
Journal of Computer Science 8 (7): 1108-1113, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Suresh Kumar, M., Department of Computer Science and Engineering,
 Sri Ramakrishna Engineering College Coimbatore, India

1108

Explicit Allocation Strategy with Deadline and

Budget Constraint Algorithm in Bag of Tasks Grid

1M. Suresh Kumar and 2T. Purusothaman
1Department of Computer Science and Engineering,

Sri Ramakrishna Engineering College Coimbatore, India
2Department of Computer Science and Engineering,

 Government College of Technology, Coimbatore, India

Abstract: Problem statement: This study is for effective scheduling of grid jobs based on economy
for space shared resources in Bag of tasks grid. Grid Computing aims in combining the power of
heterogeneous, geographically distributed, multi-domain computational resources to provide high
performance or high throughput. Approach: Space shared resources are parallel supercomputers and
clusters of workstations that provides a great amount of computational power. These resources require
jobs to be specified formally in terms of the amount of time (tr) and number of processors (p) needed
for execution. Bag-of-Tasks (BoT) is an application consists of several uniprocessor and independent
tasks that have no inter-task communications or task-dependencies. BoT is highly suitable for execution
in grids. It is capable of tolerating network delays or faults and does not require formal job submission.
The Explicit allocation strategy assigns the formal job parameters (p, tr) to the job requests, minimizing
the overhead on the grid users to provide a formal job specification. This strategy uses adaptive heuristics
to determine the parameters based on certain heuristics, in order to improve throughput. In the proposed
system, explicit allocation strategy combined with Deadline and Budget Constraint (DBC) Cost Time
optimization algorithm performs effective scheduling of the jobs based on the user’s quality of service
(QoS) requirements such as deadline, budget and optimization strategy. Results: The cost-time
optimization scheduling allocates the cheapest resources to ensure that the deadline can be met and
computation is minimized. In case if there are two resources with the same cost, scheduling is done in
any affordable resource so that the job gets executed as early as possible. Conclusion: The performance
of this scheme against the existing system is evaluated using cost factor (Cfactor) and speed up ratio
(Tspeedup) and this scheme is more effective than the existing system.

Key words: Grid computing, bag of tasks, explicit allocation, space-shared resource

INTRODUCTION

 Grid computing is a method of computing in which
very large problems are divided into small tasks that are
distributed across a network for simultaneous
processing. Due to the widespread use of grid in almost
all fields, there is a need for effective utilization of the
available computational power of all types of resources.
Space-shared resources are parallel supercomputers and
clusters of workstations with great amount of
computational power. They are among the most
powerful resources in a grid. Space-shared resources
are used through a formal job submission to the
resource scheduler specifying the number of processors
needed and the amount of time these processors should
be allocated to the incoming job.
 Bag-of-Tasks (BoT) (Lee and Zomaya, 2007)
application is a cluster of uniprocessor tasks that are
independent of each other and do not communicate

among themselves. In a grid, when a local user demand
for a resource already in use by a grid user, the grid
user job gets preempted and local user gains access to
the resource. BoT applications are most suitable for
execution in grids as they can be preempted and
recovered easily from failures by executing the tasks.
These applications do not need specifications such as
maximum number of resources, or period of time
needed for job execution to be provided by the user
during job submission. Different load balancing
techniques (Boukerram and Azzou, 2006; Buyya et al.,
2002; Foster and Kesselman, 1997) were proposed.
This paper proposes an effective algorithm for Bag
of Tasks Grid.

Problem definition: The Explicit Allocation strategy
aims to execute BoT applications in space shared
resources in order to utilize its high computational
power effectively.

J. Computer Sci., 8 (7): 1108-1113, 2012

1109

Fig. 1: Scheduling of BoT applications in Space shared resources

The problem lies in the job submission mechanism as
space shared resources require formal job submission
parameters (p, tr) whereas BoT does not include
these specifications. So the Explicit Allocation
strategy uses heuristics to generate the formal job
parameters (p, tr) implicitly. This scheduling strategy
combined with DBC Cost Time optimization algorithm
makes effective utilization of resources based on the
budget and deadline specifications of users.
 The DBC cost-time optimization scheduling
algorithm is based on the cost-optimization and Time
optimization algorithm. The Cost-optimization
algorithm performs scheduling by allocating the
cheapest resources to ensure that the deadline can be
met and the computational cost is minimized. If two
resources are of same cost, then allocation is based on
Time optimization (optimize the time without incurring
additional processing expenses).
 Assumptions in execution environment:

• A job can be scheduled anywhere in the grid

environment for its execution
• Once the distribution of resources starts, the

resources are locked for a local user’s job
execution and reclaimed after use

• The execution time of a job is calculated from the time
the job starts its execution till the end of its execution.

• The network delay and communication time are not
taken into consideration

• The time taken for inter-process communication of
parallel applications is not included as BoT
applications are used

 Model of the proposed strategy:

• The grid environment consists of diverse machine

types, disks/storage and networks. The resources in
the grid environment are made of desktops, servers,
clusters and multi-processor systems

• The CPU resource’s computational capability is
represented in the form of Million Instructions Per
Second (MIPS). The grid resources are also
accessible to outside users when they are idle

• As shown in Fig. 1, Grid and local jobs are
submitted to the scheduler adviser. The schedule

Adviser determines how jobs should be scheduled
and how the resources should be utilized. It uses
the Deadline Budget Constraint scheduling strategy
with cost time optimization

• The jobs are sorted according to deadline and
budget specifications and inserted into the
scheduled-job queue

• The scheduled-job queue is then processed by the
dispatcher which sends the jobs to the allocated
resources for execution

• After the execution of all jobs, the results are
recorded and analyzed

Explicit allocation strategy: The Explicit allocation
strategy (Rose et al., 2008) enables grid users to
achieve local user priority. This is obtained by allowing
grid users to submit formal job request as any local user
in the grid. The grid users unaware of the environment,
cannot specify the job parameters (amount of time
needed to execute the job, number of processors
required) directly. To ease this job submission task, the
strategy crafts the formal job request automatically
based on the grid user job specification. For assigning
the job parameters, the explicit strategy takes the
following into consideration:

• The maximum allowed number of pending requests

that grid broker can have on a space-shared
resource scheduler (maxPendingRequests)

• The maximum allowed number of processors per
request (maxProc)

• The maximum allowed amount of time requested
per request (maxTr)

• The queue state

 As the strategy uses adaptive heuristic, the
execution time and number of processors needed is
varied for each job. With an initial estimate of the
parameter values, a set of job requests is considered and
the throughput (i.e., number of jobs that can be
executed from the given set) is calculated. If a new
possible request could improve the throughput, a
previous chosen request is discarded and the new
request is inserted into the set of job requests. The
chosen set is added to the unassigned-jobs list.

J. Computer Sci., 8 (7): 1108-1113, 2012

1110

DBC with cost time optimization: This study
combines the explicit allocation strategy with the
Deadline and Budget Constraint (DBC) Scheduling
with cost time optimization. The resources in the grid
environment are ordered in terms of increasing the
processing cost per million instructions. In case two
resources have the same cost, then they are sorted
according to the available processing time. The resources
with same cost are considered as groups and these groups
are sorted according to increasing order of cost.
 For each resource group, the following procedure
is carried out. Each job in the unassigned jobs list is
considered and the job completion time in the resource
group is compared with the deadline one after the other.
If the job completion time is less than the deadline for a
particular resource, then the budget to be spent for the
execution of the job in that resource is compared to the
specified budget. The job is allocated to that resource if
the budget needed is within the specified budget.
 The resources are allocated such that job’s
requirements are satisfied with a single site to improve
performance.

Deadline and budget constraints: The Constraints
needed to perform scheduling are:

• Absolute Deadline
• Absolute Budget

 These constraints make the system more economical
with faster computational capability through allocation of
cheapest resource to meet the deadline.

Absolute deadline: The absolute deadline value is
calculated based on the Dfactor (Deadline factor). A
Dfactor close in 1 signifies the user’s willingness to set
a highly relaxed deadline, which is sufficient to
process applications even when only the slowest
resources are available.
 The time needed to process all the jobs, in parallel,
using the fastest resource the highest priority is
calculated and taken as Tmin. The time required to
process all the jobs, serially, using the slowest resource
is calculated and taken as Tmax.
The absolute Deadline Dabsolute is calculated as:

Dabsolute = Tmin + Dfactor * (Tmax - Tmin)

 An application with Dfactor less than zero would
never be completed. An application with Dfactor greater
than or equal to one would always be completed as long
as some resources are available with minimal user-
share is available throughout the deadline.

Absolute budget: The absolute budget value is
calculated based on the Bfactor (Budget factor). A Bfactor
close to 1 signifies the user’s willingness to spend as
much money as required even when only the most
expensive resource is used.

 The cost of processing all the jobs, in parallel
within deadline, giving the cheapest resource the
highest priority is calculated and taken as Cmin. The cost
of processing all the jobs, in parallel within deadline,
giving the costliest resource the highest priority is
calculated and taken as Cmax.
 The absolute Deadline Babsolute is calculated as:

Babsolute = Cmin + Bfactor*(Cmax-Cmin)

 An application with Bfactor less than zero would
never be completed. An application with Bfactor greater
than or equal to one would always be completed as long
as some resources are available with minimal user-
share is available throughout the deadline.

Dispatcher policy: This strategy performs allocation of
jobs to space shared resources. The jobs are dispatched
based on certain parameters. The number of jobs in
ready state is taken as a list of jobs to be dispatched.
The number of jobs that can be dispatched for each
resource is calculated by subtracting the number of jobs
in the queue from the product of the number of
processing elements in the resource and maximum jobs
per processing element. The optimal dispatch size of
the resource is the minimum of the number of jobs to be
dispatched and number of jobs that can be dispatched.

Performance metrics: The metrics like Cost factor and
Speedup ratio are used to compare the explicit
allocation strategy with DBC optimization against the
explicit allocation strategy without optimization.

Cost factor: Cost Factor (Cfactor) is the ratio of
processing cost of all jobs using explicit allocation
strategy without optimization (Cwithout_optimization) to the
processing cost of all jobs using an explicit allocation
strategy with DBC cost time optimization
(Cwith_DBCoptiimization).
 This metric is a measure of economic efficiency of
this system when compared to the explicit strategy used
without optimization.

Speedup ratio: Speedup Ratio (Tspeedup) is the ratio of
execution time of all jobs using explicit allocation
strategy without optimization (Twithout_optimization) to the
execution time of all jobs using an explicit allocation
strategy with DBC cost time optimization
(Twith_DBCoptiimization).
 This metric is a measure of improvement in
Computational performance of this system when
compared to the explicit strategy used without
optimization.

MATERIALS AND METHODS

Algorithms:
Explicit allocation strategy with DBC cost time
Optimization scheduling algorithm: Get the user

J. Computer Sci., 8 (7): 1108-1113, 2012

1111

requirements through a GUI on submission, do the
following:

• Create the grid environment with the given

specification for the following. (Resource name,
Resource architecture, Operating System, Number
of Machines, Number of Processing Elements
(PE), Million Instructions Per Second (MIPS) for
Processing Elements, Processing cost)

• Create local user and grid user jobs with given
specifications. (Number of user jobs, Average
Million Instructions per second, deviation
percentage, granularity time, overhead time and
resources required according to budget)

• Calculate
• Absolute Deadline
• Absolute Budget

• Submit jobs to Schedule Advising which uses cost
time optimization scheduling strategy

• Once scheduling is done, dispatch the jobs to
allocate resources. Dispatching of jobs is usually
done as long as the number of user jobs deployed
(active or in a queue) is less than the number of
PEs in the resource

• Receive the processed job details from the
resources

• Calculate the execution time and processing cost

Calculation of absolute deadline: Calculate Tmax,
the maximum value of the ratio of total job length to
the minimum MIPS rating with load among all the
resources and the ratio of maximum length value
among all jobs to the maximum MIPS rating among
all the resources.
 Calculate Tmin, the maximum value of the ratio of
the total job length of the sum of the MIPS rating of all
the resources and the ratio of maximum length value
among all jobs to the maximum MIPS rating among all
the resources.
 Calculate the Absolute deadline using the formula:

Dabsolute = Tmin + Dfactor * (Tmax - Tmin)

Calculation of absolute budget:

• Calculate Cmax, the product of total job length and

the maximum value of cost per million instruction
among all resources

• Calculate Cmin, the product of total job length and
the minimum value of cost per million instruction
among all resources

• Calculate the Absolute budget using the formula:

Babsolute = Cmin+ Bfactor *(Cmax-Cmin)

Schedule Advisor (SA): For all resources in the
environment Choose an initial set of possible job
requests and estimate the number of jobs expected to
execute from that set as:

avail_MIPS/

actual_MIPS
Expected To Finish * no of jobs

avail_MIPSprev/

actual_MIPS

=

where, avail_MIPS is the available processing power
(MIPS) of the resource and avail_MIPSprev is the
available processing power of the resource from the
previous set of jobs. ActualMIPS is the original
processing power of the resource:

• If a new possible request could improve this

number (i.e., throughput), a previous chosen job is
discarded and a new one is inserted into the set

• The Unassigned-Jobs list is then scheduled using
cost time optimization as

• Sort the resources in the grid environment
according to processing cost per million
instructions. If two resources have equal cost, then
sort according to the available processing time of
the resource

• Repeat the following steps for each job in the
Unassigned-Jobs-List

• Select a job from the Unassigned-Jobs-List
• For each resource, calculate/predict the job

completion time taking into account previously
assigned jobs and the job completion rate and
resource share availability

• Sort resources by the increasing order of
completion time

• Assign the job to the first resource and remove it
from the Unassigned-Jobs-List if the predicted job
completion time is less than the deadline

Table1: Resource configuration
RN ARCH OS PE PS RC (G$)
R1 MAC Linux 1 12 200
R2 IBM Red hat 2 13 300
R3 Solaris Mandrake 3 15 210
R4 MAC Windows 3 20 400
R5 48C Linux 2 12 50
R6 Solaris Linux 1 11 60
R7 IBM Windows 2 10 70
R8 IBM Windows 5 10 150
R9 Solaris Mandrake 3 20 400
R10 MAC Windows 3 12 50

Table 2: Input specifications
 Number of jobs
 ------------------------------------- Deadline Total
Input Local Grid (sec) load (MI)
1 4 3 19 1074.37
2 5 3 30 1718.49
3 6 3 30 1951.69
4 7 4 27 2333.46
5 7 5 30 2044.11

J. Computer Sci., 8 (7): 1108-1113, 2012

1112

Simulation: In the simulation, resources of different
configurations are considered. The capacity for
computation in a CPU resource is provided in the form
of MIPS. The other configuration parameters include
resource name, Operation system, Architecture,
Processing Speed (MIPS), resource cost (Grid Dollars).
Each resource has a specific number of processing
elements. The processing power of the resource
depends on the number of PEs and the processing
power of each PE in the resource. Table 1 indicates the
Resource configuration for the current work. The Input
Specification is depicted in Table 2 where input has
both local jobs and Grid jobs and the deadline specified.

RESULTS

 For the input specification of Table 2, the results
are obtained.

Fig. 2: Job length Vs execution time

Fig. 3: Job length Vs processing cost

Table 3: Job length Vs execution time
Job length (MI) No. of Jobs Execution time (sec)
1074.37 7 58.06
1718.49 8 70.79
1873.78 9 79.60
2044.11 12 89.32
2333.46 11 96.48

Fig. 4: Comparison of total execution time (without

optimization Vs with DBC cost time optimization)

Fig. 5: Comparison of processing cost (Without

optimization Vs with DBC cost time optimization)

Table 4: Job length Vs processing cost
No. of Job Processing cost
Jobs length (MI) (grid Dollars)
7.0000 1074.3700 33476.4900
8.0000 1718.4900 24224.3400
9.0000 1873.7800 10562.9300
11.0000 2333.4600 14518.6500
12.0000 2044.1100 27384.7200

Table 5: Comparison of total execution time (Without optimization

Vs with DBC cost time optimization)
 Execution Execution
No. of Job length time without time with DBC Speedup
Jobs (MI) optimization optimization ratio
7 1074.37 66.71 58.06 1.148
8 1718.49 71.79 70.79 1.014
9 1873.78 85.92 79.60 1.079
11 2333.46 98.48 96.48 1.020
12 2044.11 94.15 89.32 1.054

J. Computer Sci., 8 (7): 1108-1113, 2012

1113

Table 3 shows the execution time for various job
length. Table 4 indicates the processing cost for
these jobs. From Fig. 2 and Fig. 4 , Execution Time
and Processing Cost varies proportional to Job
Length. Fig. 3 depicts the processing cost in Grid dollar
(G$) over the job length. Fig. 5 compares the
processing cost of the DSC algorithm (optimization)
versus the non optimized algorithm.

DISCUSSION

 The two metrics considered in performance
analysis are Cost Factor (C factor) and Speedup Ratio
(Tspeedup). It is seen that the explicit allocation strategy
with optimization out performs than the explicit
allocation strategy without optimization in terms of
processing cost and the total execution time needed to
process all the jobs. From Fig. 6 and Fig. 7 the cost factor
and speedup ratio for the given input specifications are
greater than one, which shows that the proposed strategy is
more economically and computationally efficient.

Fig. 6: Cost factor

Fig. 7: Speedup ratio

CONCLUSION

 This study presented is an Explicit allocation
strategy with DBC optimization, which consists of
deploying an adaptive heuristic to make a smart use of
space shared resources based on the economic
provisions of the user (budget), granting to grid users
privileged access to an amount of resources as soon as
possible, with deadline considerations. It enables
execution of BoT applications in space shared resources
thereby allowing efficient exploitation of high
computation power.
 This strategy is the extension of the existing
explicit allocation strategy, which do not prioritize the
jobs based on the user budget (i.e., user’s willingness to
pay more). In order to improve the performance, the
proposed system includes the deadline and budget
considerations provided by the user, schedules the job
using cost time optimization, thereby making the
system more economical.
 The Cost Ratio and Speedup factor calculated
from the analyzed results is greater than one. This
shows that the proposed system (Explicit Allocation
strategy with DBC optimization) is more economical
and has high computational performance when
compared to the existing system (Explicit Allocation
strategy without optimization).
 As future work, it is first intended to incorporate
Load Balancing, to further improve the efficiency
through effective scheduling. Secondly, “Task
Replication” can be incorporated with the proposed
system to speed up the processing of jobs.

REFERENCES

Boukerram, A. and S.A.K. Azzou, 2006.

Implementation of load balancing algorithm in a
grid computing. Am. J. Applied Sci., 3: 1810-1813.
DOI: 10.3844/ajassp.2006.1810.1813

Buyya, R., D. Abramson, J. Giddy and H. Stokinger,
2002. Economic models for resource management
and scheduling in grid computing. J. Concurr.
Comput.: Practice Experi., 14: 1507-1542. DOI:
10.1002/cpe.690

Foster, I. and C. Kesselman, 1997. Globus: A
metacomputing infrastructure toolkit. Int. J.
Supercomputer Appli. High Perform. Comput., 11:
115-128. DOI: 10.1177/109434209701100205

Lee, Y.C. and A.Y. Zomaya, 2007. Practical scheduling
of bag-of-tasks applications on grids with dynamic
resilience. IEEE Trans. Comput. J., 56: 815-825.

DOI: 10.1109/TC.2007.1042
Rose, C.A.F.D., T. Ferreto, R.N. Calheiros, W. Cirne

and L.B. Costa et al., 2008. Allocation strategies
for utilization of space-shared resources in Bag of
Tasks grids. Future Generation Comput. Syst., 24:
331-341. DOI: 10.1016/j.future.2007.05.005

