
Journal of Computer Science 7 (2): 314-319, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Mohammed Adam Ibrahim Fakheraldien, Faculty of Computer Systems and Software Engineering,
 University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

314

An Efficient Middleware for Storing and Querying XML

Data in Relational Database Management System

Mohammed Adam Ibrahim Fakheraldien, Jasni Mohamad Zain and Norrozila Sulaiman
Faculty of Computer Systems and Software Engineering,

University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

Abstract: Problem statement: In this study, we propose a middleware that provides a transformation
utility for storing and querying XML data in relational databases using model mapping method.
Approach: To store XML documents in RDBMS, several mapping approaches can be used. We
chose structure independent approach. In this middleware the model mapping method XParent and free
of cost available technologies MYSQL, PhpMyAdmin and PHPclasses are used as examples. Results:
This middleware stores XML tables and does not require a direct extension of SQL thus this
middleware can be used with any relational databases management system with little changes in the
middleware interface. The middleware offers two alternative methods -namely XParent and XReal- for
storing XML in the database. Conclusion: The key to proposed middleware is to store XML document
in a relational database through a user interface and with an XPath query processor. We present a
comparative experimental study on the performance of insertion and retrieval of two types of XML
documents with a set of XPath queries executed though the XPath. XML and Relational databases
cannot be kept separately because XML is becoming the universal standard data format for the
representation and exchanging the information whereas most existing data lies in RDBMS and their
power of data capabilities cannot be degraded so the solution to this problem a middleware prototype is
required. The proposed schema dependent solutions have a drawback that evens a small change in the
logical structure of XML documents influence on the database schemas and several problems occur during
the updating process. A new efficient data middleware is proposed in the study to face these issues.

Key words: Extensible Markup Language (XML), relational database, XParent, Structured Query

Language (SQL), middleware, Database Administrators (DBAs)

INTRODUCTION
Today’s data exchange between organizations has
become challenging because of the difference in data
format and semantics of the meta-data which used to
describe the data. Now day’ XML emerged as a
major standard for representing data on the World
Wide Web while the dominant storage mechanism
for structured data is the relational databases, which
has been an efficient tool for storing, searching,
retrieving data from different collection of data. The
ability to map XML data in relational databases is
difficult mission and challenging in the world of all
IT organization so there is a need to develop an
interfaces and tools for mapping and storing XML
data in relational databases.
 Taking up emerging requirements, database
vendor such as IBM, Oracle and Microsoft are
enabling their product for XML. There is a need arise

to manage XML data and other data stored in
relational data seamlessly at a time efficiently. The
native-XML databases usually have limited support
for relational data. XML -Enabled databases like
IBM, Oracle and Microsoft have mature and proven
techniques for relational data processing but XML-
extensions have not been mature enough yet. In these
vendor specific RDBMS; Database Administrators
(DBAs) have to express how to map XML data into
their systems and the XML storage are tailored to one
particular system and are hard-coded to some default
mapping on behalf of the users, so they cannot be
used for any other relational backend. For solution to
these problems a middleware is required for storing
and querying xml data in any RDBMS.

XML: The extensible Markup Language (XML) is
quickly becoming the de facto standard for data

J. Computer Sci., 7 (2): 314-319, 2011

315

exchange over the Internet and now it plays a central
role in data management, transformation, and
exchange. Since it s introduction to industry in the
late 1990s, XML (Amirian and Alesheikh, 2008) has
achieved widespread support and adoption among all
the leading software tools, server, and database
vendor s. As importantly, XML has become the
lingua franca for data by lowering the cost of
processing, searching, exchanging, and re-using
information. XML provides a standardized, self-
describing means for expressing information in a way
that is readable by humans and easily verified,
transformed, and published. This allows both
information workers and automated applications to
better find and uses the information they need. In
addition, data can be transmitted to remote services
anywhere on the Internet using XML-based Web
services to take advantage of the new ubiquity of
connected software applications. The openness of
XML (Augeri et al., 2007). allows it to be exchanged
between virtually any hardware, software, or
operating system. Simply put, XML opens the door
for information interchange without restriction. For
its features in good description and transmission, the
hot topic is to seek the best way for storing XML
documents in order to get high query processing
efficiency. At present, storing XML document in
relational database is a promising way for that
relational database is mature.

Relational Databases: Today, the dominant storage
mechanism for structured enterprise data is the
relational database, which has proven itself an
efficient tool for storing, searching for, and retrieving
information from massive collections of data.
Relational databases specialize in relating individual
data records grouped by type in tables. Developers
can join records together as needed using SQL
(Structured Query Language) and present one or
more records to end-users as meaningful information.
The relational database model revolutionized
enterprise data storage with its simplicity, efficiency,
and cost effectiveness. Relational databases have
been prevalent in large corporations since the 1980s,
and they will likely remain the dominant storage
mechanism for enterprise data in the foreseeable
future. Despite these strengths, relational databases
lack the flexibility to seamlessly integrate with other
systems, since this was not historically a requirement
of the database model (Wilson, 2001). In addition,
although relational databases share many similarities,
there are enough differences between the major
commercial implementations to make developing

applications to integrate multiple products difficult.
Among the challenges are differences in data types,
varying levels of conformance to the SQL standard,
proprietary extensions to SQL, and so on.

MATERIALS AND METHODS

 Structure Independent Mapping Approach: The
structure independent mapping approach is explained
with a sample XML document shown in Fig. 1. In
this study, we employ the data model of XPath (Haw
and Lee, 2008) to represent XML documents. In the
XPath data model, XML documents are modeled as
an ordered and directed labeled tree. There are seven
types of nodes. In this study, we consider only the
following four types of nodes for the sake of
simplicity: root, element, text and attribute. The root
node is a virtual node pointing to the root element of
an XML document.

 The XRel Method: This approach (Association for
Computing Machinery, 2001) stores XML documents
in four different tables; Element table stores only
the document structure. Text table holds only text
data. Attribute table stores attribute values. Path
table keeps unique paths in XML documents. The
key to this method is the path table and regions
associated with the inner nodes in the tree.

Element (DocID, PathID, Start, End, Index)
Attribute (DocID, PathID, Start, End,Value)

Text (DocID, PathID, Start, End, Value)
Path (PathID, Pathexp)

 The database attributes DocID, PathID, Start, End,
and value represent document identifier, start position
of a region, end position of a region, and string-value,
respectively. Each node is associated with start and
end positions. A region (or the pair of start and end
positions) implies a containment between elements
with regards to the ancestor-descendant and parent-
child relationships. For example, a node, ni, is
reachable from another node nj, if the region of ni is
included in the region of nj. In our study, we
modified some attributes of tables in XRel approach:
we added a ParentID column to Element, Attribute,
and Text tables to find parent nodes easily. We put
NodeID and last descendant node id (EndDescID)
attributes instead of start and end columns in Element
table. The XRel four tables (Path, Element,
Attribute and Text) can be seen in Table1-4 for the
XML document given in Fig. 1as following:

J. Computer Sci., 7 (2): 314-319, 2011

316

Table 1: Path table
Path PathEXP
1 /address_book
2 /address_book/card
3 /address_book/card/@no
4 /address_book/card/name
5 /address_book/card/name/surname
6 /address_book/card/name/given
7 /address_book/card/name/other
8 /address_book/card/title
9 /address_book/card/address
10 /address_book/card/address/street
11 /address_book/card/address/city
12 /address_book/card/address/state
13 /address_book/card/address/zip
14 /address_book/card/name/contact
15 /address_book/card/contact/phone

Table 2: Element table
Nod ID EndDesc ID Path ID Parent ID Ordinal
1 51 1 0 1
2 25 2 1 1
5 11 4 2 1
6 7 5 5 1
8 9 6 5 1
10 11 7 5 1
12 13 8 2 1
14 22 9 2 1
15 16 10 14 1
17 18 11 14 1
19 20 12 14 1
21 22 13 14 1
23 25 14 2 1
24 25 15 23 1

Fig. 1: Sample XML
Table 3: Attribute table

Nod ID Path ID Parent ID
 Value
3 3 2 1

Table 4: Text table
Nod ID Path ID Parent ID Value
7 5 6 Adam
9 6 8 John
11 7 10 Tom
13 8 12 Prof.DR
16 9 15 3rd Floor, C11 ABC
18 10 17 Nyala
20 11 19 AB
22 12 21 12345

The XParent Method: XParent (Jiang et al., 2002)
is a model mapping schema. Like Xrel, XParent uses
the Path index table, but it uses the Edge and Edge-
value approach to store the parent-child relationship.
This relationship is maintained in a separate table
(DataPath), again, to reduce the join cost. XParent is
chosen because it outperforms significantly current
state-of-the-art model mapping approaches like Edge
and particularly for query performance (Ali, 2006). The
XParent schema stores the node information of the
XML data graph of an XML document into four tables:

LabelPath (ID, Len, Path)
DataPath (Pid, Cid)

Element (PathID,Did,Ordinal)
Data (PathID, Did, Ordinal, Value)

 Table LabelPath stores the information of label-
paths of an XML data graph. The attributes ID and
Len denote the unique ID and the length of each
label-path, respectively. The attribute Path denotes
the name of the corresponding label-path which is a
sequence of node names in the label-path. Table
DataPath stores the information of parent-child
relationships of an XML data graph. The attributes
Pid and Cid denote the node number of the
corresponding parent node and child node of an edge,
respectively. Table Data stores the information of the
nodes of the XML data graph if the corresponding
elements or attributes in an XML document have a
value. The attributes PathID and Did denote the ID of
label-path (i.e., the foreign key of the ID in Table
LabelPath) and the node number of the node,
respectively. The attribute Ordinal denotes the
ordinal number of the node among its sibling-nodes
with the same name. The attribute Value denotes the
value of the node, where the value of anode is the
value of the corresponding element or attribute in the
XML document. Table Element is similar with Table
Data, except that Table Element does not store the
value of each node.

J. Computer Sci., 7 (2): 314-319, 2011

317

Fig. 2: T he XML Tree the sample XML

Fig. 3: Middelware structure

The middleware architecture and its
implementation: The main idea for the implementation
of the prototype is taken from (Şevkli et al., 2004) with
modification of usage of available mapping strategy
XParent instead of other method. We chose MYSQL as
the DBMS for storing and retrieving XML documents
using structure independent mapping approach because
it is free of cost, open source and easily available. This

implementation adds collection support to the MYSQL
database. A collection is a set of XML document stored
in fixed schema of tables. In this case it a set of fixed
schema tables according to the proposed by XParent
(Fakhraldien et al., 2010)In reality, MySQL database
model does not change, but from the user point of view,
inside a database there is not only tables but also
collections. In addition, the users can not modify or

J. Computer Sci., 7 (2): 314-319, 2011

318

access to the tables of collection directly. Users know
the existing collection names and types only. They can
create, drop or browse collections. The users can insert,
browse or delete XML documents into collections. The
independent classes in PHP can be created and
embedded to PhpMyAdmin program which is a web
based interface between MySQL and the users. The
PhpMyAdmin program provides all database operations
with user friendly web interface. In these Middleware
we used two different independent mapping approach
methods. There are variations of these methods as well.
We chose the XParent and XRel method, because
XParent is a four table database schema (LabelPath,
DataPath, Element and Data).DataPath keeps parent-
child relationalships while XRel does not explicitly
stores edges, for data paths. Instead, XRel records
containment relationships using the notion of region.
Therefore, it needs joints in order to check edge
connections .The design objective of this middleware is
to provide efficient software that can use commercially
available RDBMS to manage XML documents. After
the implementation it will become repository for both
XML documents and relational data. The Fig. 2 and 3
bellow outlines the architecture of the middleware
which adds XML support to the MYSQL database
system. The three main classes (Collection, Document,
and XPath) can be used to adapt the same interface to
other database systems.

RESULTS

 The proposed middleware can be use as an
efficient solution with respect to query processing
specially recursive XML quires and updating. In
comparison to other middleware’s which used in
storing and querying XML documents in relational
database this middleware can act as efficient mediator
between XML and r relational database.
 This experimental discusses the result of storage
and retrieval time of XML documents and a set of
XPath queries using XParent and XRel methods.
Comprehensive experiments were conducted to study
the performance of XParent, in comparison with other
approaches. While among those RDBMS-based
approaches, XParent perform significantly better than
other model-mapping-based approaches such as Edge
and XRel. One observation is that RDBMS-based
approaches can outperform special-purpose XML
repositories such as Lore and Tamino. All experiments
were conducted on p4 350 MHz PC with 1 GB RAM,
40GB hard disk, windows XP using the middleware.
Figure 4 presents some sample results of experiments with

Fig. 4: Total Elapsed Time: Xparent Vs. XRel using

BENSHO.4

Table 5: Quires sample
QB1 /site/regions/namerica/item[
 @id=”item12345”]/name
QB2 /site/open_auction/open_/bidder[1]/in
 crease/
QB3 /site/open_auction/open_auction[bidde
 r[persone/@person=”person6789”]/foll
 owingsibling::
 bider[person/@person=person3
 4567”]]/reserve/
QB4 Count(/site/closed_auctions/closed_auc
 tion[price>=50])
QB5 Count(/site/regions//items)
QB6 Count(/site//descripiti
 /site//annotation /site//email)
QB7 /site/regions/*/item[contains(descriptio
 n,”excellent”)/name
QB8 /site/closed_auctions/closed_auction/a
 nnotation/description/parlist/listitem/p
 arlist/listitem/text/keword/empo
QB9 /site/closed_auctions/closed_auctions[a
 nnotation/description/parlist/listitem/p
 arlist/listitem/text/emph/keword/]/sell
 er/@person
QB10 /site/people/person/[not(homepage/te
 xt()/name/

XParent and XRel using the Benchmark database (with
factor 0.4 (BENCH0.4), while table 5 present the ten
XPath queries which used for the comparison between
the two methods.
 It can be seen that, XParent outperforms XRel for
most of the queries. In certain cases, such as QB2, QB4,
QB9 and QB10, XParent can be faster than XRel up to
15 times (QB2), for instance.

DISCUSSION

 From the presented results, the proposed
middleware can be use as an efficient way for storing
and queering XML data in relational database. This
middleware has the following unique features.
 XML data is stored in relational tables according to
the XParent mapping-schema, an efficient, model-
mapping approach without assistance of DTD.

J. Computer Sci., 7 (2): 314-319, 2011

319

• The visual query interface of XParent provides both
expressive powers for professionals and user friendliness
for native users.
 Overall the performance of XRel and XParent
methods is comparable in most cases with exception of
long XPath queries where XRel is definitely faster.
 We can say that the XParent method can certainly
be considered for query processing in most cases. We
think that the execution times for queries processing are
adequate and comparable to commercial applications
and databases. The middleware has flexibility to add
any future proposed more efficient schema-oblivious
mapping straggly as new collection. The mediator can
also be used as benchmark tool for the researchers to
compare various model mapping XML schemas by
adding them as collection. Our implementation adds
collection support to XML into the MYSQL database.
A collection is a set of similar XML documents stored
in fixed schema of tables, sometimes referred to as
XML repository. In realty, MYSQL database model
does not change, but from the user point of view, a
database can contain tables and collections.

CONCLUSION

 Based on experiment and result, it shows that the
proposed middleware can be used as an efficient,
affordable and quick solution until XML data
processing matures. The key to Middleware approach is
storing XMIL documents in the relational databases,
providing a user interface for XML manipulation and
adding an XPath query processor for XNML querying.
The Middleware impleinented in this study can be used
with any other database management system as it
doesn't require any modification to DBMS itself. It
provides collections or XML repositories to store XML
documents in a database. Organizer should look for
developing middleware’s to store and quire XML
documents into relational databases. That middleware
should store XML files directly into a relational
database by integrity and efficiently way.

REFERENCES

Ali, A.A., 2006. On optimistic concurrency control for
real-time database systems. Am. J. Applied Sci., 3:
1706-1710. DOI: 10.3844/ajassp.2006.1706.1710

Amirian, P. and A.A. Alesheikh, 2008. Publishing
geospatial data through geospatial web service and
XML database system. Am. J. Applied Sci., 5: 1358-
1368. DOI: 10.3844/ajassp.2008.1358.1368

Association for Computing Machinery, 2001. ACM
transactions on Internet technology. 1st Edn.,
Association for Computing Machinery, USA.,

Augeri, C.J., D.A. Bulutoglu, B.E. Mullins, R.O.
Baldwin and L.C. Baird, 2007. An analysis of XML
compression efficiency. In Proceedings of the 2007
Workshop on Experimental Computer Science, June
13-14, ACM New York, NY, USA., DOI:
10.1145/1281700.1281707

Fakhraldien, M.A.I., J.M. Zain and S.N. Ihsan, 2010. A
middleware prototype for storing and quering
XML documents in RDB using XParent model
mapping schema. Proceeding of the International
Conference in Electronic and Information
Engineering, Aug. 1-3, Kyoto, pp: 560-563. DOI:
10.1109/ICEIE.2010.5559745.

 Haw, S.C. and C.S. Lee, 2008. TwigINLAB: A
decomposition-matching-merging approach to
improving XML query processing. Am. J. Applied
Sci., 5: 1199-1205. DOI:
10.3844/ajassp.2008.1199.1205

Jiang, H., H. Lu, W. Wang and J.X. Yu, 2002. Path
materialization revisited: An efficient storage model
for xml data. Proceeding of the 13th Australasian
Database Conference, (ADC’02), Australian
Computer Society, Inc. Darlinghurst, Australia, pp:
85-94. DOI: 10.1145/563932.563916

Şevkli, Z., M. Mercan and A. Kurt, 2005. A middleware
approach to storing and querying xml documents in
relational databases. Adv. Inform. Sys., 3261: 223-
233. DOI: 10.1007/978-3-540-30198-1_23

Wilson, J., 2001. Take a good look. 1st Edn., Puffin
Books, USA., ISBN0141309423, pp: 90.

