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Abstract: Problem statement: Discrete systems have been modeled by using Ordinary Differential 
Equation (ODE) in which the variation of concentration of an object was modeled as continuous and 
deterministic manner, contrary to the real behaviors of such systems. Although, this approaches able to 
generate the general behavior of the system, the specific discrete processes and stochastic behaviors in 
the system have not been addressed. Membrane computing has been an unconventional computational 
approach that provides a platform for modeling discrete systems. It deals with parallel, distributed and 
non-deterministic computing models. Approach: This study was carried to compare the ODE with 
membrane computing approach in modeling a discrete system by taking Prey-Predator population as 
the case study. Membrane computing simulator based on Gillespie Algorithm and Probabilistic and 
Symbolic Model Checker (PRISM) were used to verify and validate the model. Results: Membrane 
computing able to not only maintain the dynamics and equilibrium of Prey-Predator population but 
also preserve the discrete and stochastic evolvement of the prey and predator in the population by 
sustaining the properties of the system. Conclusion: Membrane computing modeling approach 
preserved the characteristics of discrete systems that absent in the ODE approach.  
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INTRODUCTION 

 
 Membrane computing (Paun, 1998) is an area of 
computer science that abstract computing ideas and 
models from the structure and the functioning of living 
cells. This mechanism provides a platform for modeling 
discrete systems in which a membrane delimits a 
compartment from its external environment and provides 
local environment that regulates specific processes.  
 The processes evolve in parallel and non-
deterministic way in which all evolution rules are 
simultaneously applied to all the objects. The 
computation halts to produce output when no rule is 
applied. The discrete characteristics of membrane 
computing allow the dynamic systems evolve in discrete 
steps according to the processes. 
 However, some of the discrete systems have been 
represented in Ordinary Differential Equation (ODE) 
(Blanchard et al., 2006) which has continuous and 
deterministic evolution strategy. This approach has shown 
limitations when the variation of concentration of an 
object is modeled as continuous and deterministic manner, 

which ignores the behaviors of discrete systems itself 
(Jong, 2002). Membrane computing has been identified as 
an alternative to address these limitations. 
 Prey-Predator population (Jones et al., 2003) is a 
discrete system that has been modeled in ODE. The 
same model can be represented in membrane 
computing by using rewriting rules. The model is 
simulated with membrane computing simulation 
strategy based on Gillespie algorithms (Gillespie, 2001; 
Muniyandi and Abdullah, 2010). The properties of Prey 
Predator population are verified with Probabilistic 
Model Checker (PRISM) (Kwiatkowska et al., 2002; 
Muniyandi et al., 2010). The results are compared with 
ODE approach to certify the capability of membrane 
computing in modeling discrete systems. 
 
Prey-predator population: The Prey- Predator model 
is a biological system that describes the dynamics of 
Prey-Predator population. In this model, the food 
supply of prey species is assumed to be abundant and 
no threat to its growth. Meanwhile, the only food 
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supply of predator species is the prey to determine its 
growth. The interaction between prey and predator is to 
maintain the equilibrium of Prey- Predator population 
over time. The prey species could grow exponentially 
with its unlimited food supply but the predator species 
act to counterbalance the prey growth rate. Therefore, 
two assumptions formulated for this model to 
maintain the equilibrium of the population. First, the 
size of the prey and predator population is related to 
the rate at which predator encountering prey. Second, 
the predator has to lead to natural death which is 
related to a rate of fixed proportion.  
 Based on the assumptions, the rules in the prey 
predator model are interpreted. First the rule over the 
prey in which the change in the number of prey is 
specified by its own growth minus the rate at which it is 
preyed upon. Second, the rule over predator signifies the 
growth of the predator population in which its growth is 
not necessarily equal to the rate at which it consumes the 
prey but there is another rule of exponential decay to 
represent the natural death of the predator. 
 
The ODE model of prey-predator population: The 
ODE of Prey-Predator model is represented by a pair of 
first order, non-linear, differential equations (Jones et 
al., 2003). The interactions between prey and predator 
determine the number of prey and predator at certain 
time step in the system. Prey-Predator population is 
modeled in ODE as Eq. 1 and 2: 

 
1 2

d X
k X k X Y

d t
= −   (1) 

 
4 3

d Y
k X Y k Y

d t
= −    (2) 

 
 Y represents the number of predator and X 
represents the number of prey and k1, k2, k3 and k4 are 
the kinetic constants. 
 

 
 
Fig. 1: Oscillation of the prey-predator model simulated 

by ODE 

 The ODE model of Prey-Predator population in 
Fig. 1 is simulated by ODE simulation approach (Jones 
et al., 2003). The simulation in Fig. 1 shows the 
oscillations of the prey-predator model simulated by 
ODE for 60 time steps for x = 200 and y = 80 with 
kinetic constants k1 = 1, k2 = 0.01, k3 = 0.05 and k4 
= 0.005. The result simulated by ODE as shown in 
Fig. 1 has captured the oscillation behavior of prey-
predator model. It has a deterministic pattern of 
oscillation at each cycle of the oscillation with fixed 
peak and dip at each cycle. 
 

MATERIALS AND METHODS 
 
Reactions and parameters: The case study of Prey-
Predator population is taken from Jones et al. (2003) 
research paper it is modeled by using ODE approach. 
The number of initial species, reactions of the rules and 
parameters involved in the system are extracted from 
the ODE of the Prey-Predator model.  
 
Kinetic constants and initial multisets: The selection 
of initial multisets and the kinetic constants are done to 
determine the computation in membrane computing of 
Prey-Predator model. This basically is an attempt to 
gain the behaviour of Prey-Predator population through 
membrane computing model and compared it to the 
results achieved through the ODE model of Prey-
Predator population. Subsequently the membrane 
computing model is analysed whether it could preserve 
the stochastic characteristics of the Prey-Predator 
population. The value of initial multisets and kinetic 
constants for membrane computing simulation strategies 
are determined through black box testing (Beizer, 1995) 
in which the inputs are selected based on the expected 
output of the system. For instance, the initial multisets 
and kinetic constants extracted from the ODE model are 
taken as initial test cases with Gillespie Simulator. Then 
these test cases are adjusted accordingly to determine 
the appropriate amount of initial multisets and kinetic 
constants needed to preserve the stochastic behaviour of 
membrane computing model. The best kinetic constants 
are chosen when the oscillation of Prey-Predator 
population is obtained. The chosen kinetic constants for 
are 10, 0.02 and 15, respectively, when the initial 
numbers of preys and predators are fixed at 1000 and 
200, respectively.  
 
Modeling: The objects, reactions and parameters 
extracted from ODE model of Prey-Predator population 
are utilized in membrane computing modeling Prey-
Predator population by using membrane computing 
formalism outlined by Muniyandi and Abdullah (2009). 
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Simulation: Gillespie Simulator is used to simulate the 
membrane computing model of Prey-Predator 
population. Firstly, the membrane computing model is 
converted into the notation of system biology markup 
language which describes the components of the 
biological system. Then, the simulator will specify the 
list of compartments and the structural hierarchy and 
the initial amounts of the objects from the SBML 
notations. This is the initial state of the system and is 
given to the simulator to produce an evolution of the 
objects over simulation steps. The membrane 
computing simulation results using Gillespie algorithm 
are compared to the results of ODE approach. 
 
Model checking: PRISM (Kwiatkowska et al., 2002) is 
used to model check membrane computing model of 
Prey-Predator population by specifying the properties 
of the system. PRISM is a probabilistic model checker 
that represents a technique to formally verify 
quantitative properties of a stochastic system. By using 
the concept of rewards, PRISM is used to specify and to 
analyze properties of Prey-Predator. The rewards are 
analyzed with the R{“ M ”}=? [I=T], where M is the 
name of the rewards, I is the instantaneous rewards and 
T is the time steps. Given a membrane computing 
model of Prey-Predator population, the model is tested 
automatically to ascertain whether it meets the 
specification of the system. There are four steps in the 
model checking process. First, the properties for the 
Prey-Predator population are obtained from the 
behavior of this system. Second, the membrane 
computing model is translated into PRISM formalism. 
This translation technique from membrane computing 
into PRISM applied in this research is proposed by 
Romero-Campero et al. (2006). Third, the model in 
PRISM is simulated and model checked with the 
properties of Prey-Predator population. PRISM is used 
to specify and to analyze properties based on rewards. 
Finally, the data of the results generated by PRISM is 
presented into a graph and analyzed to verify whether 
the specified properties are preserved or not. 
 

RESULTS 
 
Membrane computing model of prey-predator 
population: Based on the characteristics of the two 
differential Eq. 1 and 2 in the ODE model of Prey-
Predator population, the system is converted into 
discrete systems. There are two equations, two species 
and three kinetic constants in Prey-Predator 
population where, Y is the number of predator; X is 
the number of prey; dY/dt and dX/dt represents the 
growth of the two populations against time t; and k1, 
k2, k3 and k4 are parameters representing the 
interaction of the two species. The reactions between 
the species occur within a compartment.  

  The growth of Prey: In differential Eq. 1, with rate 
k1, amount of X is increased and this process will 
contribute to the growth of X in the system. This process 
can be concluded in rewriting rule as follow Eq. 3: 
 

1kX X + X→  (3) 
 
 In this reaction, one amount of X is replaced with 
two amount of X with the rate of, at time step t.  
 The reduction of Prey: In differential Eq. 1 this 
process is activated by rate of. The interaction between 
X and Y with rate in the Eq. 1 will decrease the amount 
of X in the system. This process can be represented in 
rewriting rule as Eq. 4: 
 

2kX + Y Y→   (4) 
 
 In the reaction, the interaction between one amount 
of X and one amount of Y depletes one amount of X 
but Y unchanged, with the rate of at time step t. 
 The growth of Predator: In differential Eq. 2 this 
process is activated by rate of. The interaction between 
X and Y in differential Eq. 2, will increase the amount 
of Y with the rate of. This process can be represented in 
rewriting rule as Eq. 5: 
 

4kX + Y X + Y + Y→   (5) 
  
 In the reaction, interaction between one amount of 
X and one amount of Y with the rate of, X is remain 
stagnant and one amount of Y is generated at time step t.  
 The decay of Predator: In differential Eq. 2, the 
amount of Y will decrease with rate of. This process 
can be represented in rewriting rules as Eq. 6: 
 

3kY →   (6) 
 
 In this reaction one amount of Y is depleted with 
rate at time step t.  
 The reactions (4) and (5) are performing similar 
interactions. Therefore, there are also examples in the 
Prey-Predator model, in which the weight of are similar 
to the weight of (Jones et al., 2003). In this 
investigation the weight of are taken as similar to the 
weight of for generalization of process in the model. In 
this case the reaction (4) and (5) are merged as Eq. 7: 
 

2kX Y Y Y+ → +
 

(7) 
 
  Based on the discrete system of the Prey-Predator 
Population above, a membrane computing model is 
built. A model for Prey-Predator population (PP) is 
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obtained by considering a membrane computing with a 
compartment contains rules describing the reactions 
between preys and predators. The model is represented as:  
 

PP = (V,µ, ω, R) 
 
 The objects are prey and predator represented as X 
and Y respectively. They are: 
  
V={X, Y} 
 
 The initial multisets are: 
 
ω = {nX, mY} 
 
where, n and m are integer multiplicities. 
 Since the system has single compartment, it only 
able to perform transformation of objects. Therefore, 
the transformation rule has the form: where are 
multisets in a compartment. K is a real number 
representing the kinetic constant, which represent the 
rate of reaction between objects. A rule of this form is 
interpreted as follows: based on the rate of k, the multiset 
u is transformed into multiset v inside a compartment. 
Based on the rewriting rules (3), (6) and (7) described 
above, the Prey-Predator population dynamics is 
described in membrane computing as follow Eq. 8-10: 
 

1kR1:[X] [X,X]→   (8) 
 

2kR2 :[X,Y] [Y,Y]→   (9) 

 
3kR3 :[Y] []→   (10)  

 
 R1, R2 and R3 are prey reproduction, predator 
reproduction and predator death rules, respectively. 
 

  
 
Fig. 2: Oscillation of the Prey-Predator model 

simulated by Gillespie algorithm with k1=10, 
k2=0.02,  k3=15 

Simulation of membrane computing model: The 
simulation in Fig. 2 shows the Prey-Predator model of 
membrane computing simulated with Gillespie 
simulator. The simulation shows that the pattern of 
oscillation at each cycle in the oscillation is not fixed as 
in the ODE. The peak and dip of the simulation are 
different at each cycle of the oscillations but has 
maintained the general pattern of the oscillation. The 
stochastic behavior of the Prey-Predator Population is 
preserved in this non-deterministic and discrete model 
of membrane computing.  
 
 Model checking of membrane computing model: 
The properties for the Prey-Predator population are 
obtained from the behavior of this system elaborated by 
Jones et al. (2003). Recurrence behavior of the system 
and the existence of equilibrium probability distribution 
maintain the stability of the system in the form of 
oscillations. To facilitate this behavior, the Prey-
Predator system should preserve the following 
properties: (A1) The rules are selected stochastically 
based on the number of prey and predator at each time 
steps and the value of reaction constants to maintain the 
equilibrium of the system; (A2) The number of prey 
and predator must not equal to 0 at any time steps; (A3) 
The number of prey and predator become equal or 
intersect each other twice at each cycle of the system; (A4) 
Percentage of increase or decrease of number of prey is 
higher most of the time steps than the number of predator; 
(A5) Percentage of change between prey and predator is 
higher most of the time steps for prey than predator.  
 
Property (A1): The Fig. 3 shows the selection of 
rules at different periods of time steps based on the 
rewards. This graph shows that at each time step one 
of the three rules is selected stochastically. The 
patterns of selections differ for each period of time 
steps as shown by the graph. 
 

 
 
Fig. 3: Stochastic behavior of Prey-Predator model 
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Fig. 4: The number of prey and predator must not equal 

to 0 at any time steps 
 

 
 
Fig. 5: The number of prey and predator become equal 

twice at each cycle of the system 
 
 This means that the stochastic behavior of the 
system is maintained to make sure the stability and 
consistency of the system at each cycle of the 
oscillation.  
 
Property (A2): Figure 4 shows that not at once 
along the simulation steps of the system, the number 
of prey or predator have been equal to 0 based on the 
rewards. This result demonstrates that the behavior 
of the system is always consistent to make sure that 
the number of prey and predator must always greater 
than 0 to stabilize the system.  
 
Property (A3): Figure 5 demonstrates the time steps 
when number of prey is equal to number of predator 
generated by the rewards. The intersection between 
prey and predator occurs twice at each cycle in the 
oscillations when the prey and predator either keep 
decreasing or increasing. However the graph shows that 
the period of occurrence of one intersection to another 
is not similar. This is mainly due to the stochastic 
behavior of the system. However the pattern of 
intersection in each of the cycle in the oscillation is 
preserved to maintain the stability of the system.  

 
 
Fig. 6: Percentage of increase/decrease of Preys an 

Predators 
 

 
 
Fig. 7: Percentage of changes between prey and 

predator 
 
Property (A4): Figure 6 illustrates the percentage of 
increase and decrease of prey and predator based on the 
rewards. The graph shows that the percentage of 
increase and decrease of predator is higher than the 
percentage of increase and decrease of prey. At the 
initial state, the number of prey is five times higher than 
the number of predator. The sharp increase of predator 
is to certain extent decrease the population of prey. 
Meanwhile, the sharp decrease of predator population 
gives some space for prey to increase its population to 
attain the initial level over again. The percentage of 
increase/decrease of prey and predator is almost 
similar at each of the cycle of the oscillation. This 
demonstrates that the equilibrium of prey-predator 
population has been preserved by maintaining the 
percentage of increase/decrease of prey and predator 
accordingly at each time step. 
 
Property (A5): Figure 7 shows the percentage of 
changes of prey and predator compared to the opposite 
population as outlined in the rewards. This graph shows 
that at most of the time number of prey exceeds number 
of predator. But at certain period when number of 
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predator is above the number of prey, prey is decreasing 
to control the increase of predator. When number of 
predator is decreasing, the number of prey is increasing. 
As shown in the Fig. 6, this result also shows that the 
stability of the system is preserved by controlling the 
increase and decrease of the prey and predator 
accordingly at each time step.  
 

DISCUSSION 
 
 The results demonstrate that, the Prey-Predator 
model described in membrane computing could 
simulate the behavior of the system as shown in Fig. 2. 
This shows that membrane computing able to confine 
the dynamics of Prey-Predator population. ODE of 
Prey-Predator is used to model kinetics of the reactions 
of two species. It would continuously vary the 
concentration of species in deterministic dynamics as 
shown in Fig. 1. In contrast, membrane computing 
takes into consideration the discrete character of the 
quantity of species in Prey-Predator system by using 
rewriting rules. This demonstrates that membrane 
computing emulates discrete behavior of Prey-Predator 
system but ODE has ignored the discrete behavior by 
representing the system in continuous way. 
 Nevertheless, there are differences in performance 
between these approaches. The ODE simulation with 
the ratio of initial objects is two predators to five preys, 
takes around 10 units time to complete a cycle in the 
oscillation as shown in Fig. 1. Meanwhile, the 
membrane computing simulation with a ratio of initial 
objects is one predator to five preys takes around 15000 
time steps in Fig. 2 to complete a similar cycle.  
 This shows that in the ODE approach, the large 
ratio in the mix of objects in the reaction and the 
deterministic feature make the reactions fast. In the 
membrane computing simulation, more time is needed to 
measure the weight of each reaction based on the ratio in 
the mix of objects and to subsequently choose the 
appropriate reaction at each time step. The inherent 
randomness in Prey-Predator system is captured by using 
stochastic simulation strategy of membrane computing. 
 The stochastic behavior of Pre-Predator population 
is maintained by making sure the rules are selected non-
deterministically in membrane computing at each time 
step as in Fig. 3. While maintaining the stochastic 
behavior of the system, Fig. 4 demonstrates that 
membrane computing also ensure the interaction 
between prey and predator always stable to prevent any 
circumstances that could eliminate one of them from 
the system. This means that the equilibrium of the 
system represented in membrane computing is being 
preserved though there are situation where there could 
be more predator than prey or the number of prey is 

equal to number of predator as in Fig. 5. However, as 
shown by Fig. 6 and Fig. 7, membrane computing 
ensures that the percentage of increase of prey is 
higher most of the time compared to the percentage of 
increase of predator to maintain the equilibrium of the 
system. The model checking results demonstrate that 
the properties of Prey-Predator population have been 
preserved by maintaining the discrete and stochastic 
behavior of the system. 
 

CONCLUSION 
 
  The discrete character of membrane computing 
model is not only preserving the dynamics of the prey-
predator population in oscillations, but also making sure 
the discrete and stochastic behaviors of the system are 
conserved. This study underlines that the non-
determinism and discrete characteristics of membrane 
computing capable in preserving the properties of the 
discrete systems better than the modeling approach of 
ODE. This means that membrane computing model 
could not only be used to analyze general behavior but 
also could be used to investigate specific behavior of 
biological system such as Prey-Predator population. 
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