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Abstract: Problem statement: Traveling Salesman Problem (TSP) is a famous NP hard problem.  
Many approaches have been proposed up to date for solving TSP.  We consider a TSP tour as a 
dependent variable and its corresponding distance as an independent variable.  If a predictive function 
can be formulated from arbitrary sample tours, the optimal tour may be predicted from this function.  
Approach: In this study, a combined procedure of the Nearest Neighbor (NN) method, Gaussian 
Process Regression (GPR) and the iterated local search is proposed to solve a deterministic symmetric 
TSP with a single salesman. The first tour in the sample is constructed by the nearest neighbor 
algorithm and it is used to construct other tours by the random 2-exchange swap.  These tours and their 
total distances are training data for a Gaussian process regression model.  A GPR solution is further 
improved with the iterated 2-opt method.  In the numerical experiments, our algorithm is tested on 
many TSP instances and it is compared with the Genetic Algorithm (GA) and the Simulated Annealing 
(SA) algorithm. Results: The proposed method can find good TSP tours within a reasonable 
computational time for a wide range of TSP test problems.  In some cases, it outperforms GA and SA.  
Conclusion: Our proposed algorithm is promising for solving the TSP. 
 
Key words: Gaussian process regression, nearest neighbor, iterated 2-opt algorithm, genetic 
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INTRODUCTION 
 
 The Traveling Salesman Problem (TSP) is one of 
the most well-known NP-hard problems in the field of 
combinatorial optimization. The objective is to find the 
shortest Hamiltonian cycle among nc cities, where the 
salesman visits each of the nc cities exactly once and 
then returns to the starting city. Although its 
mathematical formulation is simple, the TSP is difficult 
because it is combinatorial and the number of solutions 
increases exponentially with the number of cities. 
 TSP applications can be found in many fields 
including job sequencing on a single machine or 
assignment problems (Gilmore and Gomory, 1964), 
material handling in a warehouse (Ratliff and 
Rosenthal, 1983), genome rearrangement (Sankoff and 
Blanchette, 1997), the drilling of printed circuits boards 
(Duman and Or, 2004), transportation and logistics 
problem (Rodriguez and Ruiz, 2012). 
 Several algorithms are designed to solve the TSP 
problem.  The exact algorithm would be to try all 
possible permutations (order combinations), but the 
brute force method takes more computational time than 

the cutting plane method (Dantzig et al., 1954) or the 
branch and bound method (Little et al., 1963).  Other 
heuristics and approximation algorithms include the 
nearest neighbor algorithm or the so-called greedy 
algorithm (Bellmore and Nemhauser, 1968), Lin-
Kernighan heuristics (Lin and Kernighan, 1973; Helsgaun, 
2000) and the k-opt heuristic (Helsgaun, 2009).  
 Moreover, many randomized approaches are 
shown to perform well on the TSP, e.g., the ant colony 
optimization (Dorigo and Gambardella, 1997), the tabu 
search (Gendreau et al., 1998), the genetic algorithm 
(Chatterjee et al., 1996; Moon et al., 2002), the cross 
entropy method (Boer et al., 2005), the particle swarm 
optimization (Shi et al., 2007) and the simulated 
annealing algorithm (Geng et al., 2011). 
 
The key contributions of this study: We propose an 
algorithmic approach for solving a deterministic and 
symmetric TSP with a single salesman.  The method 
integrates the Gaussian Process Regression (GPR) with 
the Nearest Neighbor algorithm (NN) and improves its 
solution by using the iterated 2-opt method.  The 
numerical experiments show that our approach can 
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yield TSP tours within 1-12% of the optimal solutions 
for the TSP with the size up to 2103 nodes.   
 The study is organized as follows: Firstly, the 
literature survey on GPR applications and a conceptual 
framework of GPR approach are described. Then, our 
GPR algorithm for solving TSP is explained and the 
comparing methods are also described in brief.  Next, 
the experimental results of all algorithms and 
discussion are presented. Lastly, this work is 
summarized in conclusion. 
 

MATERIALS AND METHODS 
 
Literature survey on GPR applications: The 
Gaussian    process    regression    is    known    as     a 
probabilistic approach for a regression model due to its 
practical and theoretical simplicity and excellent 
generalization ability (Rasmussen and Williams, 2006). 
For applications, GPR is employed in many fields, 
particularly in machine learning, e.g., to estimate the 
depth of a point in space from observing its image 
position from two different cameras (Sinz et al., 2004), 
to learn motion and observation non-parametric system 
models for sequential state estimation and to apply its 
algorithm to the problem of tracking an autonomous 
micro-blimp (Ko et al., 2007), to find near optimal 
sensor placements in the task as an instance of the art-
gallery problem (Krause et al., 2008).  For traffic 
problems, GPR is applied to predict the traveling time 
for an arbitrary traffic path of downtown Kyoto in 
Japan (Ide and Kato, 2009). 
 
The notations in this paper are as follows: Vectors 
are represented by small Roman symbols, such as xs 
and all ones are assumed to be column vectors.  The 
transpose of vectors or matrices is denoted by 

T.  
Matrices are represented by capitalized Roman 
symbols, such as K, and the (i, j) element of a matrix K 
is Ki,j. The identity matrix is I.  Finally, the estimated 
value is denoted with a hat, e.g., ŷ . 
 
Standard Linear Regression (SLR): The standard 
linear regression model with Gaussian noise is y = 
f(x)+ε and Eq. 1: 
 

( ) Tf x x w=   (1) 
 
where x is the input vector and w is a vector of weights 
(parameters to be estimated) of a linear model 
(Rasmussen and Williams, 2006).  Noise ε follows an 
independent and identically distributed Gaussian 
distribution with zero mean and noise variance 2

nσ  , that 

is ( )2
nN 0,ε σ∼ , where n is the sample size. 

Gaussian process: Gaussian Process (GP) is a 
collection of random variables, any finite number of 
which has a joint Gaussian distribution and it is 
specified by its mean function and covariance function 
(Rasmussen and Williams, 2006). The mean function  
m(x) and covariance function k(x,x') are defined a real 
process as m(x) = E[f(x)] = 0  and k(x,x') = E[(f(x) -
m(x))(f(x')-m(x'))]

 
Thus, we can write the Gaussian 

process as f(x) = GP[m(x), k(x,x')]. 
 
Gaussian process regression: Gaussian process 
regression is a model to estimate the value of a 
dependent variable or a response from some 
observations of dependent variables at certain values of 
independent variables (Rasmussen and Williams, 
2006).  A training set Ts of n observations is denoted as 
Ts = {(x i,yi)|i =1,..,n}, where xi is an input vector (in our 
case, a traveling tour) of nc cities and yi is a response 
(the total distance of the tour). The vector inputs of all n 
observations are aggregated into the nc×n matrix X and 
the total distances are aggregated into the column 
vector y, so we can write Ts = (X, y).  The graphical 
model of GPR is shown in Fig. 1 (Rasmussen and 
Williams, 2006). 
 In the GPR model, the Gaussian basis function 
φ(xi) is specified and it maps a nc city input vector xi 
into Nc-dimensional feature space. Let the matrix Φ(X) 
be the aggregation of columns  φ(xi) for all inputs in 
training data set. Therefore, the function f(x)

 
in the SLR 

model (Eq. 1) becomes φ(xi)
T w, where w is the vector 

of weight parameters. 
 For Gaussian distribution, the probability density 
of the observations given the parameters which is 
estimated over all cases in a training set is:  
 

( ) ( ) ( )
n

T 2
i i n

i =1

p y | X,w = p y | x ,w N X w, Iσ∏ ∼ , 

 
where w is a bias and w ~ N(0, ∑p). The posterior 
distribution over the weights based on the Bayesian 
linear model is computed by Bayes’ rule. The form of 
posterior Gaussian distribution with mean w  and 
covariance matrix A−1 is given as Eq. 2: 
 

( ) ( )2 1 1
np w | X, y N w A Xy,A− − −= σ∼  (2) 

 
where 2 T 1

n pA XX− −= σ + ∑  (Rasmussen and Williams, 

2006). 
 To make prediction for a test case, all possible 
parameter values are averaged and weighted by 
posterior probability.  The predictive distribution for the  
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Fig. 1: Graphical model for GPR 
 
function value ( )s sf f x≜  at a single test point xs, is given 

by averaging the output of all possible linear models. 
Thus, the Gaussian posterior is written as Eq. 3: 
 

( ) ( )2 T 1 T 1
s s n s s sp f | x ,X, y ~ N x A Xy,x A x .− − −σ   (3) 

 
 The predictive distribution in (3) is also Gaussian 
distribution, with a posterior mean of the weights from 
(2) multiplied by the possible value xs in a test case 
(Rasmussen and Williams, 2006). Moreover, the 
predictive variance is a quadratic form of the possible 
value xs in a test case multiplied with the posterior 
covariance matrix. Hence, the predictive distribution 
becomes Eq. 4: 
 

( ) ( )2 T 1 T 1
s s n s s sp f | x ,X, y ~ N A y, A− − −σ φ Φ φ φ  (4) 

 
 With Φ = Φ(X), φs = φ(xs) and  

2 T 1
n pA − −= σ ΦΦ +∑ . On the right-hand side of (4), the 

A−1 of size n×n is needed for making a prediction and it 
may be inconvenient if n is large.  However, this term 
can be rewritten as Eq. 5: 

 

( )
( )

1T 2
s p n

1T T 2 T
s p s s p n p s

N K I y,

K I

−

−

φ Φ + σ


φ φ − φ Φ + σ Φ φ 


∑∑∑∑

∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑

 (5) 

 
where, the covariance matrix K is ΦT∑pΦ.  
 Notice that in (5) the entries of matrices, in the 

form of T
pΦ Φ∑∑∑∑ , T

s pφ Φ∑∑∑∑ , or T
s p sφ φ∑∑∑∑ , are the form 

( ) ( )T

i p sx xφ φ∑∑∑∑  where xi and xs  are in a training set and 

a test set, respectively. Let k(xi,xs) be ( ) ( )T

i p sx xφ φ∑∑∑∑  

and it is called a covariance function or a kernel for 
prediction. Similarly, the covariance matrix K is 

defined as k(X,X) and each of its elements are 
determined by a covariance function of the pair of 
inputs in training set, k(xi,xj).  
 The prior on the noisy observations, independent 
and identically distributed Gaussian noise ɛ with 
variance 2

nσ , becomes ( ) 2
nK X,X I+ σ . In addition, the 

joint distribution of the observed response values and 
the response at the test location is: 
 

( ) ( )
( ) ( )

sn

s s s s

2y K X,X K X,x
N 0,

f K x ,X K

I

x ,x

 
 

  + 
 ∼          

σ
. 

  
 Thus, the predictive function value is Eq. 6: 
 

( ) ( )s s

1
2
n

T
Kf K X + y,x I

−
= σ   (6) 

 
Covariance function: Many choices of covariance 
functions are available for GP, for example, Matérn class 
of covariance function, squared exponential covariance 
function, rational quadratic covariance function and radial 
basis covariance function (Rasmussen and Williams, 
2006). In this study, the Squared Exponential (SE) 
covariance function is chosen because it is the most 
widely-used kernel; it is given by Eq. 7:  
 

( ) ( ) ( )
2

i j2 2
i j f n i j2

x x
k x ,x exp x ,x

2

 − −
 = σ + σ δ
 
  

ℓ
 (7) 

 
where δ(xi,xj) is the Kronecker delta function which 
equals to 1 if and only if i = j and 0 otherwise and ℓ  is 
the characteristic length-scale. 
 
GPR parameter estimation: The hyperparameters of 
the covariance function (such as the characteristic 
length-scale ℓ , signal variance of function (2fσ ) and 

noise variance 2
nσ ) are determined by the maximum 

likelihood method. The log marginal likelihood 
function under the GP model is Eq. 8: 
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( ) T 2
n

1 1
logp y | X,θ  = y α log K I

2 2
n

log 2
2

− − + σ

− π
 (8) 

 
where α  = K-1y, θ is a vector of 2

f, σℓ  and 2
nσ . The 

partial derivative of (8) with respect to θ is minimized 
until converging to zero. This gives a vector of 
optimized hyperparameters.  
 
Tour construction and representation: The sample 
TSP tours are needed as an input to GPR. The nearest 
neighbor algorithm (Nuhoglu, 2007) constructs the first 
TSP tour which is subsequently used to construct other 
tours by the 2-exchange method.  The nearest neighbor 
algorithm starts at a chosen starting city and then 
selects the next closest unvisited city until all cities are 
included in the tour.  The total distance of a tour 
depends on a chosen starting city (Laporte, 1992). The 
2-exchange swapping strategy randomly selects two 
cities in the tour and swaps them to get a new tour 
(Larranaga et al., 1999).   
 A tour can be represented in many ways, e.g., path 
representation, binary string representation, binary 
matrix representation, edge recombination crossover in 
binary representation (Larranaga et al., 1999).  In this 
work, the binary string representation is selected to 
encode all tours for GPR input because it is simple and 
performs well when making test prediction. Each city in 
a tour is encoded as a string of [log2n] bits and then a 
complete tour becomes a string of n[log2n] bits 
(Larranaga et al., 1999); that is, a tour 4→2→1→3 is 
represented by (011001000010). 
 
Tour improvement: Many algorithms have been 
proposed to improve a tour; for instance, r-opt 
algorithm, Lin-Kernighan heuristic, simulated 
annealing algorithm and tabu search (Laporte, 1992). 
We consider the iterated local search with the 2-
exchange neighborhood, or the iterated 2-opt algorithm, 
because the 2-opt is one of the most famous simple 
local searches (Johnson and McGeoch, 1997; Lourenco 
et al., 2010). In the 2-opt algorithm, two edges are 
deleted from a given tour, breaking it into two paths 
and then those paths are reconnected with two other 
possible edges.  If the new tour is shorter, it becomes 
the current tour. These steps are repeated until no 
improvement can be made (i.e., reaching a local 
optimum). However, the 2-opt algorithm moves with a 
neighborhood search by starting at the first node and it 
continues the search process with the next remaining 
nodes until all nodes are examined (Nuhoglu, 2007). This 
makes the solution boundary and it can be improved by 

iterating all search processes, leading to far better 
solutions (Lourenco et al., 2010). In this study, the 
iterated 2-opt procedure is modified from the 2-opt 
algorithm (Nuhoglu, 2007) by iterating the whole process 
until reaching another local optimum which is better. 
 
Proposed GPR Algorithm: Our GPR algorithm for a 
deterministic TSP with a single salesman is divided into 
three phases: I, II and III.  
 
Phase I: We prepare the training dataset Ts and the 
testing dataset. 
 
Input: Distance matrix (D) where Dij is the distance 
from city i to city j: 
 
• Construct the first tour by using the nearest 

neighbor algorithm and other tours from the first 
tour by using the random 2-exchange swapping 
strategy 

• Encode all tours as binary and aggregate them into 
X 

• Calculate the total distance of each tour and 
aggregate them into y 

• Find a vector of test tour that has the minimum 
total distance in X and encode it as binary vector of 
xs in (3) 

 
Output: Binary matrix of tours (X), vector of observed 
total distances (y) and binary vector of test tour (xs) 
 
Phase II: The GPR model is used to predict the length 
of an optimal tour. 
 
Input: Binary matrix of tours (X), vector of observed 
total distances (y) and binary vector of test tour (xs): 
 
• Initialize the hyperparameters ( 2 2

f n, ,σ σℓ ) 

• Compute the square exponential covariance 
function of every possible pairs (xi,xj) by (7) 

• Compute the log marginal likelihood for GPR as 
specified in (8), and then compute fs by (6) 

• Compute the squared difference between each 
value in y and value of fs and identify the ith-index 
of minimum value; that is: 

 

( )2

i s
i

i arg min y f = −
 

. 

 
• Find the binary vector of tour (which belong to the 

ith-index in X) to be the binary vector of predictive 
tour and decode it to the vector of the predictive 
tour *x̂  (in cities’ number). 

 
Output: Estimated optimal tour *x̂  and its length *ŷ  
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Phase III: This phase implements the iterated 2-opt 
algorithm to improve *x̂  from Phase II. 
 
Input: Estimated optimal tour*x̂ : 
 
• Start with *x̂  and its first edge 
• Select an edge (a, b) and search for another edge 

(c, d) and then remove them to break the tour into 
two paths 

• Calculate the sum of distances between these two 
edges and the sum of distances between edge (a, c) 
and edge (b, d) 

• Reconnect the tour by these modified edges, only if 
the sum of distances between the two modified 
edges is less than that of distances between the two 
removed edges 

• Set the obtained tour as an initial tour and repeat 
the whole process until no improvement (reach a 
local optimum) 

• Keep the best tour and set it as an initial tour for 
next iteration 

• Repeat Steps 2-6 until no improvement can be 
made.  Return the resulting tour and its total 
distance 

 

Output: Resulting tour *ˆ̂x  and its total distance (*ˆ̂y ). 
 
Comparing methods: 
Classical genetic algorithm (GA): GA is a well-
known search heuristic for solving optimization 
problems using techniques inspired by natural evolution 
(Chatterjee et al., 1996).  It involves three basic steps: 
evaluation, crossover and mutation. In the first step, a 
population of individual chromosomes is reproduced 
and good chromosomes (based on their objective 
function or “fitness” value) are selected for the next 
generation with some probability.  Next, the crossover 
step randomly selects pairs of survival chromosomes to 
the next generation and mates them for producing new 
chromosomes. The mutation step randomly chooses a 
chromosome in the new generation completed by the 
crossover and mutates it at a particular point for a new 
population.  The whole process is iterated until reaching 
the stopping criteria.  In this study, we use GA from a 
MATLAB toolbox (Kirk, 2007), where the main 
parameters are population sizes (pop_size), probability 
of crossover (pc), probability of mutation (pm) and the 
stopping criteria on the number of iteration. 
 
Simulated Annealing Algorithm (SA): SA is a 
probabilistic method based on the process of material 
annealing in metallurgy (Laporte, 1992). For the TSP, 
SA starts from a given initial tour (when temperature is 

high) and a schedule for gradually decreasing temperature. 
It generates a new tour by randomly swapping two cities 
in a current tour and calculates the difference in the length 
of tour between the current tour and the new tour as ∆E. If 
the new tour is better than the current tour, it is accepted as 
current tour; otherwise, the new tour is accepted with a 
probability given by: 
 

E
exp

T

∆ − 
 

 

 
where, T is the current temperature, which is decreased 
by a cooling rate in each iteration. These steps are 
repeated until reaching the stopping criteria. In this 
paper, we use SA from a MATLAB toolbox 
(Seshadri, 2006), where the main parameters are the 
initial temperature (Tint), end temperature (Tend), 
cooling rate (Tcool) and the stopping criteria on the 
number of iteration. 
 
Numerical experiments: Our GPR algorithm is 
modified from the GPML toolbox (Rasmussen and 
Nickisch, 2010) which is implemented in MATLAB.  
We experiment all algorithms with 60 TSP test 
problems, with the number of cities ranging from 16 to 
2103 from the TSP library (Reinelt, 1995). The 
computation is done on PC running Intel(R) Pentium 
Dual CPU 2 GHz. processor with 1 GB of memory. 
 For the GPR algorithm, we use 50 sample tours 
and the initial hyperparameters are: ℓ  = 2, 2

fσ  = 1 and 
2
nσ = 0 (by trial and error). Because our algorithm needs 

a training data set which we create randomly, we repeat 
the GPR algorithm on each TSP instance for nine times.  
Then total distances are averaged. Our GPR algorithm 
integrates GPR with the Nearest Neighbor algorithm 
(NN) and the iterated 2-opt method, namely 
NN+GPR+Iterated 2-opt.  
 The GA is set with the following parameters: 
pop_size = 100, pc = 0.5, pm = 0.8 (Kirk, 2007) and the 
number of iteration = 10000 (by trial and error).  SA 
parameters are: Tint= 1000 and Tend = 0.0025 (Geng et 
al., 2011), Tcool = 0.97 and the number of iteration = 
20000 (Seshadri, 2006).  
 The performance of all algorithms is the deviation 

between the total distance of the resulting tour (*ˆ̂y ) and 

that of the actual optimal solution (*y ) for each 
instance, given by: 
 

* *

*

ˆ̂y - y
deviation (%) 100

y
= × , 

 
and the computational time is also considered. 
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Fig. 2: Comparison of the deviation from optimal solutions among three algorithms 
 

 
 

Fig. 3: Comparison of the log scale of average running time among three algorithms 

 
RESULTS 

 
 The results of the proposed algorithm for each 
instance, including the best solution obtained from nine 
trials, the average performance of nine trials, the 95% 
confidence interval, the percentage of the deviation of 
its solution from the optimal solution, and the average 
running time, are shown in Table 1.  The percentages 
of the deviation are less than 12% and the average 
running time is between 2 to 4, 520 sec.  For the gr17 
problem, the GPR algorithm can find an optimal 
solution within 3 sec.  In addition, for ulysses16, 
ulysses22, bays29, swiss42, pr107 and si535 problems, 
the algorithm can find solutions that are within 1% of 
the optimal solutions.  However, the worst case of the 
deviation from an optimal solution occurs in the rat783 
instance, approximately 12%.  
 The summary results of the proposed algorithm 
and the comparing algorithms for each instance, 

including the percentage of the deviation of their 
solutions from the optimal solutions and the average 
running time, are shown in Table 2.  The comparison 
plots of the deviation of all algorithms’ solutions from 
optimal solutions and the log scale of average running 
time among three algorithms are provided in Fig. 2 and 
3, respectively.  Comparing with GA and SA, the 
proposed algorithm can find better solutions for 39 
TSP instances (out of 60). The average running time of 
49 TSP instances are also less than one second. 
Although the proposed algorithm spends more run time 
than both comparing algorithms in the remaining 11 
TSP instances, the solutions obtained are better. 
 When the size of the test problem is bigger, our 
proposed approach performs well while the 
performance of GA and SA deteriorates, as shown in 
Fig. 2. Figure 3 shows the average running time 
consumed by the NN+GPR+Iterated 2-opt algorithm 
spends more run time than GA and SA when the 
problem size is larger than 535 cities, but the solution’s 
quality is better. 
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Table 1: Performance of our GPR algorithm 
  Optimal  Best solution out of Average *ˆ̂y

 

95% Confidence interval Deviation Average running 
Test problem  # of nodes solution (units) 9 trials  (units) (units) Lower (units) Upper (units)  (%) time (sec.) 

Ulysses16 16 6859 6909 6909.0 - - 0.7 3.3 

gr17 17 2085 2085 2085.0 - - 0.0 2.3 

gr21 21 2707 2816 2870.2 2854.6 2885.9 6.0 2.9 

ulysses22 22 7013 7013 7032.3 7002.8 7061.8 0.3 4.2 

gr24 24 1272 1272 1371.6 1342.9 1400.3 7.8 2.9 

fri26 26 937 961 961.0 - - 2.6 3.2 

bayg29 29 1610 1660 1666.2 1663.5 1668.9 3.5 3.8 

bays29 29 2020 2035 2035.0 - - 0.7 3.6 

dantzig42 42 699 736 739.0 736.8 741.2 5.7 6.3 

swiss42 42 1273 1274 1283.9 1267.0 1300.8 0.9 5.5 

att48 48 10628 10954 11142.2 11060.2 11224.2 4.8 6.9 

gr48 48 5046 5286 5359.2 5324.2 5394.2 6.2 10.8 

hk48 48 11461 12003 12003.0 - - 4.7 6.9 

eil51 51 426 428 432.4 429.2 435.7 1.5 7.3 

berlin52 52 7542 7596 7666.3 7504.1 7828.5 1.6 7.7 

brazil58 58 25395 25699 25947.0 25875.5 26018.5 2.2 8.7 

st70 70 675 711 725.0 718.6 731.4 7.4 11.3 

eil76 76 538 558 567.8 561.0 574.5 5.5 12.8 

pr76 76 108159 112220 113981.2 112450.7 115511.7 5.4 13.4 

rat99 99 1211 1278 1311.0 1288.9 1333.1 8.3 19.7 

kroA100 100 21282 21768 21956.8 21834.1 22079.4 3.2 19.2 

kroB100 100 22141 22755 23133.0 22882.8 23383.2 4.5 17.4 

kroC100 100 20749 22005 22013.9 22011.3 22016.5 6.1 18.3 

kroD100 100 21294 22857 23268.6 23086.2 23450.9 9.3 18.3 

kroE100 100 22068 22596 22729.0 22531.1 22926.9 3.0 18.7 

rd100 100 7910 8311 8596.8 8388.4 8805.2 8.7 18.9 

lin105 105 14379 14984 15070.7 15008.8 15132.5 4.8 20.2 

pr107 107 44303 44573 44666.9 44553.6 44780.1 0.8 19.4 

gr120 120 6942 7305 7469.8 7372.9 7566.7 7.6 24.7 

pr124 124 59030 61746 61746.0 - - 4.6 23.7 

bier127 127 118282 121772 124480.8 122390.8 126570.7 5.2 24.8 

ch130 130 6110 6513 6630.2 6544.7 6715.7 8.5 31.2 

pr136 136 96772 104093 105196.3 104454.0 105938.7 8.7 29.6 

pr144 144 58537 60754 60754.0 - - 3.8 29.1 

ch150 150 6528 6759 6772.3 6764.6 6780.0 3.7 37.7 

kroA150 150 26524 28372 28860.2 28695.6 29024.8 8.8 38.5 

kroB150 150 26130 27484 27688.8 27622.2 27755.3 6.0 37.3 

pr152 152 73682 75774 75970.3 75810.2 76130.5 3.1 32.1 

u159 159 42080 44380 44899.7 44667.0 45132.4 6.7 35.5 

si175 175 21407 21656 21671.0 21665.2 21676.8 1.2 40.2 

d198 198 15780 16042 16271.1 16082.4 16459.9 3.1 52.1 

kroA200 200 29368 30457 30689.1 30559.9 30818.3 4.5 61.3 

kroB200 200 29437 31731 31954.6 31879.9 32029.2 8.6 57.3 

tsp225 225 3919 4137 4176.1 4158.7 4193.6 6.6 85.5 

ts225 225 126643 130742 132839.0 132197.2 133480.8 4.9 55.1 

pr226 226 80369 83184 84415.9 83937.8 84894.0 5.0 61.1 

gil262 262 2378 2580 2623.0 2606.0 2640.0 10.3 95.2 

a280 280 2579 2668 2713.6 2689.4 2737.7 5.2 102.8 
lin318 318 42029 44229 45241.8 44787.8 45695.8 7.6 120.6 
rd400 400 15281 16354 16491.1 16385.8 16596.4 7.9 232.1 
pcb442 442 50778 53799 54363.2 54100.8 54625.7 7.1 223.9 
d493 493 35002 36553 36971.9 36706.1 37237.7 5.6 268.0 
si535 535 48450 48771 48865.3 48827.1 48903.5 0.9 400.6 
pa561 561 2763 2923 2946.8 2933.6 2959.9 6.7 338.2 
d657 657 48912 52916 53281.7 53125.2 53438.1 8.9 533.0 
rat783 783 8806 9779 9846.7 9809.8 9883.6 11.8 734.3 
pr1002 1002 259045 276226 279077.1 277476.5 280677.8 7.7 1426.0 
d1291 1291 50801 53924 54545.3 54066.6 55024.0 7.4 1924.3 
fl1577 1577 [22204,22249] 23861 24099.7 23974.0 24225.3 8.5 4519.2 
d2103 2103 [79952,80529] 82822 83161.7 83017.1 83306.2 4.0 3396.6 
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Table 2: Comparison of the search performance 
  Deviation (%)   Average running time (sec.) 
  ---------------------------------------------------- ------------------------------------------------------------------- 
  NN+GPR+   NN+GPR+ 
Test problem # of nodes Iterated 2-opt GA SA Iterated 2-opt GA SA 
ulysses16 16 0.7 0.0 0.8 3.3 22.5 6.8 
gr17 17 0.0 0.1 1.4 2.3 27.5 3.9 
gr21 21 6.0 0.4 2.8 2.9 29.4 3.0 
ulysses22 22 0.3 0.4 2.3 4.2 42.2 8.3 
gr24 24 7.8 0.4 7.4 2.9 29.2 27.1 
fri26 26 2.6 0.0 6.7 3.2 60.3 39.7 
bayg29 29 3.5 0.8 5.9 3.8 63.6 12.3 
bays29 29 0.7 0.4 5.5 3.6 63.6 12.2 
dantzig42 42 5.7 0.0 15.9 6.3 31.1 157.4 
swiss42 42 0.9 2.5 15.1 5.5 31.2 17.8 
att48 48 4.8 1.7 16.8 6.9 32.4 21.7 
gr48 48 6.2 0.8 21.6 10.8 32.8 20.8 
hk48 48 4.7 2.4 17.9 6.9 32.4 21.9 
eil51 51 1.5 3.8 10.0 7.3 33.4 356.0 
berlin52 52 1.6 3.5 22.9 7.7 33.3 23.3 
brazil58 58 2.2 2.3 13.4 8.7 35.0 25.2 
st70 70 7.4 4.1 26.1 11.3 37.8 585.0 
eil76 76 5.5 5.0 18.5 12.8 39.4 803.1 
pr76 76 5.4 9.0 16.4 13.4 39.2 36.5 
rat99 99 8.3 7.1 41.6 19.7 45.8 45.2 
kroA100 100 3.2 6.1 44.9 19.2 46.0 48.7 
kroB100 100 4.5 6.4 37.9 17.4 45.5 48.2 
kroC100 100 6.1 7.5 45.0 18.3 45.8 48.4 
kroD100 100 9.3 5.2 42.1 18.3 45.8 49.6 
kroE100 100 3.0 4.7 38.8 18.7 45.7 48.4 
rd100 100 8.7 7.4 55.8 18.9 45.6 47.3 
lin105 105 4.8 7.5 57.6 20.2 47.2 50.0 
pr107 107 0.8 2.2 18.7 19.4 47.5 50.4 
gr120 120 7.6 6.6 56.1 24.7 51.3 55.8 
pr124 124 4.6 4.3 19.8 23.7 52.5 63.6 
bier127 127 5.2 6.2 17.0 24.8 53.4 64.5 
ch130 130 8.5 9.1 60.3 31.2 54.7 61.4 
pr136 136 8.7 8.4 16.3 29.6 56.3 69.4 
pr144 144 3.8 5.3 8.9 29.1 58.8 77.1 
ch150 150 3.7 9.6 73.3 37.7 61.1 76.5 
kroA150 150 8.8 8.7 53.0 38.5 60.8 80.0 
kroB150 150 6.0 7.6 55.3 37.3 60.8 79.9 
pr152 152 3.1 5.3 15.7 32.1 61.3 79.2 
u159 159 6.7 1.9 40.0 35.5 63.8 82.9 
si175 175 1.2 1.0 20.2 40.2 69.8 79.7 
d198 198 3.1 5.3 54.1 52.1 78.0 106.8 
kroA200 200 4.5 10.0 61.1 61.3 78.8 109.5 
kroB200 200 8.6 10.4 63.7 57.3 79.0 109.6 
tsp225 225 6.6 8.0 93.3 85.5 88.7 122.4 
ts225 225 4.9 6.8 19.8 55.1 88.8 129.8 
pr226 226 5.0 9.2 15.1 61.1 89.2 120.8 
gil262 262 10.3 12.0 107.6 95.2 103.8 141.6 
a280 280 5.2 6.8 122.7 102.8 111.2 152.0 
lin318 318 7.6 12.1 69.4 120.6 129.0 208.9 
rd400 400 7.9 21.3 126.8 232.1 172.1 259.1 
pcb442 442 7.1 20.4 66.1 223.9 195.9 312.9 
d493 493 5.6 16.7 60.9 268.0 224.4 351.2 
si535 535 0.9 5.5 47.4 400.6 252.0 309.6 
pa561 561 6.7 22.8 129.2 338.2 268.4 855.2 
d657 657 8.9 41.4 78.1 533.0 337.6 527.7 
rat783 783 11.8 90.6 158.3 734.3 437.6 561.3 
pr1002 1002 7.7 19.4 34.9 1426.0 632.9 1185.2 
d1291 1291 7.4 100.6 118.6 1924.3 962.6 1469.1 
fl1577 1577 8.5 74.3 210.8 4519.2 1343.6 1605.7 
d2103 2103 4.0 50.2 103.4 3396.6 2263.7 4083.5 
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DISCUSSION 
 
 We consider the nearest neighbor method, 
Gaussian process regression and the iterated 2-opt 
method. It adopts the NN method to construct the first 
sample tour and uses it to construct other sample tours by 
the 2-exchange method, then they are treated as an input 
for the GPR for predicting the optimal tour. In addition, 
the solutions from this approach are not very good, far 
away from the optimal solutions.  Thus, the improvement 
procedure is called for. The iterated 2-opt method is a local 
search and the combined approach is called 
“NN+GPR+Iterated 2-opt.”  The numerical experiments 
show that it performs well on a set of 60 TSP instances.   
 Moreover, we compare the proposed method with 
two well-known methods, i.e., Genetic Algorithm (GA) 
and Simulated Annealing Algorithm (SA). The 
experimental results show the NN+GPR+Iterated     2-
opt algorithm yields better overall solution quality than 
GA and SA even though there are some TSP instances 
in which it is not the winner, comparing with GA and 
SA.  Our algorithm also consumes less overall run time 
than GA and SA. Although there are some TSP 
instances that it spends more run time than both 
algorithms, it acquires the better solution quality. Thus, 
in this study, the NN+GPR+Iterated 2-opt algorithm is 
the best method, comparing among three approaches. 
 

CONCLUSION 
 
 In this study, we propose an algorithm based on 
Gaussian Process Regression (GPR) for predicting the 
optimal tour of the deterministic Traveling Salesman 
Problem (TSP) with a single salesman. This algorithm 
formulates TSP as a GPR model where the response is 
the length of traveling tour while the predictor is the 
traveling tours with the cities’ number. The NN+GPR 
embedded with the iterated 2-opt algorithm achieves a 
reasonable trade-off between computational time and 
solution quality. The results indicate that 
NN+GPR+Iterated 2-opt performs well on a set of 60 TSP 
instances.  However, it consumes more running time than 
the two comparing algorithms (genetic algorithm and 
simulated annealing algorithm) for some TSP instances.  
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