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Abstract: Problem statement: Orthogonal circular moments of gray level images such as Zernike, 
pseudo Zernike and Fourier-Mellin moments are widely used in different applications of image 
processing, pattern recognition and computer vision. Computational processes of these moments and 
their translation and scale invariants still an open area of research. Approach: a unified methodology 
is presented for efficient and accurate computation of orthogonal circular moment invariants. The 
orthogonal circular moments and their translation and scale invariants are expressed as a linear 
combination of radial moments of the same order in polar coordinates, where the later moments are 
accurately computed over a unit disk. A new mapping method is proposed where the unit disk is 
divided into non-overlapped circular rings; each of these circular rings is divided into a number of 
circular sectors of the same area. Each circular sector is represented by one point in its centre. The total 
number of input Cartesian image pixels is equal to the number of mapped circular pixels. Results: The 
implementation of this method completely removes both approximation and geometrical errors 
produced by the conventional methods. Numerical experiments are conducted to prove the validity and 
efficiency of the proposed method. Conclusion: A unified methodology is presented for efficient and 
accurate computation of orthogonal circular moment invariants. 
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INTRODUCTION 
 

 Orthogonal circular moments of gray level images 
such as Zernike, pseudo Zenike and Fourier-Mellin are 
used to represent images with minimum amount of 
information redundancy. Based on this attractive 
property, these orthogonal moments are widely used in 
different image processing and pattern recognition 
applications. See for examples (Abandah and Anssari, 
2009, Radhika et al., 2010, Ismail et al., 2010). 
Despite of this fact, the conventional approach for 
computing these circular moments and their invariants 
encounter two major problems. These problems are the 
lack of accuracy and the very time-consuming 
computational processes.  
 Different methods were proposed to overcome 
these problems for each kind of these moments. 
Remarkable works are presented to efficiently compute 
Zernike moments (Xin et al., 2007; Hosny, 2008; 
2010a; 2010b) and pseudo Zernike moments (Chong et 
al., 2003a; Al-Rawi, 2010) Another group of works 
presents efficient computation of orthogonal Fourier-
Mellin moments (Papakostas et al., 2007; Hosny et al., 
2011; Walia et al., 2011). 

 The variety of these methods motivates us to 
propose a unified efficient method for accurate 
computation of orthogonal circular moments of binary 
as well as gray level images.  
 The orthogonal circular moments are rotationally 
invariant by nature. This attractive property enables 
these moments to play an essential role in the invariant 
pattern recognition tasks. Invariance with respect to 
other geometric transformation such as translation and 
scaling could be achieved through the image 
normalization method. The literature of moment 
computation has two works that are dealing with 
translation invariants of Zernike moments (Chong et al., 
2003b) and the scale invariants of pseudo Zernike 
moments (Chong et al., 2003c). Unfortunately, no work 
is available for translation and scaling invariants of 
Fourier-Mellin moments. 
 This study proposes a new unified method for 
efficient and highly accurate computation of orthogonal 
circular moments for binary and gray-level images.  
 The proposed method is extended to accurately 
compute both translation and scale moment invariants. 
The proposed method consists of two major steps. In 
the first step, highly accurate radial moments are 
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computed in polar coordinates. In the second step, all 
aforementioned circularly moments and their invariants 
are computed as linear combinations of the radial 
moments. A number of numerical experiments are 
conducted where the experimental results clearly show 
the efficiency of this proposed method.  
 The rest of the study is organized as follows: An 
overview of the orthogonal circular moments of images 
is presented. The proposed method is described in the 
section of material and methods. Conducted numerical 
experiments are described and the obtained results are 
analyzed in the section of results. It followed by a 
discussion and Conclusion. An acknowledgement of the 
financial support is presented. Finally, a list of recent 
references is presented. 
 
Circular moments of images: Orthogonal circular 
moments of an image are defined over a unit disk in 
polar coordinates. In this subsection, a brief overview 
of orthogonal Zernike, pseudo Zernike and Fourier-
Mellin moments is presented. 
 
Zernike moments: The complex two-dimensional 
Zernike moments of order p and repetition q are 
defined as follow:  
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where, p = 0,1,2,3,…..∞ and q is positive integer 
selected according to the conditions: (p-q) = even and 
q≤p.  
 Zernike moments with negative values of repetition 
q are computed using complex conjugate from the 
relation p , q p ,qZ Z− = . Zernike functions Vpq(r,θ) forms a 
complete set of complex-valued functions which enable 
the direct computation of inverse transform. 
 
Pseudo Zernike moments: The complex two-
dimensional pseudo Zernike moments of order p and 
repetition q are defined as follows: 
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where, p = 0,1,2,3,…..∞ and q is non-negative integer 
defined according to the condition q≤ p.  

 Pseudo Zernike moments with negative values of 
repetition q are computed from those of positive values 
by using the relation, p , q p , qA A− = . Pseudo Zernike 
functions, Wpq(r,θ), are a complete set of complex-
valued orthogonal functions. 
 
Fourier-Mellin moments: Orthogonal Fourier-Mellin 
moments of order p and repetition q are defined as 
follows: 
 

 
( ) ( )

p , q

2 1
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where, î 1= − , p = 0,1,2,3,……∞ and q is non-negative 
integer. Similar to Zernike and pseudo Zernike, 
Fourier-Mellin moments of negative repetition are 
obtained directly from that of positive repetition. 
 
Central radial moments: Central radial moments of 
order p with repetition q are defined as follows 
(Chong et al., 2003b):  
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 The centriod of the input image is defined as 
follows: 
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Scale invariants of radial moments: Scale invariants 
of radial moments of order p with repetition q are 
defined as follows Chong et al., 2003c): 
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MATERIALS AND METHODS 
 
 Orthogonal circular moments are defined in polar 
coordinates over a unit disk. Zernike, pseudo Zernike 
and Fourier-Mellin moments and their translation and 
scale invariants could be represented as a linear 
combination of radial moments of the same order or 
less. A generic formula of the two-dimensional circular 
moments and their invariants of order p with repetition 
q is defined as follows: 
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where, p = 0,1,2,3,……∞ and q is positive integer. The 
different values of the parameter T  and the coefficient 
matrix Bpqk of the aforementioned circular moments are 
showed in Table 1. 
 
Highly accurate radial moments: It is clear that, the 
computational process of radial moments, Rkq, is the 
core part in the whole computational process of these 
orthogonal circular moments and their invariants. 
Radial moments of order k with repetition q are defined 
in polar coordinates over a unit disk as follows: 
 

 ( )
2 1

ˆk i q
k q

0 0

R r e f r , rdr d
π

− θ= θ θ∫ ∫   (9)  

 
where, î 1= − , k=0,1,2,3,……∞ and q is any positive 
or negative integer. For input image of size N×N as 
depicted in Fig. 1, a new image mapping is proposed 
where all of the required computational processes are 
done in the polar coordinates. This new mapping 
method is a modification of the method described by 
Hosny et al. (2011) where the total number of input 
image pixels is equal to the total number of mapped 
circular sector pixels as depicted in Fig. 2. The new 
mapping method is very simple and could be achieved 
by applying the following steps: 
 
• The unit disk is divided into, N/2, concentric, non-

overlapped circular rings 
• Each circular ring is divided into,(8i+4), circular 

sectors where i = 0,1,2,…..,N/2-1 and i=0 refers to 
the innermost circular ring 

• The different values of the angle θ could be created 
by using the following pseudo-code: 

for i = 0 to N/2-1 
 for j = 0 to (8i+4)-1 
 θi, j = 2π(j+0.5)/(8i+4)  

 endfor 
endfor 
 
Table 1: Circular moments and their coefficients 
 Coefficient matrix, Bpqk Parameter T 

Zernike (Hosny, 2008)        
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Pseudo Zernike 
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(Al-Rawi, 2010) 

Fourier-Mellin 
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(Papakostas et al., 2007) 

 

 
 

Fig. 1: Original square image pixels 
 

 
 
Fig. 2: Mapped circular image pixels 
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 The radial moments of order k and repetition q are: 
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 Both integrals in Eq. 12 and 13 are evaluated 
analytically without any kind of approximation as 
follows:   
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 The vectors of upper and lower limits could be 
defined as follows: 
 

 ( )
i 1

2i 1
U

N+

+
=   (16a) 

 
 i

2iU
N

=   (16b) 

 
 

( )i, j 1 i , jV
8i 4+

π
=θ +

+
  (17a) 

 
 

( )i, j i , jV
8i 4
π

=θ −
+

  (17b) 

 
 It is clear that, the kernels, Ik(ri) and Iq(θkj) are 
image-independent. Therefore, both kernels could be 
pre-computed and stored for any future use. 
 For efficient computation of highly accurate radial 
moments, one-dimensional cascade is implemented for 
fast computation and two types of symmetry properties 
are applied for memory reduction. Both of these 
approaches were successfully employed in the theme of 

moment computation.  
 Equation 10 will be rewritten in a separable form 
as follows: 
 

( )k q k i i q
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 It must be noted that, an 8-way symmetry property 
could be applied to achieved 87% of memory saving. 
For detailed description of this symmetry, the readers 
are referred to the study (Hosny et al., 2011)  
 

RESULTS 
 
 A number of numerical experiments are conducted 
to prove the validity and the efficiency of the proposed 
method. Two standard gray level images as displayed in 
Fig. 3 are used where the full set of Zernike and 
orthogonal Fourier-Mellin are computed by using the 
proposed method and the traditional approximated ZOA 
methods. Mean Square Error (MSE) is used in the 
evaluation process. The computed sets of moments are 
used to reconstruct the input image and then, the MSE 
are computed. The values of the MSE are plotted. 
 Two numerical experiments are conducted. In the 
first experiment, the ‘house’ gray level image of size 
128×128 is used, where the full set of orthogonal 
Fourier-Mellin moments up to order Max = 20 is 
computed by using the proposed method and the ZOA 
method. The MSE of both methods are computed, 
plotted and depicted in Fig. 4. It is clear that, the MSE 
of the proposed method decreased as the moment order 
increased. On the other side, the MSE of the ZOA 
method decreased for few moment orders and suddenly 
increased. This is evidence on the accuracy of the 
proposed method. 
 

 
 
Fig. 3: Standard gray level images 
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Fig. 4: Mean square errors: Orthogonal Fourier-Mellin 

moments 
 

 
 
Fig. 5: Mean square errors: Zernike moments 
 
 In the second experiment, the full set of Zernike 
moments are computed with the proposed and the ZOA 
method. The MSE of both methods are computed, 
plotted and depicted in Fig. 5. As expected, a similar 
result is reached.  
 Since pseudo Zernike moments are derived from 
original Zernike moments and based on the big 
similarity between their functions, the computational 
process of pseudo Zernike moments is straightforward.  
 All computational processes are performed by 
using a code designed with Matlab8 and operated on a 
Lenovo R400 Laptop.  
 Invariance to different kinds of geometric 
transformations such as rotation, translation and scale 
will be tested. Invariance of the Zernike, pseudo 
Zernike and Fourier-Mellin moments are tested using 
standard gray level images.  

     
 (a) (b) (c) 
 

     
 (d) (e) (f) 
 

      
 (g) (h) (i) 
 

     
 (j) (k) (l) 
 
Fig. 6: (a) Original image, (b) Rotation R = 30°, (c) R = 

60° and (d) R = 95°, (e) Scaling S = 0.75, (f) S = 
0.95, (g) S = 1.25, (h) S = 0.75 and R= 30°, (i) S 
= 0.75 and R = 80°, (j) S = 1.25 and R = 80°, (k) 
Noisy image, (l) S = 0.75 and R = 80° 

 
 These numerical experiments were designed in 
(Hosny, 2008). The first experiment is concerned with 
testing invariance against rotation where the original 
gray level image of Lena is rotated by 30°, 60° and 95° 
as shown in Fig. 6b-d.  
 The absolute errors between the low order 
orthogonal moments of the original image and the 
rotated ones are showed in Table 2-4 for Zernike, 
pseudo Zernike and Fourier-Mellin moment invariants 
respectively. It is clear that, the absolute errors are very 
small whatever the rotation angle which ensure the 
accuracy of the proposed unified method.  
 Invariance against scaling for both image reduction 
and enlargement is tested. The image of ‘Lena’ is 
reduced by the scaling factors 0.75 and 0.95. It is also 
enlarged by the factor 1.25 as shown in Fig. 6e-f and 
7g. The absolute errors of the low order moments for 
original and the scaled images are showed. As 
expected, the absolute errors of the proposed moment 
invariants are very small.  
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Table 2: Absolute values of low order Zernike moments (First experiment) 
Transformation   Zernike moments 
--------------------------------------- -- -------------------------------------------------------------------------------------------------------------------------- 
R S N X20 Z22 Z31 Z33 Z40 Z42 Z44 
300 ----- 0 0.0787 0.0354 0.0348 0.039 0.0417 0.0143 0.0297 
600 ----- 0 0.0784 0.0351 0.0345 0.0392 0.0415 0.0141 0.0296 
950 ----- 0 0.0786 0.0354 0.0347 0.0391 0.0416 0.0140 0.0293 
----- 0.75 0 0.0787 0.0354 0.0348 0.0390 0.0417 0.0143 0.0297 
----- 0.95 0 0.0786 0.0354 0.0348 0.0390 0.0418 0.0143 0.0297 
----- 1.25 0 0.0787 0.0353 0.0347 0.0388 0.0417 0.0143 0.0297 
800 0.75 0 0.0787 0.0352 0.0346 0.0390 0.0414 0.0143 0.0296 
800 1.25 0 0.0783 0.0350 0.0348 0.0386 0.0417 0.0141 0.0296 
800 0.75 1 0.0778 0.0343 0.0344 0.0392 0.0422 0.0138 0.0283 
 
Table 3: Absolute values of low order pseudo Zernike moments (First experiment) 
Transformation  Pseudo Zernike moments 
-------------------------------- --------------------------------------------------------------------------------------------------------------------------------------- 
R S N A20 A21 A22 A31 A32 A33 A42 A44 
300 ----- 0 0.1827 0.0347 0.0185 0.0648 0.0144 0.0221 0.0251 0.1200 
600 ----- 0 0.1825 0.0345 0.0185 0.0647 0.0144 0.0223 0.0250 0.1201 
950 ----- 0 0.1824 0.0343 0.0184 0.0645 0.0145 0.0224 0.0253 0.1203 
----- 0.75 0 0.1827 0.0347 0.0185 0.0648 0.0144 0.0221 0.0251 0.1200 
----- 0.95 0 0.1827 0.0347 0.0185 0.0648 0.0144 0.0221 0.0251 0.1200 
----- 1.25 0 0.1826 0.0347 0.0185 0.0647 0.0144 0.0222 0.0251 0.1200 
800 0.75 0 0.1827 0.0345 0.0185 0.0648 0.0145 0.0221 0.0252 0.1202 
800 1.25 0 0.1825 0.0347 0.0183 0.0645 0.0144 0.0223 0.0253 0.1201 
800 0.75 1 0.1819 0.0339 0.0181 0.0641 0.0149 0.0216 0.0245 0.1204 
 
Table 4: Absolute values of low order orthogonal Fourier-Mellin moments (First experiment) 
Transformation  Orthogonal Fourier-Mellin moments 
------------------------------- ------------------------------------------------------------------------------------------------------------------------------------- 
R S N F20 F21 F22 F30 F31 F32 F33 F42 
300 ----- 0 0.0443 0.0155 0.0101 0.0139 0.0074 0.0112 0.0235 0.0043 
600 ----- 0 0.0442 0.0156 0.0101 0.0138 0.0072 0.0111 0.0234 0.0044 
950 ----- 0 0.0441 0.0154 0.0103 0.0137 0.0075 0.0114 0.0233 0.0043 
----- 0.75 0 0.0443 0.0155 0.0101 0.0139 0.0074 0.0112 0.0235 0.0043 
----- 0.95 0 0.0443 0.0155 0.0101 0.0139 0.0074 0.0111 0.0233 0.0043 
----- 1.25 0 0.0444 0.0154 0.0102 0.0137 0.0073 0.0112 0.0235 0.0042 
800 0.75 0 0.0441 0.0155 0.0101 0.0138 0.0075 0.0112 0.0232 0.0043 
800 1.25 0 0.0441 0.0153 0.0101 0.0139 0.0074 0.0112 0.0235 0.0042 
800 0.75 1 0.0438 0.0150 0.0094 0.0132 0.0064 0.0107 0.0239 0.0035 
 
 To test robustness against noise, a white Gaussian 
noise is added to the image of Lena according to the 
MATLAB statement; A= imnoise (A, ‘Gaussian’, 0, 
0.05). The noisy image (Fig. 6k) is scaled with the 
factor 0.75 and then rotated with the angle 800 (as 
displayed in Fig. 6l). 
 Another group of numerical experiments are 
conducted where the image of recycling logo is used. 
These numerical experiments were designed in (Hosny, 
2008) where the input test image is 3-fold rotation 
symmetry. The gray level image of recycle logo with size 
128×128 (Fig. 7a) is rotated by 300, 600 and 950 as shown 
in Fig. 7b-d. As in the previous numerical experiments, 
the absolute errors of low order orthogonal moments are 
computed and shown in Table 5.   
 Invariance against a combination of scaling and 
rotation is tested where the test image is reduced by the 
percentage of 75% and then rotated through the angle 

800. In another experiment, the test image is enlarged 
using the percentage 125% and then rotated through the 
angle 800 as shown in Fig. 7e and f. 
 Robustness against the white Gaussian noise is 
tested. The noisy image (Fig. 7g) is scaled with the 
factor 0.75 and then the noisy image is rotated by an 
angle 30° (Fig. 7h). The absolute errors are showed in 
Table 5. The acronyms ‘R’ and ‘S’ refer to rotation and 
scaling respectively. The values ‘0’ means noise-free 
while ‘1’ means noisy. 
 The conducted experiments clearly show the 
accuracy of the proposed unified method. All aspects of 
accuracy evaluation such as image reconstruction, 
invariance with respect to geometric transformations 
(rotation and scaling) and robustness against noise are 
considered. The proposed unified method is proved to 
be very effective in case of symmetric images.   
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Table 5: Absolute values of low order Zernike moments (Second experiment) 
Transformation  Zernike moments 
-------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- 
R S N Z20 Z22 Z31 Z33 Z40 Z42 Z44 
300 ---- 0 0.0839 0.1382 0.0394 0.0844 0.5987 0.0336 0.0108 
600 ---- 0 0.0838 0.1381 0.0392 0.0842 0.5985 0.0335 0.0106 
950 ---- 0 0.0835 0.1385 0.0390 0.0841 0.5986 0.0337 0.0102 
800 0.75 0 0.0832 0.1381 0.0391 0.0842 0.5986 0.0334 0.0107 
800 1.25 0 0.0832 0.1381 0.0391 0.0842 0.5986 0.0334 0.0107 
300 0.75 1 0.0839 0.1382 0.0393 0.0844 0.5987 0.0336 0.0108 
 

 
 (a) (b) (c) 

 

 
 (d) (e) (f) 
 

 
 (g) (h) 
 
Fig. 7: (a) recycling symbol's image, (b) Rotation R = 

30°, (c) R = 60°, (d) R = 95°, (e) S = 0.75 and R 
= 80°, (f) S = 1.25 and R = 80°, (g) Noisy 
image, (h) Noise and S = 0.75 and R = 30° 

 
DISCUSSION 

 
 The conducted experiments clearly show the 
accuracy of the proposed unified method. All aspects of 
accuracy evaluation such as image reconstruction, 
invariance with respect to geometric transformations 
(rotation and scaling) and robustness against noise are 
considered. The proposed unified method is proved to 
be very effective in case of symmetric images.  

 
CONCLUSION 

 
This study proposes a unified method for accurate 

computation of circular moments for gray-scale images. 
A new image mapping approach is proposed. In this 
approach, the total number of the Cartesian pixels of the 

input digital image is equal to the corresponding 
circular image pixels in polar coordinates. Radial 
moments are accurately computed by using the 
proposed mapping scheme and then; Zernike, pseudo 
Zernike and Fourier-Mellin moments are expressed as a 
linear combination of radial moments. The numerical 
experiments are performed for real images with 
different sizes to ensure the efficiency of the proposed 
method. 
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