto in
Japan (Ide and Kato, 2009).

The notations in this paper are as follows: Vectors
are represented by small Roman symbols, such as xs
and all ones are assumed to be column vectors. The
transpose of vectors or matrices is denoted by

T.
Matrices are represented by capitalized Roman
symbols, such as K, and the (i, j) element of a matrix K
is Ki,j. The identity matrix is I. Finally, the estimated
value is denoted with a hat, e.g., ŷ .

Standard Linear Regression (SLR): The standard
linear regression model with Gaussian noise is y =
f(x)+ε and Eq. 1:

() Tf x x w= (1)

where x is the input vector and w is a vector of weights
(parameters to be estimated) of a linear model
(Rasmussen and Williams, 2006). Noise ε follows an
independent and identically distributed Gaussian
distribution with zero mean and noise variance 2

nσ , that

is ()2
nN 0,ε σ∼ , where n is the sample size.

Gaussian process: Gaussian Process (GP) is a
collection of random variables, any finite number of
which has a joint Gaussian distribution and it is
specified by its mean function and covariance function
(Rasmussen and Williams, 2006). The mean function
m(x) and covariance function k(x,x') are defined a real
process as m(x) = E[f(x)] = 0 and k(x,x') = E[(f(x) -
m(x))(f(x')-m(x'))]

Thus, we can write the Gaussian

process as f(x) = GP[m(x), k(x,x')].

Gaussian process regression: Gaussian process
regression is a model to estimate the value of a
dependent variable or a response from some
observations of dependent variables at certain values of
independent variables (Rasmussen and Williams,
2006). A training set Ts of n observations is denoted as
Ts = {(x i,yi)|i =1,..,n}, where xi is an input vector (in our
case, a traveling tour) of nc cities and yi is a response
(the total distance of the tour). The vector inputs of all n
observations are aggregated into the nc×n matrix X and
the total distances are aggregated into the column
vector y, so we can write Ts = (X, y). The graphical
model of GPR is shown in Fig. 1 (Rasmussen and
Williams, 2006).
 In the GPR model, the Gaussian basis function
φ(xi) is specified and it maps a nc city input vector xi
into Nc-dimensional feature space. Let the matrix Φ(X)
be the aggregation of columns φ(xi) for all inputs in
training data set. Therefore, the function f(x)

in the SLR

model (Eq. 1) becomes φ(xi)
T w, where w is the vector

of weight parameters.
 For Gaussian distribution, the probability density
of the observations given the parameters which is
estimated over all cases in a training set is:

() () ()
n

T 2
i i n

i =1

p y | X,w = p y | x ,w N X w, Iσ∏ ∼ ,

where w is a bias and w ~ N(0, ∑p). The posterior
distribution over the weights based on the Bayesian
linear model is computed by Bayes’ rule. The form of
posterior Gaussian distribution with mean w and
covariance matrix A−1 is given as Eq. 2:

() ()2 1 1
np w | X, y N w A Xy,A− − −= σ∼ (2)

where 2 T 1

n pA XX− −= σ + ∑ (Rasmussen and Williams,

2006).
 To make prediction for a test case, all possible
parameter values are averaged and weighted by
posterior probability. The predictive distribution for the

J. Computer Sci., 8 (10): 1749-1758, 2012

1751

Fig. 1: Graphical model for GPR

function value ()s sf f x≜ at a single test point xs, is given

by averaging the output of all possible linear models.
Thus, the Gaussian posterior is written as Eq. 3:

() ()2 T 1 T 1
s s n s s sp f | x ,X, y ~ N x A Xy,x A x .− − −σ (3)

 The predictive distribution in (3) is also Gaussian
distribution, with a posterior mean of the weights from
(2) multiplied by the possible value xs in a test case
(Rasmussen and Williams, 2006). Moreover, the
predictive variance is a quadratic form of the possible
value xs in a test case multiplied with the posterior
covariance matrix. Hence, the predictive distribution
becomes Eq. 4:

() ()2 T 1 T 1
s s n s s sp f | x ,X, y ~ N A y, A− − −σ φ Φ φ φ (4)

 With Φ = Φ(X), φs = φ(xs) and

2 T 1
n pA − −= σ ΦΦ +∑ . On the right-hand side of (4), the

A−1 of size n×n is needed for making a prediction and it
may be inconvenient if n is large. However, this term
can be rewritten as Eq. 5:

()
()

1T 2
s p n

1T T 2 T
s p s s p n p s

N K I y,

K I

−

−

φ Φ + σ


φ φ − φ Φ + σ Φ φ 


∑∑∑∑

∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑

 (5)

where, the covariance matrix K is ΦT∑pΦ.
 Notice that in (5) the entries of matrices, in the

form of T
pΦ Φ∑∑∑∑ , T

s pφ Φ∑∑∑∑ , or T
s p sφ φ∑∑∑∑ , are the form

() ()T

i p sx xφ φ∑∑∑∑ where xi and xs are in a training set and

a test set, respectively. Let k(xi,xs) be () ()T

i p sx xφ φ∑∑∑∑

and it is called a covariance function or a kernel for
prediction. Similarly, the covariance matrix K is

defined as k(X,X) and each of its elements are
determined by a covariance function of the pair of
inputs in training set, k(xi,xj).
 The prior on the noisy observations, independent
and identically distributed Gaussian noise ɛ with
variance 2

nσ , becomes () 2
nK X,X I+ σ . In addition, the

joint distribution of the observed response values and
the response at the test location is:

() ()
() ()

sn

s s s s

2y K X,X K X,x
N 0,

f K x ,X K

I

x ,x

  + 
 ∼          

σ
.

 Thus, the predictive function value is Eq. 6:

() ()s s

1
2
n

T
Kf K X + y,x I

−
= σ (6)

Covariance function: Many choices of covariance
functions are available for GP, for example, Matérn class
of covariance function, squared exponential covariance
function, rational quadratic covariance function and radial
basis covariance function (Rasmussen and Williams,
2006). In this study, the Squared Exponential (SE)
covariance function is chosen because it is the most
widely-used kernel; it is given by Eq. 7:

() () ()
2

i j2 2
i j f n i j2

x x
k x ,x exp x ,x

2

 − −
 = σ + σ δ
 
  

ℓ
 (7)

where δ(xi,xj) is the Kronecker delta function which
equals to 1 if and only if i = j and 0 otherwise and ℓ is
the characteristic length-scale.

GPR parameter estimation: The hyperparameters of
the covariance function (such as the characteristic
length-scale ℓ , signal variance of function (2fσ) and

noise variance 2
nσ) are determined by the maximum

likelihood method. The log marginal likelihood
function under the GP model is Eq. 8:

J. Computer Sci., 8 (10): 1749-1758, 2012

1752

() T 2
n

1 1
logp y | X,θ = y α log K I

2 2
n

log 2
2

− − + σ

− π
 (8)

where α = K-1y, θ is a vector of 2

f, σℓ and 2
nσ . The

partial derivative of (8) with respect to θ is minimized
until converging to zero. This gives a vector of
optimized hyperparameters.

Tour construction and representation: The sample
TSP tours are needed as an input to GPR. The nearest
neighbor algorithm (Nuhoglu, 2007) constructs the first
TSP tour which is subsequently used to construct other
tours by the 2-exchange method. The nearest neighbor
algorithm starts at a chosen starting city and then
selects the next closest unvisited city until all cities are
included in the tour. The total distance of a tour
depends on a chosen starting city (Laporte, 1992). The
2-exchange swapping strategy randomly selects two
cities in the tour and swaps them to get a new tour
(Larranaga et al., 1999).
 A tour can be represented in many ways, e.g., path
representation, binary string representation, binary
matrix representation, edge recombination crossover in
binary representation (Larranaga et al., 1999). In this
work, the binary string representation is selected to
encode all tours for GPR input because it is simple and
performs well when making test prediction. Each city in
a tour is encoded as a string of [log2n] bits and then a
complete tour becomes a string of n[log2n] bits
(Larranaga et al., 1999); that is, a tour 4→2→1→3 is
represented by (011001000010).

Tour improvement: Many algorithms have been
proposed to improve a tour; for instance, r-opt
algorithm, Lin-Kernighan heuristic, simulated
annealing algorithm and tabu search (Laporte, 1992).
We consider the iterated local search with the 2-
exchange neighborhood, or the iterated 2-opt algorithm,
because the 2-opt is one of the most famous simple
local searches (Johnson and McGeoch, 1997; Lourenco
et al., 2010). In the 2-opt algorithm, two edges are
deleted from a given tour, breaking it into two paths
and then those paths are reconnected with two other
possible edges. If the new tour is shorter, it becomes
the current tour. These steps are repeated until no
improvement can be made (i.e., reaching a local
optimum). However, the 2-opt algorithm moves with a
neighborhood search by starting at the first node and it
continues the search process with the next remaining
nodes until all nodes are examined (Nuhoglu, 2007). This
makes the solution boundary and it can be improved by

iterating all search processes, leading to far better
solutions (Lourenco et al., 2010). In this study, the
iterated 2-opt procedure is modified from the 2-opt
algorithm (Nuhoglu, 2007) by iterating the whole process
until reaching another local optimum which is better.

Proposed GPR Algorithm: Our GPR algorithm for a
deterministic TSP with a single salesman is divided into
three phases: I, II and III.

Phase I: We prepare the training dataset Ts and the
testing dataset.

Input: Distance matrix (D) where Dij is the distance
from city i to city j:

• Construct the first tour by using the nearest

neighbor algorithm and other tours from the first
tour by using the random 2-exchange swapping
strategy

• Encode all tours as binary and aggregate them into
X

• Calculate the total distance of each tour and
aggregate them into y

• Find a vector of test tour that has the minimum
total distance in X and encode it as binary vector of
xs in (3)

Output: Binary matrix of tours (X), vector of observed
total distances (y) and binary vector of test tour (xs)

Phase II: The GPR model is used to predict the length
of an optimal tour.

Input: Binary matrix of tours (X), vector of observed
total distances (y) and binary vector of test tour (xs):

• Initialize the hyperparameters (2 2

f n, ,σ σℓ)

• Compute the square exponential covariance
function of every possible pairs (xi,xj) by (7)

• Compute the log marginal likelihood for GPR as
specified in (8), and then compute fs by (6)

• Compute the squared difference between each
value in y and value of fs and identify the ith-index
of minimum value; that is:

()2

i s
i

i arg min y f = −
 

.

• Find the binary vector of tour (which belong to the

ith-index in X) to be the binary vector of predictive
tour and decode it to the vector of the predictive
tour *x̂ (in cities’ number).

Output: Estimated optimal tour *x̂ and its length *ŷ

J. Computer Sci., 8 (10): 1749-1758, 2012

1753

Phase III: This phase implements the iterated 2-opt
algorithm to improve *x̂ from Phase II.

Input: Estimated optimal tour*x̂ :

• Start with *x̂ and its first edge
• Select an edge (a, b) and search for another edge

(c, d) and then remove them to break the tour into
two paths

• Calculate the sum of distances between these two
edges and the sum of distances between edge (a, c)
and edge (b, d)

• Reconnect the tour by these modified edges, only if
the sum of distances between the two modified
edges is less than that of distances between the two
removed edges

• Set the obtained tour as an initial tour and repeat
the whole process until no improvement (reach a
local optimum)

• Keep the best tour and set it as an initial tour for
next iteration

• Repeat Steps 2-6 until no improvement can be
made. Return the resulting tour and its total
distance

Output: Resulting tour *ˆ̂x and its total distance (*ˆ̂y).

Comparing methods:
Classical genetic algorithm (GA): GA is a well-
known search heuristic for solving optimization
problems using techniques inspired by natural evolution
(Chatterjee et al., 1996). It involves three basic steps:
evaluation, crossover and mutation. In the first step, a
population of individual chromosomes is reproduced
and good chromosomes (based on their objective
function or “fitness” value) are selected for the next
generation with some probability. Next, the crossover
step randomly selects pairs of survival chromosomes to
the next generation and mates them for producing new
chromosomes. The mutation step randomly chooses a
chromosome in the new generation completed by the
crossover and mutates it at a particular point for a new
population. The whole process is iterated until reaching
the stopping criteria. In this study, we use GA from a
MATLAB toolbox (Kirk, 2007), where the main
parameters are population sizes (pop_size), probability
of crossover (pc), probability of mutation (pm) and the
stopping criteria on the number of iteration.

Simulated Annealing Algorithm (SA): SA is a
probabilistic method based on the process of material
annealing in metallurgy (Laporte, 1992). For the TSP,
SA starts from a given initial tour (when temperature is

high) and a schedule for gradually decreasing temperature.
It generates a new tour by randomly swapping two cities
in a current tour and calculates the difference in the length
of tour between the current tour and the new tour as ∆E. If
the new tour is better than the current tour, it is accepted as
current tour; otherwise, the new tour is accepted with a
probability given by:

E
exp

T

∆ − 
 

where, T is the current temperature, which is decreased
by a cooling rate in each iteration. These steps are
repeated until reaching the stopping criteria. In this
paper, we use SA from a MATLAB toolbox
(Seshadri, 2006), where the main parameters are the
initial temperature (Tint), end temperature (Tend),
cooling rate (Tcool) and the stopping criteria on the
number of iteration.

Numerical experiments: Our GPR algorithm is
modified from the GPML toolbox (Rasmussen and
Nickisch, 2010) which is implemented in MATLAB.
We experiment all algorithms with 60 TSP test
problems, with the number of cities ranging from 16 to
2103 from the TSP library (Reinelt, 1995). The
computation is done on PC running Intel(R) Pentium
Dual CPU 2 GHz. processor with 1 GB of memory.
 For the GPR algorithm, we use 50 sample tours
and the initial hyperparameters are: ℓ = 2, 2

fσ = 1 and
2
nσ = 0 (by trial and error). Because our algorithm needs

a training data set which we create randomly, we repeat
the GPR algorithm on each TSP instance for nine times.
Then total distances are averaged. Our GPR algorithm
integrates GPR with the Nearest Neighbor algorithm
(NN) and the iterated 2-opt method, namely
NN+GPR+Iterated 2-opt.
 The GA is set with the following parameters:
pop_size = 100, pc = 0.5, pm = 0.8 (Kirk, 2007) and the
number of iteration = 10000 (by trial and error). SA
parameters are: Tint= 1000 and Tend = 0.0025 (Geng et
al., 2011), Tcool = 0.97 and the number of iteration =
20000 (Seshadri, 2006).
 The performance of all algorithms is the deviation

between the total distance of the resulting tour (*ˆ̂y) and

that of the actual optimal solution (*y) for each
instance, given by:

* *

*

ˆ̂y - y
deviation (%) 100

y
= × ,

and the computational time is also considered.

J. Computer Sci., 8 (10): 1749-1758, 2012

1754

Fig. 2: Comparison of the deviation from optimal solutions among three algorithms

Fig. 3: Comparison of the log scale of average running time among three algorithms

RESULTS

 The results of the proposed algorithm for each
instance, including the best solution obtained from nine
trials, the average performance of nine trials, the 95%
confidence interval, the percentage of the deviation of
its solution from the optimal solution, and the average
running time, are shown in Table 1. The percentages
of the deviation are less than 12% and the average
running time is between 2 to 4, 520 sec. For the gr17
problem, the GPR algorithm can find an optimal
solution within 3 sec. In addition, for ulysses16,
ulysses22, bays29, swiss42, pr107 and si535 problems,
the algorithm can find solutions that are within 1% of
the optimal solutions. However, the worst case of the
deviation from an optimal solution occurs in the rat783
instance, approximately 12%.
 The summary results of the proposed algorithm
and the comparing algorithms for each instance,

including the percentage of the deviation of their
solutions from the optimal solutions and the average
running time, are shown in Table 2. The comparison
plots of the deviation of all algorithms’ solutions from
optimal solutions and the log scale of average running
time among three algorithms are provided in Fig. 2 and
3, respectively. Comparing with GA and SA, the
proposed algorithm can find better solutions for 39
TSP instances (out of 60). The average running time of
49 TSP instances are also less than one second.
Although the proposed algorithm spends more run time
than both comparing algorithms in the remaining 11
TSP instances, the solutions obtained are better.
 When the size of the test problem is bigger, our
proposed approach performs well while the
performance of GA and SA deteriorates, as shown in
Fig. 2. Figure 3 shows the average running time
consumed by the NN+GPR+Iterated 2-opt algorithm
spends more run time than GA and SA when the
problem size is larger than 535 cities, but the solution’s
quality is better.

J. Computer Sci., 8 (10): 1749-1758, 2012

1755

Table 1: Performance of our GPR algorithm
 Optimal Best solution out of Average *ˆ̂y

95% Confidence interval Deviation Average running
Test problem # of nodes solution (units) 9 trials (units) (units) Lower (units) Upper (units) (%) time (sec.)

Ulysses16 16 6859 6909 6909.0 - - 0.7 3.3

gr17 17 2085 2085 2085.0 - - 0.0 2.3

gr21 21 2707 2816 2870.2 2854.6 2885.9 6.0 2.9

ulysses22 22 7013 7013 7032.3 7002.8 7061.8 0.3 4.2

gr24 24 1272 1272 1371.6 1342.9 1400.3 7.8 2.9

fri26 26 937 961 961.0 - - 2.6 3.2

bayg29 29 1610 1660 1666.2 1663.5 1668.9 3.5 3.8

bays29 29 2020 2035 2035.0 - - 0.7 3.6

dantzig42 42 699 736 739.0 736.8 741.2 5.7 6.3

swiss42 42 1273 1274 1283.9 1267.0 1300.8 0.9 5.5

att48 48 10628 10954 11142.2 11060.2 11224.2 4.8 6.9

gr48 48 5046 5286 5359.2 5324.2 5394.2 6.2 10.8

hk48 48 11461 12003 12003.0 - - 4.7 6.9

eil51 51 426 428 432.4 429.2 435.7 1.5 7.3

berlin52 52 7542 7596 7666.3 7504.1 7828.5 1.6 7.7

brazil58 58 25395 25699 25947.0 25875.5 26018.5 2.2 8.7

st70 70 675 711 725.0 718.6 731.4 7.4 11.3

eil76 76 538 558 567.8 561.0 574.5 5.5 12.8

pr76 76 108159 112220 113981.2 112450.7 115511.7 5.4 13.4

rat99 99 1211 1278 1311.0 1288.9 1333.1 8.3 19.7

kroA100 100 21282 21768 21956.8 21834.1 22079.4 3.2 19.2

kroB100 100 22141 22755 23133.0 22882.8 23383.2 4.5 17.4

kroC100 100 20749 22005 22013.9 22011.3 22016.5 6.1 18.3

kroD100 100 21294 22857 23268.6 23086.2 23450.9 9.3 18.3

kroE100 100 22068 22596 22729.0 22531.1 22926.9 3.0 18.7

rd100 100 7910 8311 8596.8 8388.4 8805.2 8.7 18.9

lin105 105 14379 14984 15070.7 15008.8 15132.5 4.8 20.2

pr107 107 44303 44573 44666.9 44553.6 44780.1 0.8 19.4

gr120 120 6942 7305 7469.8 7372.9 7566.7 7.6 24.7

pr124 124 59030 61746 61746.0 - - 4.6 23.7

bier127 127 118282 121772 124480.8 122390.8 126570.7 5.2 24.8

ch130 130 6110 6513 6630.2 6544.7 6715.7 8.5 31.2

pr136 136 96772 104093 105196.3 104454.0 105938.7 8.7 29.6

pr144 144 58537 60754 60754.0 - - 3.8 29.1

ch150 150 6528 6759 6772.3 6764.6 6780.0 3.7 37.7

kroA150 150 26524 28372 28860.2 28695.6 29024.8 8.8 38.5

kroB150 150 26130 27484 27688.8 27622.2 27755.3 6.0 37.3

pr152 152 73682 75774 75970.3 75810.2 76130.5 3.1 32.1

u159 159 42080 44380 44899.7 44667.0 45132.4 6.7 35.5

si175 175 21407 21656 21671.0 21665.2 21676.8 1.2 40.2

d198 198 15780 16042 16271.1 16082.4 16459.9 3.1 52.1

kroA200 200 29368 30457 30689.1 30559.9 30818.3 4.5 61.3

kroB200 200 29437 31731 31954.6 31879.9 32029.2 8.6 57.3

tsp225 225 3919 4137 4176.1 4158.7 4193.6 6.6 85.5

ts225 225 126643 130742 132839.0 132197.2 133480.8 4.9 55.1

pr226 226 80369 83184 84415.9 83937.8 84894.0 5.0 61.1

gil262 262 2378 2580 2623.0 2606.0 2640.0 10.3 95.2

a280 280 2579 2668 2713.6 2689.4 2737.7 5.2 102.8
lin318 318 42029 44229 45241.8 44787.8 45695.8 7.6 120.6
rd400 400 15281 16354 16491.1 16385.8 16596.4 7.9 232.1
pcb442 442 50778 53799 54363.2 54100.8 54625.7 7.1 223.9
d493 493 35002 36553 36971.9 36706.1 37237.7 5.6 268.0
si535 535 48450 48771 48865.3 48827.1 48903.5 0.9 400.6
pa561 561 2763 2923 2946.8 2933.6 2959.9 6.7 338.2
d657 657 48912 52916 53281.7 53125.2 53438.1 8.9 533.0
rat783 783 8806 9779 9846.7 9809.8 9883.6 11.8 734.3
pr1002 1002 259045 276226 279077.1 277476.5 280677.8 7.7 1426.0
d1291 1291 50801 53924 54545.3 54066.6 55024.0 7.4 1924.3
fl1577 1577 [22204,22249] 23861 24099.7 23974.0 24225.3 8.5 4519.2
d2103 2103 [79952,80529] 82822 83161.7 83017.1 83306.2 4.0 3396.6

J. Computer Sci., 8 (10): 1749-1758, 2012

1756

Table 2: Comparison of the search performance
 Deviation (%) Average running time (sec.)
 -- ---
 NN+GPR+ NN+GPR+
Test problem # of nodes Iterated 2-opt GA SA Iterated 2-opt GA SA
ulysses16 16 0.7 0.0 0.8 3.3 22.5 6.8
gr17 17 0.0 0.1 1.4 2.3 27.5 3.9
gr21 21 6.0 0.4 2.8 2.9 29.4 3.0
ulysses22 22 0.3 0.4 2.3 4.2 42.2 8.3
gr24 24 7.8 0.4 7.4 2.9 29.2 27.1
fri26 26 2.6 0.0 6.7 3.2 60.3 39.7
bayg29 29 3.5 0.8 5.9 3.8 63.6 12.3
bays29 29 0.7 0.4 5.5 3.6 63.6 12.2
dantzig42 42 5.7 0.0 15.9 6.3 31.1 157.4
swiss42 42 0.9 2.5 15.1 5.5 31.2 17.8
att48 48 4.8 1.7 16.8 6.9 32.4 21.7
gr48 48 6.2 0.8 21.6 10.8 32.8 20.8
hk48 48 4.7 2.4 17.9 6.9 32.4 21.9
eil51 51 1.5 3.8 10.0 7.3 33.4 356.0
berlin52 52 1.6 3.5 22.9 7.7 33.3 23.3
brazil58 58 2.2 2.3 13.4 8.7 35.0 25.2
st70 70 7.4 4.1 26.1 11.3 37.8 585.0
eil76 76 5.5 5.0 18.5 12.8 39.4 803.1
pr76 76 5.4 9.0 16.4 13.4 39.2 36.5
rat99 99 8.3 7.1 41.6 19.7 45.8 45.2
kroA100 100 3.2 6.1 44.9 19.2 46.0 48.7
kroB100 100 4.5 6.4 37.9 17.4 45.5 48.2
kroC100 100 6.1 7.5 45.0 18.3 45.8 48.4
kroD100 100 9.3 5.2 42.1 18.3 45.8 49.6
kroE100 100 3.0 4.7 38.8 18.7 45.7 48.4
rd100 100 8.7 7.4 55.8 18.9 45.6 47.3
lin105 105 4.8 7.5 57.6 20.2 47.2 50.0
pr107 107 0.8 2.2 18.7 19.4 47.5 50.4
gr120 120 7.6 6.6 56.1 24.7 51.3 55.8
pr124 124 4.6 4.3 19.8 23.7 52.5 63.6
bier127 127 5.2 6.2 17.0 24.8 53.4 64.5
ch130 130 8.5 9.1 60.3 31.2 54.7 61.4
pr136 136 8.7 8.4 16.3 29.6 56.3 69.4
pr144 144 3.8 5.3 8.9 29.1 58.8 77.1
ch150 150 3.7 9.6 73.3 37.7 61.1 76.5
kroA150 150 8.8 8.7 53.0 38.5 60.8 80.0
kroB150 150 6.0 7.6 55.3 37.3 60.8 79.9
pr152 152 3.1 5.3 15.7 32.1 61.3 79.2
u159 159 6.7 1.9 40.0 35.5 63.8 82.9
si175 175 1.2 1.0 20.2 40.2 69.8 79.7
d198 198 3.1 5.3 54.1 52.1 78.0 106.8
kroA200 200 4.5 10.0 61.1 61.3 78.8 109.5
kroB200 200 8.6 10.4 63.7 57.3 79.0 109.6
tsp225 225 6.6 8.0 93.3 85.5 88.7 122.4
ts225 225 4.9 6.8 19.8 55.1 88.8 129.8
pr226 226 5.0 9.2 15.1 61.1 89.2 120.8
gil262 262 10.3 12.0 107.6 95.2 103.8 141.6
a280 280 5.2 6.8 122.7 102.8 111.2 152.0
lin318 318 7.6 12.1 69.4 120.6 129.0 208.9
rd400 400 7.9 21.3 126.8 232.1 172.1 259.1
pcb442 442 7.1 20.4 66.1 223.9 195.9 312.9
d493 493 5.6 16.7 60.9 268.0 224.4 351.2
si535 535 0.9 5.5 47.4 400.6 252.0 309.6
pa561 561 6.7 22.8 129.2 338.2 268.4 855.2
d657 657 8.9 41.4 78.1 533.0 337.6 527.7
rat783 783 11.8 90.6 158.3 734.3 437.6 561.3
pr1002 1002 7.7 19.4 34.9 1426.0 632.9 1185.2
d1291 1291 7.4 100.6 118.6 1924.3 962.6 1469.1
fl1577 1577 8.5 74.3 210.8 4519.2 1343.6 1605.7
d2103 2103 4.0 50.2 103.4 3396.6 2263.7 4083.5

J. Computer Sci., 8 (10): 1749-1758, 2012

1757

DISCUSSION

 We consider the nearest neighbor method,
Gaussian process regression and the iterated 2-opt
method. It adopts the NN method to construct the first
sample tour and uses it to construct other sample tours by
the 2-exchange method, then they are treated as an input
for the GPR for predicting the optimal tour. In addition,
the solutions from this approach are not very good, far
away from the optimal solutions. Thus, the improvement
procedure is called for. The iterated 2-opt method is a local
search and the combined approach is called
“NN+GPR+Iterated 2-opt.” The numerical experiments
show that it performs well on a set of 60 TSP instances.
 Moreover, we compare the proposed method with
two well-known methods, i.e., Genetic Algorithm (GA)
and Simulated Annealing Algorithm (SA). The
experimental results show the NN+GPR+Iterated 2-
opt algorithm yields better overall solution quality than
GA and SA even though there are some TSP instances
in which it is not the winner, comparing with GA and
SA. Our algorithm also consumes less overall run time
than GA and SA. Although there are some TSP
instances that it spends more run time than both
algorithms, it acquires the better solution quality. Thus,
in this study, the NN+GPR+Iterated 2-opt algorithm is
the best method, comparing among three approaches.

CONCLUSION

 In this study, we propose an algorithm based on
Gaussian Process Regression (GPR) for predicting the
optimal tour of the deterministic Traveling Salesman
Problem (TSP) with a single salesman. This algorithm
formulates TSP as a GPR model where the response is
the length of traveling tour while the predictor is the
traveling tours with the cities’ number. The NN+GPR
embedded with the iterated 2-opt algorithm achieves a
reasonable trade-off between computational time and
solution quality. The results indicate that
NN+GPR+Iterated 2-opt performs well on a set of 60 TSP
instances. However, it consumes more running time than
the two comparing algorithms (genetic algorithm and
simulated annealing algorithm) for some TSP instances.

ACKNOWLEDGMENT

 The researchers would like to thank Associate
Professor Dr. Peerayuth Charnsethikul, Department of
Industrial Engineering at Kasetsart University, for his
constructive comments and suggestions. Also, the first
author gratefully acknowledges the financial support
from Prince of Songkla University for this study.

REFERENCES

Bellmore, M. and G.L. Nemhauser, 1968. The traveling

salesman problem: A survey. Operat. Res., 16:
538-558. DOI: 10.1287/opre.16.3.538

Boer, P.D.T., D.P. Kroese, S. Mannor and R.Y.
Rubinstein, 2005. A tutorial on the cross-entropy
method. Ann. Operat. Res., 134: 19-67. DOI:
10.1007/s10479-005-5724-z

Chatterjee, S., C. Carrera and L.A. Lynch, 1996.
Genetic algorithms and traveling salesman
problems. Eur. J. Operat. Res., 93: 490-510. DOI:
10.1016/0377-2217(95)00077-1

Dantzig, G., R. Fulkerson and S. Johnson, 1954.
Solution of a large-scale traveling-salesman
problem. Operat. Res., 2: 393-410. DOI:
10.1287/opre.2.4.393

Dorigo, M. and L.M. Gambardella, 1997. Ant colony
system: A cooperative learning approach to the
traveling salesman problem. IEEE Trans. Evolut.
Comput., 1: 53-66. DOI: 10.1109/4235.585892

Duman, E. and I. Or, 2004. Precedence constrained
TSP arising in printed circuit board assembly. Int.
J. Prod. Res., 42: 67-78. DOI:
10.1080/00207540310001601073

Gendreau, M., G. Laporte and F. Semet, 1998. A tabu
search heuristic for the undirected selective
travelling salesman problem. Eur. J. Operat. Res.,
106: 539-545. DOI: 10.1016/S0377-
2217(97)00289-0

Geng, X., Z. Chen, W. Yang, D. Shi and K. Zhao, 2011.
Solving the traveling salesman problem based on
an adaptive simulated annealing algorithm with
greedy search. Applied Soft Comput., 11: 3680-
3689. DOI: 10.1016/j.asoc.2011.01.039

Gilmore, P.C. and R.E. Gomory, 1964. Sequencing a
one state-variable machine: A solvable case of the
traveling salesman problem. Operat. Res., 12: 655-
679. DOI: 10.1287/opre.12.5.655

Helsgaun, K., 2000. An effective implementation of the
Lin-Kernighan traveling salesman heuristic. Eur. J.
Operat. Res., 126: 106-130. DOI: 10.1016/S0377-
2217(99)00284-2

Helsgaun, K., 2009. General k-opt submoves for the
Lin–Kernighan TSP heuristic. Math. Prog.
Comput., 1: 119-163. DOI: 10.1007/s12532-009-
0004-6

Ide, T. and S. Kato, 2009. Travel-time prediction using
Gaussian process regression: A trajectory-based
approach. Proceedings of the 9th SIAM
International Conference on Data Mining, Apr. 30-
May. 2, SIAM, Nevada, USA, pp. 1185-1196.

J. Computer Sci., 8 (10): 1749-1758, 2012

1758

Johnson, D.S. and L.A. McGeoch, 1997. The Travelling
Salesman Problem: A Case Study in Local
Optimization. In: Local Search in Combinatorial
Optimization, Aarts, E.H.L. and J.K. Lenstra,
(Eds.). John Wiley and Sons, Chichester, UK., ISBN:
9780471948223, pp: 215-310.

Kirk, J., 2007. Traveling salesman problem-genetic
algorithm.

Ko, J., D.J. Klein, D. Fox and D. Haehnel, 2007.
Gaussian processes and reinforcement learning for
identification and control of an autonomous blimp.
Proceedings of the EEE Conference on Robotics
and Automation, Apr. 10-14, IEEE Xplore Press,
Roma, pp: 742-747. DOI:
10.1109/ROBOT.2007.363075

Krause, A., A. Singh and C. Guestrin, 2008. Near-
optimal sensor placements in Gaussian processes:
Theory, efficient algorithms and empirical
studies. J. Mach. Learn. Res., 9: 235-284.

Laporte, G., 1992. The traveling salesman problem: an
overview of exact and approximate algorithms.
Eur. J. Operat. Res., 59: 231-247. DOI:
10.1016/0377-2217(92)90138-Y

Larranaga, P., C.M.H. Kuijpers, R.H. Murga, I. Inza
and S. Dizdarevic, 1999. Genetic algorithms for the
travelling salesman problem: A review of
representations and operators. Artif. Intell. Rev.,
13: 129-170. DOI: 10.1023/A:1006529012972

Lin, S. and B.W. Kernighan, 1973. An effective
heuristic algorithm for the traveling-salesman
problem. Operat. Res., 21: 498-516. DOI:
10.1287/opre.21.2.498

Little, J.D.C., K.G. Murty, D.W. Sweeney and C. Karel,
1963. An algorithm for the traveling salesman
problem. Operat. Res., 11: 972-989. DOI:
10.1287/opre.11.6.972

Lourenco, H.R., O.C. Martin and T. Stutzle, 2010.
Iterated Local Search: Framework and
Applications. In: Handbook of Metaheuristics,
Gendreau, M. and J.Y. Potvin, (Eds.). Springer,
New York, ISBN: 9781441916631, pp: 363-397.

Moon, C., J. Kim, G. Choi and Y. Seo, 2002. An
efficient genetic algorithm for the traveling
salesman problem with precedence constraints.
Eur. J. Operat. Res., 140: 606-617. DOI:
10.1016/S0377-2217(01)00227-2

Nuhoglu, M., 2007. Shortest path heuristics (nearest
neighborhood, 2 opt, farthest and arbitrary
insertion) for travelling salesman problem.

Rasmussen, C.E. and C.K.I. Williams, 2006. Gaussian
Processes for Machine Learning. 1st Edn., MIT
Press, Cambridge, ISBN-10: 026218253X, pp: 266.

Rasmussen, C.E. and H. Nickisch, 2010. Gaussian
processes for machine learning (GPML) toolbox. J.
Mach. Learn. Res., 11: 3011-3015.

Ratliff, H.D. and A.S. Rosenthal, 1983. Order-picking
in a rectangular warehouse: A solvable case of the
traveling salesman problem. Operat. Res., 31: 507-
521. DOI: 10.1287/opre.31.3.507

Reinelt, G., 1995. The TSPLIB symmetric traveling
salesman problem instances.

Rodriguez, A. and R. Ruiz, 2012. The effect of the
asymmetry of road transportation networks on the
traveling salesman problem. Comput. Operat. Res.,
39: 1566-1576. DOI: 10.1016/j.cor.2011.09.005

Sankoff, D. and M. Blanchette, 1997. The median
problem for breakpoints in comparative genomics.
Proceedings of the 3rd Annual Conference on
Computing and Combinatorics, (CC’ 97), Springer,
London, UK, pp: 251-264.

Seshadri, A., 2006. Traveling Salesman Problem (TSP)
using simulated annealing.

Shi, X.H., Y.C. Liang, H.P. Lee, C. Lu and Q.X. Wang,
2007. Particle swarm optimization-based
algorithms for TSP and generalized TSP. Inform.
Process. Lett., 103: 169-176. DOI:
10.1016/j.ipl.2007.03.010

Sinz, F.H., J.Q. Candela, G.H. Bakir, C.E. Rasmussen
and M.O. Franz, 2004. Learning depth from stereo.
Pattern Recognition, 3175: 245-252. DOI:
10.1007/978-3-540-28649-3_30

