Journal of Computer Science 8 (8): 1314-1320, 2012
ISSN 1549-3636
© 2012 Science Publications

Tasks Scheduling using Ant Colony Optimization

"Umarani Srikanth G2V. Uma Maheswari:.P. Shanthi an8Arul Siromoney
'Department of PG Studies, S.A. Engineering Coll&@fennai, Tamilnadu, India
“Department of Information Science and Technology
34Department of Computer Science and Engineering
234College of Engineering, Anna University, Chennaimilnadu, India

Abstract: Problem statement: Efficient scheduling of the tasks to heterogenemugessors for any
application is critical in order to achieve highrfpemance. Finding a feasible schedule for a gitzesk

set to a set of heterogeneous processors witheeeding the capacity of the processors, in genieral,
NP-Hard. Even if there are many conventional apgres available, people have been looking at
unconventional approaches for solving this probldimis study uses a paradigm using Ant Colony
Optimisation (ACO) for arriving at a schedukepproach: An attempt is made to arrive at a feasible
schedule of a task set on heterogeneous procemssusing load balancing across the processors. The
heterogeneity of the processors is modelled bynaisgudifferent utilisation times for the same task
different processors. ACO, a bio-inspired computpagadigm, is used for generating the schedule.
Results: For a given instance of the problem, ten runs anelected based on an ACO algorithm and the
average wait time of all tasks is computed. Alse élverage utilisation of each processor is caledlat
For the same instance, the two parameters: avevaijdime of tasks and utilisation of processoms ar
computed using the First Come First Served (FCFBg. results are tabulated and compared and it is
found that ACO performs better than the FCFS watpect to the wait time. Although the processor
utilisation is more for some processors using F@lg8rithm, it is found that the load is better Ipaked
among the processors in ACO. There is a margicatase in the time for arriving at a schedule irQAC
compared to FCFS algorithr@onclusion: This approach to the tasks assignment problem usGQ
performs better with respect to the two parameateexi compared to the FCFS algorithm but the time
taken to come up with the schedule using ACO ghtllf more than that of FCFS.

Key words: Ant Colony Optimisation (ACO), First Come First 8ed (FCFS), average utilisation,
conventional approaches available, computationalethels

INTRODUCTION communication among the processors, minimizing the
makespan of the path and so on. In order to besef u
The heterogeneous computing platform meets then achieving a satisfactory solution, this costdtion
computational demands of various problems. In suclnay include the constraints like tasks executiomei
platforms the tasks can be executed in sequende or deadline of the tasks, inter-task communicationetim
parallel on two or more processors. One of the keyprecedence between tasks, speed of the processors,
challenges of such heterogeneous processor systemmemory system properties.
effective tasks scheduling (Srikanéh al., 2012). The Several heuristic algorithms are proposed to solve
problem of scheduling tasks to processing units &as the same problem. In (Brawhal., 2001) the author has
major impact on the performance of a system (SlaihgT compared eleven heuristics for mapping and scheglali
et al., 2008). The scheduling problem is NP-Complete. set of tasks onto the heterogeneous processorshand
Scheduling of tasks is mapping of a set of tasks t final goal is to minimize the makespan. Other catieg
set of processors in order to achieve some goal. Aof algorithms are also defined such as list-based
efficient task scheduling avoids the situation ihielh scheduling (Radulescu and Gemund, 2002), clustereba
some of the processors are overloaded while som@car et al., 2006) and duplication based scheduling
others are idle (Mao, 2010). The goal is usuallyheuristics. List based heuristics assigns pridetel to
represented as some cost function which may considé¢he tasks and maps the highest priority task tobtrst
the combination of several criteria: Fair load #&hgr fitting processors. Cluster based heuristics groupsist
between the processors, maximizing the degree aff all tightly coupled tasks and assign them orte t
parallelism, reducing the average execution tines osame processor whereas the duplication based thesiris
the program, minimizing the amount of combines the above two heuristics.

Corresponding Author: Umarani Srikanth G., Department of PG Studies, Erfgineering College, Chennai, Tamilnadu, India
1314

J. Computer Sci., 8 (8): 1314-1320, 2012

Ant Colony Optimization, inspired by the ants A sample utilisation matrix is shown in Table 1.
foraging behaviour, is a popular technique forThe number of rows is equal to the number of tasids
approximate optimization (Blum and Roli, 2003). Thethe number of columns is equal to the number of
core of this behaviour is the indirect communicatio processors. A typical entry;specifies the proportional
between the ants by means of chemical pheromorime of the processor Bsed by the task; T
trails which enables them to find short paths betwe A schedule can be represented as a n*m binary
their nest and food sources (Blum, 2005). A majommatrix where n represents number of tasks and m
advantage of ACO over other meta-heuristic algorgéh denotes the number of processors. A typical entry o
is the problem instance may change dynamically. Irthis matrix is denoted ag.sThe entry g=1 if task T is
this framework, the decisions made by all ants arescheduled on processoj. Rote that there are no two
purposeful and the experiences of all ants aresetilin ~ 1’s in the same row. This means that a task igyassi

each iteration to construct the new optimal sohutio to only one processor. A column can have many 1's
indicating that all the corresponding tasks are
MATERIALSAND METHODS scheduled on that processor. But the proportional

) _ utilisation of all the tasks on a processor shoubd
Task scheduling problem: Let Heterogeneous Multi exceed 1. In other words:

Processors (HMP) = {P P,,..., P} denote m

processors and each processoruR at variable speed m

(Chen and Cheng, 2005). A Tasks Set (TS) 3, {T Y.si=1fori= 1n

To,...,T,) hasn tasks. The utilisation matrix U of size =

n*m, wheren is the number of tasks amd is the

number of processors, whose elements are real membe iu“ Os;<=1forj=1,

in (0,1) give the proportional utilisation of a pessor =

by a task. In other words, the valug denotes the

fraction of the computing capacity of, Fequired to Applying ACO to TSP: Given a set of HMP and TS,

execute T u;is also referred as utilisation of dn B. the artificial ant stochastically assigns each taskne

The Task Scheduling Problem (TSP) can be formallyrocessor until each of the tasks is assigned hoeso

described as follows: Given HMP and TS, determine specific processor. We introduce an artificial

schedule that assigns each of the tasks in TS to pheromone value;; with an edge between; Bnd R,

specific processor in HMP in such a way that thethat indicates the favourability of assigning thskt T

cumulative utilisation of the tasks on any procedso to the processor;Plnitially 7;; is the same for all i, j.

no greater than the utilisation bound of that pssoe After each iteration, the pheromone value of eatgee

which is 1.0 (Chemt al., 2011). is reduced by a certain percentage to emulateetle r
life behaviour of evaporation of pheromone courgrov

Processor characteristics: The processors are assumedtime. The fractionp specifies the percentage of the

to be heterogeneous. The heterogeneity of th@alue after evaporation. (i.e.,)tlis the evaporation

processors is defined by the varied proportionatate. We use jartificial ants. Each ant behaves as

utilisation of the same task on different processor follows: From a nodé in TS an ant choose a nogim

o HMP with a probability given by:
Tasks characteristicss Tasks are assumed to be

independent and thus there are no precedence a@ioisstr o (G, j)
among them. Also there is no inter-task commurdcati Pl) == ——
The utilisation of a processor by a task is knowpriari Zi=1T("J)
and it does not change with time. All the tasks are
assumed to arrive at the same instant at O tirms. uni After all the tasks are considered and schedwed b
an ant, the feasibility of the schedule is verifigging

Problem formulation: TSP can be represented by athe utilisation value of individual processors. dfy
bipartite graph with two classes of nodes: TS aMPH processor's utilisation exceeds 1.0, that schedsile
A task is mapped to a TS node and a processorgpeda infeasible. This procedure is repeated for ghnts. The
to a HMP node. The graph is directed graph with theyuality q of a feasible schedule S generated byrans
edges leaving from the class of tasks nodes toliss of computed by considering the total utilisation dfthe
processor nodes. There is a directed edge fromr@d@& processors. This quality is used in the pheromone
to a HMP node if and only if the corresponding teak update of the next iteration. This is given by:
be assigned to that processor without exceeding its
available computing capacity. More than one tasklm ;= p* T7,; +q(S) if T; is assigned to;kh the schedule S
scheduled on the same processor. = p* 1;j otherwise

1315

J. Computer Sci., 8 (8): 1314-1320, 2012

Table 1: Utilisation matrix with 4 tasks and 3 pessors RESULTS

Pl Pz P3
T U U U . . .
T; uii uiz uiz A scheduling algorithm based on ACO is
Ts st Us.2 Us 3 implemented and the algorithm is run for 8 problem
Ts Ug 1 Uy 2 Us 3

instances with the number of processors as 8 and
For our experiment=0.7 and the utilisation matrix Number of tasks as 80, 90, 100, 110, 120, 130,140
is generated randomly. The same utilisation magix 120 The number of ants used for ACO is 100 prd
used for all the trials and the FCFS algorithm. Thed-7- Ten trials are done for each problem instamite
parameters considered in our experiment are th&CO and the average value of wait time of tasks and
utilisation of each processor, the average Wa|tin‘g} utilisation of each processor are obtained. Forheac
of all the tasks and the time taken for generating Problem instance, FCFS is run with the utilisatoatrix
feasible schedule. For each problem instance,rigis t used by ACO algorithm. The wait time of tasks and
are run for ACO and the average values of theutilisation of each processor are computed and eoeap
parameters are taken which are then compared witith that of ACO and the results are tabulated.
those of the FCFS scheduling algorithm and theltsesu Table 2 and 3 indicate the individual processor
are tabulated. The iterations continue till all thets utilisation obtained for ten trial runs for taskstss of
come up with the same schedule. Then the solusion isize 80 and 150 respectively. Similar results are

said to converge. generated for the other tasks sets but are not rshow
here. The average utilisation of each of the eight
Procedure: Tasks Scheduling Algorithm: processors using ACO is shown in Table 4, for all
)) problem instances. Table 5 shows the same for the

do while (solution not converged) FCFS algorithm. Figure 1 pictorially depicts thict.

for each ant k
for each task i
select the processor
stochastically using thematrix
If the schedule is feasible, compute its
quality.
Update the pheromone based on the quality of ea
feasible schedule
Generate thematrix for the next iteration

Table 6 shows the average waiting time of all tek$
and Table 7 the average time taken for generatieg t
schedule using ACO for all the eight problem insemn
Table 8 gives a comparison of the two parameters,
average waiting time and scheduling time of both th
Cﬂlgorithms. Figure 3 and 4 pictorially represeng th
average waiting time and average scheduling time of
the tasks using ACO and FCFS algorithms respegtivel

Table 2: Individual processor utilisation for akaet of size = 80 using ACO
Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run Run 8 Run 9 Run 10 Average utilisation

0.656084 0.700213 0.885165 0.406228 0.763305 3082 0.298284 0.364099 0.573676 0.3641 0.578514
0.582901 0.674038 0.663830 0.842179 0.686192 8881 0.466564 0.721615 0.478275 0.72162 0.638569
0.395874 0.671931 0.289019 0.695151 0.734577 4004 0.824187 0.710339 0.402859 0.71034 0.613898
0.670888 0.313425 0.689824 0.590311 0.562306 904 0.705603 0.714157 0.365236 0.71416 0.587561
0.428755 0.729906 0.593352 0.659602 0.788282 168® 0.669223 0.278909 0.729103 0.27891 0.575773
0.417844 0.524486 0.605786 0.644437 0.351635 5848 0.653824 0.818237 0.666307 0.81824 0.603611
0.742216 0.524340 0.410301 0.466626 0.466619 70133 0.466235 0.321595 0.610891 0.32160 0.466743
0.688504 0.780932 0.584626 0.367148 0.538258 807& 0.513205 0.590841 0.678001 0.59084 0.566083

0N OB~ WDNEPR

Table 3: Individual processor utilisation for akaet of size = 150 using ACO

Processor Run1 Run 2 Run 3 Run 4 Run 5 Run 6 Run Run 8 Run 9 Run 10 Average utilisation
1 0.784939 0.859213 0.845248 0.912581 0.844975 2824B 0.872766 0.908601 0.897559 0.78755 0.814576
0.990086 0.979008 0.884396 0.924358 0.778439 98%W3 0.474347 0.931159 0.88778 0.78838 0.857734
0.907148 0.835568 0.716624 0.898802 0.903272 2075 0.850109 0.629361 0.803439 0.93534 0.843214
0.502497 0.923226 0.799225 0.940744 0.712095 88187 0.730876 0.992231 0.992044 0.75940 0.823075
0.872966 0.920687 0.936111 0.748477 0.783539 100 0.963076 0.896009 0.976260 0.62324 0.856148
0.926508 0.965722 0.744123 0.824886 0.931561 20®3 0.858082 0.91201 0.818186 0.75893 0.867276
0.840998 0.892032 0.792996 0.864805 0.895089 68(B8 0.986703 0.943888 0.947246 0.81581 0.886597
0.735145 0.998085 0.845261 0.795353 0.922249 4P®E8 0.96754 0.973704 0.677923 0.64639 0.854635

1316

0N O~ WN

J. Computer Sci., 8 (8): 1314-1320, 2012

Table 4: Average Processor utilisation for ACOdb18 problem instances

Processor Task =80 Tasks =90 Tasks =100 Tagh®= Tasks =120 Tasks =130 Tasks = 140 Tasks = 150
1 0.578514 0.576371 0.634251 0.656788 0.602115 2002 0.717504 0.814576
2 0.638569 0.47693 0.579841 0.586505 0.670872 0954 0.784206 0.857734
3 0.613898 0.601543 0.730575 0.700642 0.636752 76381 0.802563 0.843214
4 0.587561 0.561319 0.496561 0.575453 0.758740 1830 0.778812 0.823075
5 0.575773 0.591116 0.702479 0.642773 0.655846 50043 0.775710 0.856148
6 0.603611 0.630396 0.561735 0.709199 0.723261 489 0.741065 0.867276
7 0.466743 0.446494 0.604506 0.746149 0.643948 9813 0.78294 0.886597
8 0.566083 0.516977 0.550353 0.578916 0.639514 5872 0.789684 0.854635
Std deviation 0.051024 0.064117 0.078673 0.065522 .050892 0.044817 0.028033 0.023242
Table 5: Processor utilisation table for FCFS 1bBaroblem instances
Processor Task =80 Tasks =90 Tasks =100 Ta3k®= Tasks =120 Tasks =130 Tasks =140 Tasks = 150
1 0.999868 0.997173 0.998363 0.999082 0.999750 987 0.998197 0.999695
2 0.993046 0.996016 0.998884 0.999709 0.999904 98630 0.999198 0.999930
3 0.997989 0.997549 0.999344 0.999262 0.998091 9681 0.998984 0.999368
4 0.638526 0.792437 0.996648 0.998617 0.996428 1881 0.999906 0.998867
5 0.000000 0.000000 0.465335 0.987451 0.998315 909D 0.997494 0.997635
6 0.000000 0.000000 0.000000 0.206958 0.802481 7855 0.977435 0.996723
7 0.000000 0.000000 0.000000 0.000000 0.000000 00am 0.092169 0.524179
8 0.000000 0.000000 0.000000 0.000000 0.000000 00am 0.000000 0.000000
Std deviation 0.498996 0.509959 0.495432 0.484447 .452079 0.451279 0.440108 0.368644
Table 6: Average waiting time of all the tasks A& O for all the 8 problem instances

Waiting time
Tasks Runl Run 2 Run 3 Run 4 Run 5 Run 6 Run7 n&u Run9 Run 10 (sec) Average
80 0.272352 0.298573 0.306115 0.283122 0.26957584089 0.272519 0.290696 0.265357 0.29070 0.283379
90 0.23708 0.261958 0.275055 0.250937 0.278498 088&8. 0.471085 0.276304 0.263216 0.28554 0.291026
100 0.280952 0.321592 0.28699 0.289454 0.33235676031 0.287561 0.327144 0.288574 0.28454 0.297592
110 0.336543 0.364722 0.321728 0.284489 0.3160232388 0.340149 0.290859 0.302946 0.31270 0.319363
120 0.284736 0.304845 0.368304 0.363478 0.34552310871 0.299553 0.330165 0.335844 0.35510 0.329842
130 0.369743 0.315029 0.360452 0.341435 0.36650827045 0.351238 0.320950 0.348863 0.33560 0.343686
140 0.393407 0.34719 0.354999 0.377763 0.3826866361F 0.350132 0.419890 0.391613 0.32555 0.370685
150 0.399324 0.421531 0.391251 0.418564 0.40048315824 0.417409 0.418305 0.420223 0.36060 0.406301

Table 7: Average time to generate a schedule Us81Q for all the 8 problem instances

Scheduling time

Tasks Run1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 8&Run Run9 Run 10 (sec) Average
80 0.549451 0.329670 0.329670 0.219780 0.3846154025 0.329670 0.384615 0.32967 0.384620 0.351648
90 0.384615 0.549451 0.329670 0.274725 0.2747254025 0.219780 0.274725 0.274725 0.329670 0.318681
100 0.439560 0.219780 0.274725 0.274725 0.43956019080 0.274725 0.274725 0.274725 0.274725 0.296703
110 0.274725 0.219780 0.219780 0.219780 0.549421774025 0.274725 0.219780 0.274725 0.219780 0.274725
120 0.274725 0.274725 0.274725 0.384615 0.2197819980 0.219780 0.219780 0.219780 0.219780 0.252747
130 0.219780 0.274725 0.274725 0.219780 0.21978®4835 0.164835 0.219780 0.219780 0.164835 0.214286
140 0.439560 0.329670 1.923077 0.439560 0.3296829670 0.274725 0.329670 0.219780 0.219780 0.483516
150 0.549451 0.439560 1.648352 0.329670 0.98904D4B05 1.703297 0.824176 0.549451 0.329670 0.785714

Table 8: Comparison of the waiting time and theesititing time of both algori

thms

Average waiting time of tasks (sec)

Average salieg time of tasks (sec)

Tasks ACO FCFS ACO FCFS

80 0.283379 0.503323 0.351648 0.219780
90 0.291026 0.513061 0.318681 0.329670
100 0.297592 0.479564 0.296703 0.274725
110 0.319363 0.501489 0.274725 0.329670
120 0.329842 0.471085 0.252747 0.164835
130 0.343686 0.557086 0.214286 0.219780
140 0.370685 0.488277 0.483516 0.274725
150 0.406301 0.488425 0.785714 0.219780

1317

Scheduling imein secs

Whailinglim g in sees

Processor ulilisation

FCFS|ACO |FCFS|ACO|FCFS|ACO [FCFS|ACO [FCFS|ACO |FCFS|ACO [FCFS|ACO [FCFS|ACO

J. Computer i, 8 (8): 1314-1320, 2012
Individual processor utilisation
- - - o
LELE LR
. l
aN BEl E= =8 B=R =

O Processor 8
W Processor7
o Processor 6
W Processor s
] Processor4
[Processor 3
W Processor2

o Processor 1

Tasks=80| Tasks=90| Tasks=100|Tasks=110|Tasks=120| Tasks =130| Tasks =140 Tasks = 150

0.9

0.8 -

0.7

0.6

0.5

0.3 -

Number of tasks

Fig: 1. Comparison of individual processor utilisatin both algorithms

20

80

Average waiting time of tasks

90 100 110 120 130 140

Numberoftasks

Fig. 3: Comparison of the waiting time of both aifums

Average scheduling time of tasks

90 100 110 120
Number oftasks

Fig. 4: Comparison of the scheduling time of bdtjoethms
1318

mACO
BFCF8

mACO

MFCFS

150

J. Computer Sci., 8 (8): 1314-1320, 2012

0.6 Standard deviation of processorutilisation

g os-
7
- 04-
7
S
£ 03
< EACO
E o0 BFCFS
= 0.2
=2
Z 01~
Z

0,

80 90 100 110 120 130 140 150

Number of tasks
Fig. 2: The comparison of the standard deviatiothefutilisation of all the processors using the tdgorithms
DISCUSSION REFERENCES

It is seen from Table 5 that the number ofBlUm, C. and A. RO”, 2003. Metaheuristics in
processors not utilised by the FCFS scheduling Ccombinatorial — optimization: ~ Overview and

algorithm varies from 1 to 4. But all the processare conceptual comparison. ACM Comput. Surv. 35:
utilised by the ACO algorithm as shown in Tabld#e 268-308. DOI: 10.1145/937503.937505

last row of Table 4 and Table 5 give the standardlum, C., 2005. Ant colony optimization: Introdumti
deviation of the utilisation across all the 8 prsm's and recent trends. Phys. Life Rev., 2: 353-373.

for the respective algorithms. Figure 2 shows the DOI: 10.1016/).plrev.2005.10.001 _
comparison of the standard deviation of the utissa Braun, D.T., H.J. Siegel, N. Beck, L.L. Boloni av

of all the processors using the two algorithms.sThi ~ Maheswararet al., 2001. A comparison of eleven

substantiates our claim that the load is fairlyrsta static heuristics for mapping a class of indepehden
among all the processors in ACO. It is shown from tasks onto heterogeneous distributed computing
Figure 3 that the average waiting time for the s$aisk systems. J. Parallel Distributed Comput., 61: 810-

more in the case of FCFS compare to ACO. There is 837. DOI: 10.1006/jpdc.2000.1714 _
however a marginal increase in the scheduling fime Chen, H. and A.M.K. Cheng, 2005. Applying ant

case of ACO wih respect to FCFS as shown in Figure colony optimization to the partitioned scheduling
problem for heterogeneous multiprocessors. ACM
CONCL USION USA., 2: 11-14. DOI: 10.1145/1121788.1121793

Chen, H., AM.K. Cheng and Y.W. Kuo, 2011.
Assigning real-time tasks to heterogeneous

A different approach to task scheduling on 4cessors by applying ant colony optimization. J.
heterogeneous processors based on ACO is presented. pgrallel Distributed Comput., 71: 132-142. DOI:

Our approach attempts to find a feasible task 10.1016/j.jpdc.2010.09.011
assignment with the objective of keeping all thepy;ao 3. 2010, Task Scheduling of parallel

processors more or less equally loaded. On conquaris programming systems using Ant Colony
with the FCFS approach, the ACO method balances the gptimization. Proceedings of the 3rd International

load fairly among the different processors. Therage Symposium on Computer Science and
waiting time of the tasks is also found to be ldsmn Computational Technology (ISCSCT' 10), Aug.
that of FCFS algorithm. But there is a slight ir=e in 14-15, Jiaozuo, P.R. China, ¥9-182.

the scheduling time for the ACO algorithm.
1319

J. Computer Sci., 8 (8): 1314-1320, 2012

Radulescu, A. and V.J.C. Gemund, 2002. Low-coét tasSrikanth, G.U., V.U. Maheswari, A.P. Shanthi and A.
scheduling for distributed-memory machines. IEEE Siromoney, 2012. A survey on real time task
Trans. Parallel Distributed Syst.,, 13: 648-658. schedulingEur. J. Sci. Res., 69: 33-41.

DOI: 10.1109/TPDS.2002.1011417 Ucar, B., C. Aykanat, K. Kaya and M. Ikinci, 2006.

Shih-Tang, L., C. Ruey-Maw, H. Yueh-Min and W. Task assignment in heterogeneous computing
Chung-Lun, 2008. Multiprocessor system systems, J. Parallel Distributed Comput., 66: 32-46
scheduling with precedence and resource DOI: 10.1016/j.jpdc.2005.06.014
constraints using an enhanced ant colony system.

Expert Syst. Appli., 34: 2071-2081. DOI:
10.1016/j.eswa.2007.02.022

1320

