
Journal of Computer Science 7 (11): 1667-1673, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Ravie Chandren Muniyandi, School of Computer Science, Faculty of Information Science and Technology,
University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

1667

Membrane Computing as a Modeling Tool for Discrete Systems

1Ravie Chandren Muniyandi and 2Abdullah Mohd. Zin

1School of Computer Science,
2School of Information Technology,

Faculty of Information Science and Technology,
University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Abstract: Problem statement: Discrete systems have been modeled by using Ordinary Differential
Equation (ODE) in which the variation of concentration of an object was modeled as continuous and
deterministic manner, contrary to the real behaviors of such systems. Although, this approaches able to
generate the general behavior of the system, the specific discrete processes and stochastic behaviors in
the system have not been addressed. Membrane computing has been an unconventional computational
approach that provides a platform for modeling discrete systems. It deals with parallel, distributed and
non-deterministic computing models. Approach: This study was carried to compare the ODE with
membrane computing approach in modeling a discrete system by taking Prey-Predator population as
the case study. Membrane computing simulator based on Gillespie Algorithm and Probabilistic and
Symbolic Model Checker (PRISM) were used to verify and validate the model. Results: Membrane
computing able to not only maintain the dynamics and equilibrium of Prey-Predator population but
also preserve the discrete and stochastic evolvement of the prey and predator in the population by
sustaining the properties of the system. Conclusion: Membrane computing modeling approach
preserved the characteristics of discrete systems that absent in the ODE approach.

Key words: Membrane computing, prey predator population, discrete systems, modeling approach,

modeling discrete, gillespie algorithm, deterministic manner, differential equation,
computing simulation

INTRODUCTION

 Membrane computing (Paun, 1998) is an area of
computer science that abstract computing ideas and
models from the structure and the functioning of living
cells. This mechanism provides a platform for modeling
discrete systems in which a membrane delimits a
compartment from its external environment and provides
local environment that regulates specific processes.
 The processes evolve in parallel and non-
deterministic way in which all evolution rules are
simultaneously applied to all the objects. The
computation halts to produce output when no rule is
applied. The discrete characteristics of membrane
computing allow the dynamic systems evolve in discrete
steps according to the processes.
 However, some of the discrete systems have been
represented in Ordinary Differential Equation (ODE)
(Blanchard et al., 2006) which has continuous and
deterministic evolution strategy. This approach has shown
limitations when the variation of concentration of an
object is modeled as continuous and deterministic manner,

which ignores the behaviors of discrete systems itself
(Jong, 2002). Membrane computing has been identified as
an alternative to address these limitations.
 Prey-Predator population (Jones et al., 2003) is a
discrete system that has been modeled in ODE. The
same model can be represented in membrane
computing by using rewriting rules. The model is
simulated with membrane computing simulation
strategy based on Gillespie algorithms (Gillespie, 2001;
Muniyandi and Abdullah, 2010). The properties of Prey
Predator population are verified with Probabilistic
Model Checker (PRISM) (Kwiatkowska et al., 2002;
Muniyandi et al., 2010). The results are compared with
ODE approach to certify the capability of membrane
computing in modeling discrete systems.

Prey-predator population: The Prey- Predator model
is a biological system that describes the dynamics of
Prey-Predator population. In this model, the food
supply of prey species is assumed to be abundant and
no threat to its growth. Meanwhile, the only food

J. Computer Sci., 7 (11): 1667-1673, 2011

1668

supply of predator species is the prey to determine its
growth. The interaction between prey and predator is to
maintain the equilibrium of Prey- Predator population
over time. The prey species could grow exponentially
with its unlimited food supply but the predator species
act to counterbalance the prey growth rate. Therefore,
two assumptions formulated for this model to
maintain the equilibrium of the population. First, the
size of the prey and predator population is related to
the rate at which predator encountering prey. Second,
the predator has to lead to natural death which is
related to a rate of fixed proportion.
 Based on the assumptions, the rules in the prey
predator model are interpreted. First the rule over the
prey in which the change in the number of prey is
specified by its own growth minus the rate at which it is
preyed upon. Second, the rule over predator signifies the
growth of the predator population in which its growth is
not necessarily equal to the rate at which it consumes the
prey but there is another rule of exponential decay to
represent the natural death of the predator.

The ODE model of prey-predator population: The
ODE of Prey-Predator model is represented by a pair of
first order, non-linear, differential equations (Jones et
al., 2003). The interactions between prey and predator
determine the number of prey and predator at certain
time step in the system. Prey-Predator population is
modeled in ODE as Eq. 1 and 2:

1 2

d X
k X k X Y

d t
= − (1)

4 3

d Y
k X Y k Y

d t
= − (2)

 Y represents the number of predator and X
represents the number of prey and k1, k2, k3 and k4 are
the kinetic constants.

Fig. 1: Oscillation of the prey-predator model simulated

by ODE

 The ODE model of Prey-Predator population in
Fig. 1 is simulated by ODE simulation approach (Jones
et al., 2003). The simulation in Fig. 1 shows the
oscillations of the prey-predator model simulated by
ODE for 60 time steps for x = 200 and y = 80 with
kinetic constants k1 = 1, k2 = 0.01, k3 = 0.05 and k4
= 0.005. The result simulated by ODE as shown in
Fig. 1 has captured the oscillation behavior of prey-
predator model. It has a deterministic pattern of
oscillation at each cycle of the oscillation with fixed
peak and dip at each cycle.

MATERIALS AND METHODS

Reactions and parameters: The case study of Prey-
Predator population is taken from Jones et al. (2003)
research paper it is modeled by using ODE approach.
The number of initial species, reactions of the rules and
parameters involved in the system are extracted from
the ODE of the Prey-Predator model.

Kinetic constants and initial multisets: The selection
of initial multisets and the kinetic constants are done to
determine the computation in membrane computing of
Prey-Predator model. This basically is an attempt to
gain the behaviour of Prey-Predator population through
membrane computing model and compared it to the
results achieved through the ODE model of Prey-
Predator population. Subsequently the membrane
computing model is analysed whether it could preserve
the stochastic characteristics of the Prey-Predator
population. The value of initial multisets and kinetic
constants for membrane computing simulation strategies
are determined through black box testing (Beizer, 1995)
in which the inputs are selected based on the expected
output of the system. For instance, the initial multisets
and kinetic constants extracted from the ODE model are
taken as initial test cases with Gillespie Simulator. Then
these test cases are adjusted accordingly to determine
the appropriate amount of initial multisets and kinetic
constants needed to preserve the stochastic behaviour of
membrane computing model. The best kinetic constants
are chosen when the oscillation of Prey-Predator
population is obtained. The chosen kinetic constants for
are 10, 0.02 and 15, respectively, when the initial
numbers of preys and predators are fixed at 1000 and
200, respectively.

Modeling: The objects, reactions and parameters
extracted from ODE model of Prey-Predator population
are utilized in membrane computing modeling Prey-
Predator population by using membrane computing
formalism outlined by Muniyandi and Abdullah (2009).

J. Computer Sci., 7 (11): 1667-1673, 2011

1669

Simulation: Gillespie Simulator is used to simulate the
membrane computing model of Prey-Predator
population. Firstly, the membrane computing model is
converted into the notation of system biology markup
language which describes the components of the
biological system. Then, the simulator will specify the
list of compartments and the structural hierarchy and
the initial amounts of the objects from the SBML
notations. This is the initial state of the system and is
given to the simulator to produce an evolution of the
objects over simulation steps. The membrane
computing simulation results using Gillespie algorithm
are compared to the results of ODE approach.

Model checking: PRISM (Kwiatkowska et al., 2002) is
used to model check membrane computing model of
Prey-Predator population by specifying the properties
of the system. PRISM is a probabilistic model checker
that represents a technique to formally verify
quantitative properties of a stochastic system. By using
the concept of rewards, PRISM is used to specify and to
analyze properties of Prey-Predator. The rewards are
analyzed with the R{“ M ”}=? [I=T], where M is the
name of the rewards, I is the instantaneous rewards and
T is the time steps. Given a membrane computing
model of Prey-Predator population, the model is tested
automatically to ascertain whether it meets the
specification of the system. There are four steps in the
model checking process. First, the properties for the
Prey-Predator population are obtained from the
behavior of this system. Second, the membrane
computing model is translated into PRISM formalism.
This translation technique from membrane computing
into PRISM applied in this research is proposed by
Romero-Campero et al. (2006). Third, the model in
PRISM is simulated and model checked with the
properties of Prey-Predator population. PRISM is used
to specify and to analyze properties based on rewards.
Finally, the data of the results generated by PRISM is
presented into a graph and analyzed to verify whether
the specified properties are preserved or not.

RESULTS

Membrane computing model of prey-predator
population: Based on the characteristics of the two
differential Eq. 1 and 2 in the ODE model of Prey-
Predator population, the system is converted into
discrete systems. There are two equations, two species
and three kinetic constants in Prey-Predator
population where, Y is the number of predator; X is
the number of prey; dY/dt and dX/dt represents the
growth of the two populations against time t; and k1,
k2, k3 and k4 are parameters representing the
interaction of the two species. The reactions between
the species occur within a compartment.

 The growth of Prey: In differential Eq. 1, with rate
k1, amount of X is increased and this process will
contribute to the growth of X in the system. This process
can be concluded in rewriting rule as follow Eq. 3:

1kX X + X→ (3)

 In this reaction, one amount of X is replaced with
two amount of X with the rate of, at time step t.
 The reduction of Prey: In differential Eq. 1 this
process is activated by rate of. The interaction between
X and Y with rate in the Eq. 1 will decrease the amount
of X in the system. This process can be represented in
rewriting rule as Eq. 4:

2kX + Y Y→ (4)

 In the reaction, the interaction between one amount
of X and one amount of Y depletes one amount of X
but Y unchanged, with the rate of at time step t.
 The growth of Predator: In differential Eq. 2 this
process is activated by rate of. The interaction between
X and Y in differential Eq. 2, will increase the amount
of Y with the rate of. This process can be represented in
rewriting rule as Eq. 5:

4kX + Y X + Y + Y→ (5)

 In the reaction, interaction between one amount of
X and one amount of Y with the rate of, X is remain
stagnant and one amount of Y is generated at time step t.
 The decay of Predator: In differential Eq. 2, the
amount of Y will decrease with rate of. This process
can be represented in rewriting rules as Eq. 6:

3kY → (6)

 In this reaction one amount of Y is depleted with
rate at time step t.
 The reactions (4) and (5) are performing similar
interactions. Therefore, there are also examples in the
Prey-Predator model, in which the weight of are similar
to the weight of (Jones et al., 2003). In this
investigation the weight of are taken as similar to the
weight of for generalization of process in the model. In
this case the reaction (4) and (5) are merged as Eq. 7:

2kX Y Y Y+ → +

(7)

 Based on the discrete system of the Prey-Predator
Population above, a membrane computing model is
built. A model for Prey-Predator population (PP) is

J. Computer Sci., 7 (11): 1667-1673, 2011

1670

obtained by considering a membrane computing with a
compartment contains rules describing the reactions
between preys and predators. The model is represented as:

PP = (V,µ, ω, R)

 The objects are prey and predator represented as X
and Y respectively. They are:

V={X, Y}

 The initial multisets are:

ω = {nX, mY}

where, n and m are integer multiplicities.
 Since the system has single compartment, it only
able to perform transformation of objects. Therefore,
the transformation rule has the form: where are
multisets in a compartment. K is a real number
representing the kinetic constant, which represent the
rate of reaction between objects. A rule of this form is
interpreted as follows: based on the rate of k, the multiset
u is transformed into multiset v inside a compartment.
Based on the rewriting rules (3), (6) and (7) described
above, the Prey-Predator population dynamics is
described in membrane computing as follow Eq. 8-10:

1kR1:[X] [X,X]→ (8)

2kR2 :[X,Y] [Y,Y]→ (9)

3kR3 :[Y] []→ (10)

 R1, R2 and R3 are prey reproduction, predator
reproduction and predator death rules, respectively.

Fig. 2: Oscillation of the Prey-Predator model

simulated by Gillespie algorithm with k1=10,
k2=0.02, k3=15

Simulation of membrane computing model: The
simulation in Fig. 2 shows the Prey-Predator model of
membrane computing simulated with Gillespie
simulator. The simulation shows that the pattern of
oscillation at each cycle in the oscillation is not fixed as
in the ODE. The peak and dip of the simulation are
different at each cycle of the oscillations but has
maintained the general pattern of the oscillation. The
stochastic behavior of the Prey-Predator Population is
preserved in this non-deterministic and discrete model
of membrane computing.

 Model checking of membrane computing model:
The properties for the Prey-Predator population are
obtained from the behavior of this system elaborated by
Jones et al. (2003). Recurrence behavior of the system
and the existence of equilibrium probability distribution
maintain the stability of the system in the form of
oscillations. To facilitate this behavior, the Prey-
Predator system should preserve the following
properties: (A1) The rules are selected stochastically
based on the number of prey and predator at each time
steps and the value of reaction constants to maintain the
equilibrium of the system; (A2) The number of prey
and predator must not equal to 0 at any time steps; (A3)
The number of prey and predator become equal or
intersect each other twice at each cycle of the system; (A4)
Percentage of increase or decrease of number of prey is
higher most of the time steps than the number of predator;
(A5) Percentage of change between prey and predator is
higher most of the time steps for prey than predator.

Property (A1): The Fig. 3 shows the selection of
rules at different periods of time steps based on the
rewards. This graph shows that at each time step one
of the three rules is selected stochastically. The
patterns of selections differ for each period of time
steps as shown by the graph.

Fig. 3: Stochastic behavior of Prey-Predator model

J. Computer Sci., 7 (11): 1667-1673, 2011

1671

Fig. 4: The number of prey and predator must not equal

to 0 at any time steps

Fig. 5: The number of prey and predator become equal

twice at each cycle of the system

 This means that the stochastic behavior of the
system is maintained to make sure the stability and
consistency of the system at each cycle of the
oscillation.

Property (A2): Figure 4 shows that not at once
along the simulation steps of the system, the number
of prey or predator have been equal to 0 based on the
rewards. This result demonstrates that the behavior
of the system is always consistent to make sure that
the number of prey and predator must always greater
than 0 to stabilize the system.

Property (A3): Figure 5 demonstrates the time steps
when number of prey is equal to number of predator
generated by the rewards. The intersection between
prey and predator occurs twice at each cycle in the
oscillations when the prey and predator either keep
decreasing or increasing. However the graph shows that
the period of occurrence of one intersection to another
is not similar. This is mainly due to the stochastic
behavior of the system. However the pattern of
intersection in each of the cycle in the oscillation is
preserved to maintain the stability of the system.

Fig. 6: Percentage of increase/decrease of Preys an

Predators

Fig. 7: Percentage of changes between prey and

predator

Property (A4): Figure 6 illustrates the percentage of
increase and decrease of prey and predator based on the
rewards. The graph shows that the percentage of
increase and decrease of predator is higher than the
percentage of increase and decrease of prey. At the
initial state, the number of prey is five times higher than
the number of predator. The sharp increase of predator
is to certain extent decrease the population of prey.
Meanwhile, the sharp decrease of predator population
gives some space for prey to increase its population to
attain the initial level over again. The percentage of
increase/decrease of prey and predator is almost
similar at each of the cycle of the oscillation. This
demonstrates that the equilibrium of prey-predator
population has been preserved by maintaining the
percentage of increase/decrease of prey and predator
accordingly at each time step.

Property (A5): Figure 7 shows the percentage of
changes of prey and predator compared to the opposite
population as outlined in the rewards. This graph shows
that at most of the time number of prey exceeds number
of predator. But at certain period when number of

J. Computer Sci., 7 (11): 1667-1673, 2011

1672

predator is above the number of prey, prey is decreasing
to control the increase of predator. When number of
predator is decreasing, the number of prey is increasing.
As shown in the Fig. 6, this result also shows that the
stability of the system is preserved by controlling the
increase and decrease of the prey and predator
accordingly at each time step.

DISCUSSION

 The results demonstrate that, the Prey-Predator
model described in membrane computing could
simulate the behavior of the system as shown in Fig. 2.
This shows that membrane computing able to confine
the dynamics of Prey-Predator population. ODE of
Prey-Predator is used to model kinetics of the reactions
of two species. It would continuously vary the
concentration of species in deterministic dynamics as
shown in Fig. 1. In contrast, membrane computing
takes into consideration the discrete character of the
quantity of species in Prey-Predator system by using
rewriting rules. This demonstrates that membrane
computing emulates discrete behavior of Prey-Predator
system but ODE has ignored the discrete behavior by
representing the system in continuous way.
 Nevertheless, there are differences in performance
between these approaches. The ODE simulation with
the ratio of initial objects is two predators to five preys,
takes around 10 units time to complete a cycle in the
oscillation as shown in Fig. 1. Meanwhile, the
membrane computing simulation with a ratio of initial
objects is one predator to five preys takes around 15000
time steps in Fig. 2 to complete a similar cycle.
 This shows that in the ODE approach, the large
ratio in the mix of objects in the reaction and the
deterministic feature make the reactions fast. In the
membrane computing simulation, more time is needed to
measure the weight of each reaction based on the ratio in
the mix of objects and to subsequently choose the
appropriate reaction at each time step. The inherent
randomness in Prey-Predator system is captured by using
stochastic simulation strategy of membrane computing.
 The stochastic behavior of Pre-Predator population
is maintained by making sure the rules are selected non-
deterministically in membrane computing at each time
step as in Fig. 3. While maintaining the stochastic
behavior of the system, Fig. 4 demonstrates that
membrane computing also ensure the interaction
between prey and predator always stable to prevent any
circumstances that could eliminate one of them from
the system. This means that the equilibrium of the
system represented in membrane computing is being
preserved though there are situation where there could
be more predator than prey or the number of prey is

equal to number of predator as in Fig. 5. However, as
shown by Fig. 6 and Fig. 7, membrane computing
ensures that the percentage of increase of prey is
higher most of the time compared to the percentage of
increase of predator to maintain the equilibrium of the
system. The model checking results demonstrate that
the properties of Prey-Predator population have been
preserved by maintaining the discrete and stochastic
behavior of the system.

CONCLUSION

 The discrete character of membrane computing
model is not only preserving the dynamics of the prey-
predator population in oscillations, but also making sure
the discrete and stochastic behaviors of the system are
conserved. This study underlines that the non-
determinism and discrete characteristics of membrane
computing capable in preserving the properties of the
discrete systems better than the modeling approach of
ODE. This means that membrane computing model
could not only be used to analyze general behavior but
also could be used to investigate specific behavior of
biological system such as Prey-Predator population.

ACKNOWLEDGEMENT

 This study supported by Exploratory Research
Grant Scheme (ERGS), Ministry of Higher Education
(Malaysia). Grant code: ERGS/1/2011/STG/UKM/03/7.

REFERENCES

Beizer, B., 1995. Black-Box Testing: Techniques for

Functional Testing of Software and Systems. 1st
Edn. Wiley, London, ISBN: 0471120944, pp: 294.

Blanchard, P., R.L. Devaney and G.R. Hall, 2006.
Differential Equations. 3rd Edn. Cengage
Learning, US, ISBN: 0495012653, pp: 823.

Gillespie, D.T., 2001. Approximate accelerated
stochastic simulation of chemically reacting
systems. J. Chem. Phys., 115: 1716-1733. DOI:
10.1063/1.1378322

Jones, D.S., M.J. Plank and B.D. Sleeman, 2003.
Differential Equations and Mathematical Biology.
2nd Edn. Chapman and Hall/CRC, London, ISBN:
1420083570, pp: 444.

Jong, H.D., 2002. Modeling and simulation of genetic
regulatory systems: A literature review. J. Comp.
Biol., 9: 67-103. DOI:
10.1089/10665270252833208

J. Computer Sci., 7 (11): 1667-1673, 2011

1673

Kwiatkowska, M., G. Norman and D. Parker, 2002.
PRISM: Probabilistic symbolic model checker.
Lectu. Notes Compu. Sci., 2324: 113-140. DOI:
10.1007/3-540-46029-2_13

Muniyandi, R.C. and M.Z. Abdullah, 2009. Modeling
of biological processes by using membrane
computing formalism. Am. J. Applied Sci., 6:
1961-1969. DOI: 10.3844/ajassp.2009.1960.1968

Muniyandi, R.C. and M.Z. Abdullah, 2010.
Experimenting the simulation strategy of
membrane computing with gillespie algorithm by
using two biological case studies. J. Compu. Sci.,
6: 525-535. DOI: 10.3844/jcssp.2010.525.535

Muniyandi, R.C., M.Z. Abdullah and Z. Shukor, 2010.
Model checking the biological model of membrane
computing with probabilistic symbolic model
checker by using two biological systems. J.
Compu. Sci., 6: 666-676. DOI:
10.3844/jcssp.2010.669.678

Paun, G., 1998. Computing with membranes. J. Compu.
Syst. Sci., 61: 108-143. DOI:
10.1006/jcss.1999.1693

Romero-Campero, F.S., M. Gheorghe, L. Bianco, D.
Pescini and M.J. Perez-Jimenez et al., 2006.
Towards probabilistic model checking on p
systems using PRISM. Lecture Notes Compu. Sci.,
4361: 477-495. DOI: 10.1007/11963516_30

