
Journal of Computer Science 8 (8): 1314-1320, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Umarani Srikanth G., Department of PG Studies, S.A. Engineering College, Chennai, Tamilnadu, India
1314

Tasks Scheduling using Ant Colony Optimization

1Umarani Srikanth G., 2V. Uma Maheswari, 3.P. Shanthi and 4Arul Siromoney

1Department of PG Studies, S.A. Engineering College, Chennai, Tamilnadu, India
2Department of Information Science and Technology
3,4Department of Computer Science and Engineering

2,3,4College of Engineering, Anna University, Chennai, Tamilnadu, India

Abstract: Problem statement: Efficient scheduling of the tasks to heterogeneous processors for any
application is critical in order to achieve high performance. Finding a feasible schedule for a given task
set to a set of heterogeneous processors without exceeding the capacity of the processors, in general, is
NP-Hard. Even if there are many conventional approaches available, people have been looking at
unconventional approaches for solving this problem. This study uses a paradigm using Ant Colony
Optimisation (ACO) for arriving at a schedule. Approach: An attempt is made to arrive at a feasible
schedule of a task set on heterogeneous processors ensuring load balancing across the processors. The
heterogeneity of the processors is modelled by assuming different utilisation times for the same task on
different processors. ACO, a bio-inspired computing paradigm, is used for generating the schedule.
Results: For a given instance of the problem, ten runs are conducted based on an ACO algorithm and the
average wait time of all tasks is computed. Also the average utilisation of each processor is calculated.
For the same instance, the two parameters: average wait time of tasks and utilisation of processors are
computed using the First Come First Served (FCFS). The results are tabulated and compared and it is
found that ACO performs better than the FCFS with respect to the wait time. Although the processor
utilisation is more for some processors using FCFS algorithm, it is found that the load is better balanced
among the processors in ACO. There is a marginal increase in the time for arriving at a schedule in ACO
compared to FCFS algorithm. Conclusion: This approach to the tasks assignment problem using ACO
performs better with respect to the two parameters used compared to the FCFS algorithm but the time
taken to come up with the schedule using ACO is slightly more than that of FCFS.

Key words: Ant Colony Optimisation (ACO), First Come First Served (FCFS), average utilisation,

conventional approaches available, computational demands

INTRODUCTION

 The heterogeneous computing platform meets the
computational demands of various problems. In such
platforms the tasks can be executed in sequence or in
parallel on two or more processors. One of the key
challenges of such heterogeneous processor system is
effective tasks scheduling (Srikanth et al., 2012). The
problem of scheduling tasks to processing units has a
major impact on the performance of a system (Shih-Tang
et al., 2008). The scheduling problem is NP-Complete.
 Scheduling of tasks is mapping of a set of tasks to a
set of processors in order to achieve some goal. An
efficient task scheduling avoids the situation in which
some of the processors are overloaded while some
others are idle (Mao, 2010). The goal is usually
represented as some cost function which may consider
the combination of several criteria: Fair load sharing
between the processors, maximizing the degree of
parallelism, reducing the average execution times of
the program, minimizing the amount of

communication among the processors, minimizing the
makespan of the path and so on. In order to be of use
in achieving a satisfactory solution, this cost function
may include the constraints like tasks execution time,
deadline of the tasks, inter-task communication time,
precedence between tasks, speed of the processors,
memory system properties.
 Several heuristic algorithms are proposed to solve
the same problem. In (Braun et al., 2001) the author has
compared eleven heuristics for mapping and scheduling a
set of tasks onto the heterogeneous processors and the
final goal is to minimize the makespan. Other categories
of algorithms are also defined such as list-based
scheduling (Radulescu and Gemund, 2002), cluster-based
(Ucar et al., 2006) and duplication based scheduling
heuristics. List based heuristics assigns priority level to
the tasks and maps the highest priority task to the best
fitting processors. Cluster based heuristics group consist
of all tightly coupled tasks and assign them onto the
same processor whereas the duplication based heuristics
combines the above two heuristics.

J. Computer Sci., 8 (8): 1314-1320, 2012

1315

 Ant Colony Optimization, inspired by the ants
foraging behaviour, is a popular technique for
approximate optimization (Blum and Roli, 2003). The
core of this behaviour is the indirect communication
between the ants by means of chemical pheromone
trails which enables them to find short paths between
their nest and food sources (Blum, 2005). A major
advantage of ACO over other meta-heuristic algorithms
is the problem instance may change dynamically. In
this framework, the decisions made by all ants are
purposeful and the experiences of all ants are utilised in
each iteration to construct the new optimal solution.

MATERIALS AND METHODS

Task scheduling problem: Let Heterogeneous Multi
Processors (HMP) = {P1, P2,…, Pm} denote m
processors and each processor Pj run at variable speed
(Chen and Cheng, 2005). A Tasks Set (TS) = {T1,
T2,…,Tn) has n tasks. The utilisation matrix U of size
n*m, where n is the number of tasks and m is the
number of processors, whose elements are real numbers
in (0,1) give the proportional utilisation of a processor
by a task. In other words, the value ui,j denotes the
fraction of the computing capacity of Pj required to
execute Ti. ui,j is also referred as utilisation of Ti on Pj.
The Task Scheduling Problem (TSP) can be formally
described as follows: Given HMP and TS, determine a
schedule that assigns each of the tasks in TS to a
specific processor in HMP in such a way that the
cumulative utilisation of the tasks on any processor is
no greater than the utilisation bound of that processor
which is 1.0 (Chen et al., 2011).

Processor characteristics: The processors are assumed
to be heterogeneous. The heterogeneity of the
processors is defined by the varied proportional
utilisation of the same task on different processors.

Tasks characteristics: Tasks are assumed to be
independent and thus there are no precedence constraints
among them. Also there is no inter-task communication.
The utilisation of a processor by a task is known a priori
and it does not change with time. All the tasks are
assumed to arrive at the same instant at 0 time units.

Problem formulation: TSP can be represented by a
bipartite graph with two classes of nodes: TS and HMP.
A task is mapped to a TS node and a processor is mapped
to a HMP node. The graph is directed graph with the
edges leaving from the class of tasks nodes to the class of
processor nodes. There is a directed edge from a TS node
to a HMP node if and only if the corresponding task can
be assigned to that processor without exceeding its
available computing capacity. More than one task can be
scheduled on the same processor.

 A sample utilisation matrix is shown in Table 1.
The number of rows is equal to the number of tasks and
the number of columns is equal to the number of
processors. A typical entry ui,j specifies the proportional
time of the processor Pj used by the task Ti.
 A schedule can be represented as a n*m binary
matrix where n represents number of tasks and m
denotes the number of processors. A typical entry of
this matrix is denoted as si,j. The entry si,j =1 if task Ti is
scheduled on processor Pj. Note that there are no two
1’s in the same row. This means that a task is assigned
to only one processor. A column can have many 1’s
indicating that all the corresponding tasks are
scheduled on that processor. But the proportional
utilisation of all the tasks on a processor should not
exceed 1. In other words:

m

i, j

j 1

s 1for i 1, n
=

= =∑

n

i, j i, j

i 1

u s 1 for j 1, m
=

∗ <= =∑

Applying ACO to TSP: Given a set of HMP and TS,
the artificial ant stochastically assigns each task to one
processor until each of the tasks is assigned to some
specific processor. We introduce an artificial
pheromone value τi,j with an edge between Ti and Pj,
that indicates the favourability of assigning the task Ti
to the processor Pj. Initially τi,j is the same for all i, j.
After each iteration, the pheromone value of each edge
is reduced by a certain percentage to emulate the real-
life behaviour of evaporation of pheromone count over
time. The fraction ρ specifies the percentage of the τ
value after evaporation. (i.e.,) 1-τ is the evaporation
rate. We use na artificial ants. Each ant behaves as
follows: From a node i in TS an ant choose a node j in
HMP with a probability given by:

m

j 1

(i, j)
p(i, j)

(i, j)
=

τ=
τ∑

 After all the tasks are considered and scheduled by
an ant, the feasibility of the schedule is verified using
the utilisation value of individual processors. If any
processor’s utilisation exceeds 1.0, that schedule is
infeasible. This procedure is repeated for all na ants. The
quality q of a feasible schedule S generated by an ant is
computed by considering the total utilisation of all the
processors. This quality is used in the pheromone
update of the next iteration. This is given by:

 τi,j = ρ* τi,j +q(S) if Ti is assigned to Pj in the schedule S
 = ρ* τi,j otherwise

J. Computer Sci., 8 (8): 1314-1320, 2012

1316

Table 1: Utilisation matrix with 4 tasks and 3 processors
 P1 P2 P3
T1 u1,1 u1,2 u1,3
T2 u2,1 u2,2 u2,3
T3 u3,1 u3,2 u3,3
T4 u4,1 u4,2 u4,3

 For our experiment ρ=0.7 and the utilisation matrix
is generated randomly. The same utilisation matrix is
used for all the trials and the FCFS algorithm. The
parameters considered in our experiment are the
utilisation of each processor, the average waiting time
of all the tasks and the time taken for generating a
feasible schedule. For each problem instance, ten trials
are run for ACO and the average values of the
parameters are taken which are then compared with
those of the FCFS scheduling algorithm and the results
are tabulated. The iterations continue till all the ants
come up with the same schedule. Then the solution is
said to converge.

Procedure: Tasks Scheduling Algorithm:

do while (solution not converged)
 for each ant k
 for each task i
 select the processor
 stochastically using the τ matrix
 If the schedule is feasible, compute its
 quality.
 Update the pheromone based on the quality of each
feasible schedule
Generate the τ matrix for the next iteration

RESULTS

 A scheduling algorithm based on ACO is
implemented and the algorithm is run for 8 problem
instances with the number of processors as 8 and
number of tasks as 80, 90, 100, 110, 120, 130, 140 and
150. The number of ants used for ACO is 100 and ρ =
0.7. Ten trials are done for each problem instance with
ACO and the average value of wait time of tasks and
utilisation of each processor are obtained. For each
problem instance, FCFS is run with the utilisation matrix
used by ACO algorithm. The wait time of tasks and
utilisation of each processor are computed and compared
with that of ACO and the results are tabulated.
 Table 2 and 3 indicate the individual processor
utilisation obtained for ten trial runs for tasks sets of
size 80 and 150 respectively. Similar results are
generated for the other tasks sets but are not shown
here. The average utilisation of each of the eight
processors using ACO is shown in Table 4, for all
problem instances. Table 5 shows the same for the
FCFS algorithm. Figure 1 pictorially depicts this fact.
Table 6 shows the average waiting time of all the tasks
and Table 7 the average time taken for generating the
schedule using ACO for all the eight problem instances.
Table 8 gives a comparison of the two parameters,
average waiting time and scheduling time of both the
algorithms. Figure 3 and 4 pictorially represent the
average waiting time and average scheduling time of
the tasks using ACO and FCFS algorithms respectively.

Table 2: Individual processor utilisation for a task set of size = 80 using ACO

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average utilisation

1 0.656084 0.700213 0.885165 0.406228 0.763305 0.773982 0.298284 0.364099 0.573676 0.3641 0.578514

2 0.582901 0.674038 0.663830 0.842179 0.686192 0.548480 0.466564 0.721615 0.478275 0.72162 0.638569

3 0.395874 0.671931 0.289019 0.695151 0.734577 0.704704 0.824187 0.710339 0.402859 0.71034 0.613898

4 0.670888 0.313425 0.689824 0.590311 0.562306 0.549707 0.705603 0.714157 0.365236 0.71416 0.587561
5 0.428755 0.729906 0.593352 0.659602 0.788282 0.601688 0.669223 0.278909 0.729103 0.27891 0.575773

6 0.417844 0.524486 0.605786 0.644437 0.351635 0.535320 0.653824 0.818237 0.666307 0.81824 0.603611
7 0.742216 0.524340 0.410301 0.466626 0.466619 0.337011 0.466235 0.321595 0.610891 0.32160 0.466743

8 0.688504 0.780932 0.584626 0.367148 0.538258 0.328475 0.513205 0.590841 0.678001 0.59084 0.566083

Table 3: Individual processor utilisation for a task set of size = 150 using ACO
Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average utilisation

1 0.784939 0.859213 0.845248 0.912581 0.844975 0.432324 0.872766 0.908601 0.897559 0.78755 0.814576

2 0.990086 0.979008 0.884396 0.924358 0.778439 0.939391 0.474347 0.931159 0.88778 0.78838 0.857734

3 0.907148 0.835568 0.716624 0.898802 0.903272 0.952471 0.850109 0.629361 0.803439 0.93534 0.843214
4 0.502497 0.923226 0.799225 0.940744 0.712095 0.878412 0.730876 0.992231 0.992044 0.75940 0.823075
5 0.872966 0.920687 0.936111 0.748477 0.783539 0.841109 0.963076 0.896009 0.976260 0.62324 0.856148
6 0.926508 0.965722 0.744123 0.824886 0.931561 0.93275 0.858082 0.91201 0.818186 0.75893 0.867276
7 0.840998 0.892032 0.792996 0.864805 0.895089 0.88640 0.986703 0.943888 0.947246 0.81581 0.886597
8 0.735145 0.998085 0.845261 0.795353 0.922249 0.984701 0.96754 0.973704 0.677923 0.64639 0.854635

J. Computer Sci., 8 (8): 1314-1320, 2012

1317

Table 4: Average Processor utilisation for ACO for all 8 problem instances

Processor Task = 80 Tasks = 90 Tasks = 100 Tasks = 110 Tasks = 120 Tasks = 130 Tasks = 140 Tasks = 150

1 0.578514 0.576371 0.634251 0.656788 0.602115 0.722107 0.717504 0.814576
2 0.638569 0.47693 0.579841 0.586505 0.670872 0.664193 0.784206 0.857734
3 0.613898 0.601543 0.730575 0.700642 0.636752 0.747538 0.802563 0.843214
4 0.587561 0.561319 0.496561 0.575453 0.758740 0.691837 0.778812 0.823075
5 0.575773 0.591116 0.702479 0.642773 0.655846 0.735904 0.775710 0.856148
6 0.603611 0.630396 0.561735 0.709199 0.723261 0.674395 0.741065 0.867276
7 0.466743 0.446494 0.604506 0.746149 0.643948 0.639315 0.78294 0.886597
8 0.566083 0.516977 0.550353 0.578916 0.639514 0.625377 0.789684 0.854635
Std deviation 0.051024 0.064117 0.078673 0.065522 0.050892 0.044817 0.028033 0.023242

Table 5: Processor utilisation table for FCFS for all 8 problem instances

Processor Task = 80 Tasks = 90 Tasks = 100 Tasks = 110 Tasks = 120 Tasks = 130 Tasks = 140 Tasks = 150

1 0.999868 0.997173 0.998363 0.999082 0.999750 0.999876 0.998197 0.999695
2 0.993046 0.996016 0.998884 0.999709 0.999904 0.999869 0.999198 0.999930
3 0.997989 0.997549 0.999344 0.999262 0.998091 0.999686 0.998984 0.999368
4 0.638526 0.792437 0.996648 0.998617 0.996428 0.991380 0.999906 0.998867
5 0.000000 0.000000 0.465335 0.987451 0.998315 0.999198 0.997494 0.997635
6 0.000000 0.000000 0.000000 0.206958 0.802481 0.657856 0.977435 0.996723
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.092169 0.524179
8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std deviation 0.498996 0.509959 0.495432 0.484447 0.452179 0.451279 0.440108 0.368644

Table 6: Average waiting time of all the tasks for ACO for all the 8 problem instances
 Waiting time
Tasks Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 (sec) Average

80 0.272352 0.298573 0.306115 0.283122 0.269575 0.284789 0.272519 0.290696 0.265357 0.29070 0.283379
90 0.23708 0.261958 0.275055 0.250937 0.278498 0.310585 0.471085 0.276304 0.263216 0.28554 0.291026
100 0.280952 0.321592 0.28699 0.289454 0.332356 0.276751 0.287561 0.327144 0.288574 0.28454 0.297592
110 0.336543 0.364722 0.321728 0.284489 0.316022 0.32348 0.340149 0.290859 0.302946 0.31270 0.319363
120 0.284736 0.304845 0.368304 0.363478 0.345521 0.310871 0.299553 0.330165 0.335844 0.35510 0.329842
130 0.369743 0.315029 0.360452 0.341435 0.366506 0.327045 0.351238 0.320950 0.348863 0.33560 0.343686
140 0.393407 0.34719 0.354999 0.377763 0.382686 0.363617 0.350132 0.419890 0.391613 0.32555 0.370685
150 0.399324 0.421531 0.391251 0.418564 0.400483 0.415324 0.417409 0.418305 0.420223 0.36060 0.406301

Table 7: Average time to generate a schedule using ACO for all the 8 problem instances

 Scheduling time
Tasks Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 (sec) Average
80 0.549451 0.329670 0.329670 0.219780 0.384615 0.274725 0.329670 0.384615 0.32967 0.384620 0.351648
90 0.384615 0.549451 0.329670 0.274725 0.274725 0.274725 0.219780 0.274725 0.274725 0.329670 0.318681
100 0.439560 0.219780 0.274725 0.274725 0.439560 0.219780 0.274725 0.274725 0.274725 0.274725 0.296703
110 0.274725 0.219780 0.219780 0.219780 0.549451 0.274725 0.274725 0.219780 0.274725 0.219780 0.274725
120 0.274725 0.274725 0.274725 0.384615 0.219780 0.219780 0.219780 0.219780 0.219780 0.219780 0.252747
130 0.219780 0.274725 0.274725 0.219780 0.219780 0.164835 0.164835 0.219780 0.219780 0.164835 0.214286
140 0.439560 0.329670 1.923077 0.439560 0.329670 0.329670 0.274725 0.329670 0.219780 0.219780 0.483516
150 0.549451 0.439560 1.648352 0.329670 0.989011 0.494505 1.703297 0.824176 0.549451 0.329670 0.785714

Table 8: Comparison of the waiting time and the scheduling time of both algorithms
 Average waiting time of tasks (sec) Average scheduling time of tasks (sec)
 --- --
Tasks ACO FCFS ACO FCFS

80 0.283379 0.503323 0.351648 0.219780
90 0.291026 0.513061 0.318681 0.329670
100 0.297592 0.479564 0.296703 0.274725
110 0.319363 0.501489 0.274725 0.329670
120 0.329842 0.471085 0.252747 0.164835
130 0.343686 0.557086 0.214286 0.219780
140 0.370685 0.488277 0.483516 0.274725
150 0.406301 0.488425 0.785714 0.219780

J. Computer Sci., 8 (8): 1314-1320, 2012

1318

Fig: 1. Comparison of individual processor utilisation in both algorithms

Fig. 3: Comparison of the waiting time of both algorithms

Fig. 4: Comparison of the scheduling time of both algorithms

J. Computer Sci., 8 (8): 1314-1320, 2012

1319

Fig. 2: The comparison of the standard deviation of the utilisation of all the processors using the two algorithms

DISCUSSION

 It is seen from Table 5 that the number of
processors not utilised by the FCFS scheduling
algorithm varies from 1 to 4. But all the processors are
utilised by the ACO algorithm as shown in Table 4. The
last row of Table 4 and Table 5 give the standard
deviation of the utilisation across all the 8 processors
for the respective algorithms. Figure 2 shows the
comparison of the standard deviation of the utilisation
of all the processors using the two algorithms. This
substantiates our claim that the load is fairly shared
among all the processors in ACO. It is shown from
Figure 3 that the average waiting time for the tasks is
more in the case of FCFS compare to ACO. There is
however a marginal increase in the scheduling time in
case of ACO wih respect to FCFS as shown in Figure 4.

CONCLUSION

 A different approach to task scheduling on
heterogeneous processors based on ACO is presented.
Our approach attempts to find a feasible task
assignment with the objective of keeping all the
processors more or less equally loaded. On comparison
with the FCFS approach, the ACO method balances the
load fairly among the different processors. The average
waiting time of the tasks is also found to be less than
that of FCFS algorithm. But there is a slight increase in
the scheduling time for the ACO algorithm.

REFERENCES

Blum, C. and A. Roli, 2003. Metaheuristics in

combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv. 35:
268-308. DOI: 10.1145/937503.937505

Blum, C., 2005. Ant colony optimization: Introduction
and recent trends. Phys. Life Rev., 2: 353-373.
DOI: 10.1016/j.plrev.2005.10.001

Braun, D.T., H.J. Siegel, N. Beck, L.L. Boloni and M.
Maheswaran et al., 2001. A comparison of eleven
static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing
systems. J. Parallel Distributed Comput., 61: 810-
837. DOI: 10.1006/jpdc.2000.1714

Chen, H. and A.M.K. Cheng, 2005. Applying ant
colony optimization to the partitioned scheduling
problem for heterogeneous multiprocessors. ACM
USA., 2: 11-14. DOI: 10.1145/1121788.1121793

Chen, H., A.M.K. Cheng and Y.W. Kuo, 2011.
Assigning real-time tasks to heterogeneous
processors by applying ant colony optimization. J.
Parallel Distributed Comput., 71: 132-142. DOI:
10.1016/j.jpdc.2010.09.011

Mao, J., 2010. Task Scheduling of parallel
programming systems using Ant Colony
Optimization. Proceedings of the 3rd International
Symposium on Computer Science and
Computational Technology (ISCSCT’ 10), Aug.
14-15, Jiaozuo, P.R. China, pp: 179-182.

J. Computer Sci., 8 (8): 1314-1320, 2012

1320

Radulescu, A. and V.J.C. Gemund, 2002. Low-cost task
scheduling for distributed-memory machines. IEEE
Trans. Parallel Distributed Syst., 13: 648-658.
DOI: 10.1109/TPDS.2002.1011417

Shih-Tang, L., C. Ruey-Maw, H. Yueh-Min and W.
Chung-Lun, 2008. Multiprocessor system
scheduling with precedence and resource
constraints using an enhanced ant colony system.
Expert Syst. Appli., 34: 2071-2081. DOI:
10.1016/j.eswa.2007.02.022

Srikanth, G.U., V.U. Maheswari, A.P. Shanthi and A.
Siromoney, 2012. A survey on real time task
scheduling. Eur. J. Sci. Res., 69: 33-41.

Ucar, B., C. Aykanat, K. Kaya and M. Ikinci, 2006.
Task assignment in heterogeneous computing
systems, J. Parallel Distributed Comput., 66: 32-46.
DOI: 10.1016/j.jpdc.2005.06.014

