
Journal of Computer Science 7 (8): 1157-1166, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: K. Gopalakrishnan, Ramanujan Computing Centre, College of Engineering Guindy, Anna University,
Chennai-600025, Tamil Nadu, India Tel: +914422358024 Fax: +914422201160

1157

Acknowledgment based Reputation Mechanism to Mitigate

the Node Misbehavior in Mobile Ad Hoc Networks

K. Gopalakrishnan and V. Rhymend Uthariaraj
Ramanujan Computing Centre, College of Engineering Guindy,

Anna University, Chennai-600025, Tamil Nadu, India

Abstract: Problem statement: The cooperation between the nodes is essential to discover and
maintain routes in mobile ad hoc network. Due to the presence of misbehaving nodes, the node
cooperation is not always guaranteed as the nodes agreed during the route discovery phase. This
phenomenon results in frequent network partitioning and it makes the routing process difficult. It also
degrades the overall network performance and increases the control overhead due to frequent route
discovery. Approach: This study proposed an Acknowledgment based Reputation Mechanism (ARM) to
detected and isolated the misbehaving links in mobile ad hoc networks. The proposed system introduced
a novel dynamic acknowledgment ratio to make the nodes to request its second hop successor in the
source route to acknowledge the receipt of the packet. This makes the nodes to detect the behavior of the
next hop links and to select the trusted routes for its transmissions. Results: The measured parameters
such as packet drop ratio, malicious drop, false detection and send buffer drop are reduced greatly. The
results also compared with the existing scheme and with original routing protocol performance.
Conclusion/Recommendations: The proposed scheme performs better in detecting and isolating the
misbehaving links. The overall network packet drop was decreased which in turn increase the overall
network throughput. This shows that the proposed acknowledgment scheme discovers the trusted routes
with the presence of misbehaving nodes.

Keywords: Routing security, node misbehavior, mobile ad hoc network, reputation mechanism,

dynamic source routing, computational resources, misbehaving link list, routing protocol

INTRODUCTION

 Mobile Ad hoc Networks (MANETs) is an
autonomous collection of mobile devices which self
organize to create a network by exploiting their wireless
interfaces without a requirement for an existing
infrastructure or any centralized administration. The
routing protocol plays a vital role in establishing route
between the mobile nodes and maintenance of the
routes in these networks. All the nodes in an ad hoc
network have to work mutually for executing the basic
networking functions such as route discovery, route
maintenance and multi-hop forwarding of packets. So
the network performance becomes highly dependent on
collaboration of all the participating nodes. The mobile
ad hoc network has a wide range of applications in
diverse fields ranging from low power military wireless
sensor networks to large scale civilian applications,
emergency search and rescue operations (Conti and
Giordano, 2007; Khalid et al., 2009).
 The network keeps on functioning when each node
in the network executes the functions of a routing

protocol in a proper manner. Misbehaving nodes comes
into existence in a network due to scarcely available
resources of mobile nodes such as battery power and
computational resources (Marti et al., 2000). So the
mobile user does not rely on the presumption that every
terminal relay packets mutually, because the terminals
are in the hands of users. If certain users tamper with
their nodes to make them behave selfishly and they will
not relay packets on behalf of other nodes while they
send or receive their own packets. They will deprive the
network of resources such as others battery power and
bandwidth. The network service might eventually
become unavailable for the users and makes the fairness
of the network will be in danger.
 The mobile ad hoc network lacks a centralized
monitoring and control point, making it a challenging
task to detect such misbehaving nodes effectively. Non-
cooperative actions are usually termed as selfishness,
which is notably different from malicious behavior.
Selfish nodes use the network for their own
communication but simply refuse to cooperate in
forwarding packets on behalf of other nodes in order to

J. Computer Sci., 7 (8): 1157-1166, 2011

1158

save its battery power and computational resources.
They have no intention of damaging the network. In
other hand, the malicious nodes injected by adversaries
will actively spend battery power to cause harm to the
entire network (Deng et al., 2002; Jun and Hua, 2010).
 Node misbehavior problem have been studied by
many researchers and proposed various techniques to
prevent it. The schemes (Buttyan and Hubaux, 2003;
Zhong et al., 2003) provides virtual currency or
nuggets to the nodes in order to perform the
networking operations. Nodes get paid for forwarding
packets on behalf of other nodes. When they request
other nodes to forward their packets, they use the
same payment system to pay for such services. The
main problem with virtual currency based schemes is
that they need a tamper proof hardware or a similar
kind of mechanism for managing the payment system.
 The schemes (Marti et al., 2000; Buchegger and Le
Boudec, 2002) are based on next hop monitoring, in
which the nodes except the destination and its previous
hop in the source route of the packet have to monitor
the behavior of its next hop in order to identify the node
misbehavior but the monitoring method employed by
these schemes have the same disadvantages as
mentioned in (Marti et al., 2000). Whereas the schemes
(Li and Lee, 2006; Gopalakrishnan and Rhymend
Uthariaraj, 2011) employs neighborhood monitoring
approach, which adds flexibility in monitoring by
allowing a node to monitor the neighboring
transmissions even if those transmissions does not
involves it. All these overhearing based schemes uses a
threshold based reputation mechanism to detect and
isolate the misbehaving nodes. The main drawback of
these overhearing schemes is that the nodes always
promiscuously listens the channel in order to overhear
the packet and to identify the node misbehavior. The
schemes (Balakrishnan et al., 2005; Liu et al., 2007)
detect the node misbehavior based on the
acknowledgment sent by a node in response to
receiving a packet. These schemes do not consider the
identity spoofing and packet modification behavior.
Moreover (Balakrishnan et al., 2005) suffers from
control overhead due to acknowledge of every received
packet and the modified version (Liu et al., 2007) also
uses a static ratio of acknowledgment.
 Almost all the related works discussed above
considered only packet droppers but where as in the
case of proposed system the packet modification and
identity spoofing are also considered. In addition, the
proposed scheme reintroduces the misbehaving links
after a timeout period and disseminates the
misbehaving links by piggybacking it in the route
discovery packet without incurring additional control

overhead. The proposed scheme introduces a dynamic
acknowledgment ratio which guarantees the fast
detection of misbehaving links rather than the static
ratio approach (Liu et al., 2007).

MATERIALS AND METHODS

 This study assumes bidirectional communication
symmetry on every link between the nodes. This
assumption is often valid because many wireless MAC
layer protocols including IEEE 802.11 require
bidirectional communication for reliable transmission.

Notations: The following notations are used in this
study:

• NAckReq: Number of acknowledgment requested

from the second hop successor
• NPktSnd: Total number of packets sent or forwarded
• RAck: Acknowledgment ratio decides whether to

request an acknowledgment from the second hop
successor or not

•
: Increment ratio of trust value of the monitored
link upon successful reception of an
acknowledgment

• �: Decrement ratio of trust value of the monitored
link upon not receiving an acknowledgment

• �: Decrement ratio of trust value of the monitored
link upon identifying the packet modification

• RPart: Ratio of the fraction of packets to be
acknowledged

• RFull: Ratio of acknowledgment for every packet

Acknowledgment scheme: In the proposed system, all
nodes in the source route except the destination and its
previous hop have to request an explicit
acknowledgment termed as TwoHopAck for the
packets expect the RREQ from its second hop successor
based on the acknowledgment ratio RAck. Similarly, the
nodes except the source and its immediate successor
have to send a TwoHopAck packet based on the
acknowledgment request received from its second hop
predecessor. The check sum of the received packet is
also piggybacked along with the acknowledgment; up
on receiving the acknowledgment the second hop
predecessor compares the stored checksum with the
received one in order to identify the packet
modification behavior. The packet header is modified in
order to accommodate the Acknowledgment Request
(AckReq) field. As shown in Fig. 1, the source node S
communicates with destination node D via the
intermediate nodes I1→I2→I3.

J. Computer Sci., 7 (8): 1157-1166, 2011

1159

 In this scenario, the nodes except I3 and destination
D have to request a TwoHopAck from its second hop
successor in the source route by including its identity in
the AckReq field. The nodes I2, I3 and D act as a
TwoHopAck sender and S, I1 and I2 act as a
TwoHopAck receiver. The data structure maintained by
the TwoHopAck requester is shown in Fig. 2. A
dynamic acknowledgment ratio RAck is used to detect
the misbehaving links in a timely manner and it also
reduces the control overhead occurred due to
TwoHopAck.
 Each node maintains a One Hop Connectivity List
(OHCL) which contains the neighboring node
information (IP/MAC address) based on the packets
overheard / received. Whenever a node receives a control
packet, it checks the transmitting node information of the
received packet with the stored information in OHCL in
order to detect the identity spoofing. The Algorithm 1
shows the procedure executed by each node for
identifying the IP/MAC spoofing.

Algorithm 1: Identity spoofing detection:

if (Received a Control Packet) then
 Search the OHCL for identifying the sender
 identity
 if (found) then
 Check the IP and MAC address of the packet
 with the stored one
 if (match) then
 Process the Packet
 else
 Drop the packet
 end if
 else
 Create an entry in OHCL and store the Node
 Information
 Process the packet
 end if
end if

Fig. 1: Scenario of two hopack

Components of acknowledgment scheme: This
scheme consists of three main components namely: a
monitor responsible for monitoring the behavior of next
hop link, trust manager for maintaining the trust value
of next hop link and a path manager to maintain the
route without containing misbehaving link in it as
shown in Fig. 3.
 These components are added as an add-on into the
Dynamic Source Routing (DSR) (Johnson et al., 2007)
protocol which enables each node to execute these
functions along with its usual routing functionality. The
monitor component is responsible for registering the
sent packet id along with its checksum and it has a set
of detectors which are used to identify the misbehaving
link based on TwoHopAck. When a TwoHopAck is not
received by the monitoring node within an
acknowledgment timeout period or if the received
checksum is not matched with the stored one then a
negative event is registered by the monitor. A positive
event is registered by the monitor only when the
received checksum carried by the TwoHopAck matches
with the stored one along with its packet id. The trust
manager maintains the trust value of the monitored link
based on the event reported by the monitor. When a
positive event is reported by the monitor then the trust
value of the monitored link will be incremented by
. If
a negative event is received by the trust manger then the
trust value of the monitored link will be decremented
by � for missing acknowledgment and by � for
checksum mismatch. The packet modification
misbehavior is a serious threat to the routing process so
the monitored link will be punished as twice as packet
dropping. When the trust value of the monitored link
reaches the Negative Threshold limit then the link will
be added into the Misbehaving Link List (MLL) and it is
communicated to the path manager in order to prune the
routes which have the misbehaving link in it. Once the
monitored link is added into the MLL then all the traffic
to and from the misbehaving link will be rejected.
 A second chance timer is initiated for the
misbehaving link and an explicit route error packet is
sent to the packet originator to inform about the
misbehaving link. The data structure of the explicit
route error packet is shown in Fig. 4.
 Once the second chance timer expires then the
misbehaving link is removed from the MLL by
reducing its trust value by half. The reason for not
resetting the trust value of reintroduced link is that the
link might continue to misbehave. If it continues to
misbehave then it will be detected quickly. The MLL
is disseminated using a Route Request (RREQ) packet
so that the misbehaving link information is widely

J. Computer Sci., 7 (8): 1157-1166, 2011

1160

spread over the network as well as it does not incur
extra control overhead for disseminating the MLL. A
variable length list is added into RREQ packet in
order to accommodate the MLL. When a node receives
a RREQ packet, it extracts the MLL and stores it into its
Misbehaving Link Table (MLT). If the MLL is already
received from the same link then the existing list will be
replaced by the new one else a new entry will be created
for that link in the MLT. If the received node is not a
destination or an intermediate node that has a route to the
destination then it will merge its own MLL into the MLL
in the RREQ packet and then rebroadcast it. The data
structure of route request packet after the inclusion of
MLL is shown in Fig. 5.
 The MLL stored in the MLT are checked against
the source route of the control packet, whenever a node
receives a control packet destined to it. If it matches
then the packet is dropped else it is accepted. Whenever
a monitored link is added into the MLL then its
corresponding MLT entry will be deleted. The
procedure executed by TwoHopAck sender and
receiver is shown in Algorithm 2 and 3 respectively.

Algorithm 2: TwoHopAck sender:

Publish hn
i←n
while true do
 if (Received packet is not a RREQ) then
 Search second hop predecessor in AckReq List
 if (Present) then
 Prepare MAC with hi-1
 Prepare TwoHopAck with ID, Checksum,
 MAC and hi
 Send TwoHopAck
 Remove the second hop predecessor from
 AckReq List
 i --
 end if
 end if
end while

Algorithm 3: TwoHopAck receiver
While true do
 if (Received hn from the TwoHopAck sender) then
 Record hn, i←n
 end if
end while
NPktSnd←0, NAckReq←1, RAck←1, RPart←0.2, RFull←1
while true do
 if (Packet is ready to send) then

 if (Packet is not a RREQ) then
 NPktSnd ++
 if (NAckReq / NPktSnd < RAck) then
 Compute the Checksum
 Add its own id into AckReq list and append
 it into the packet header
 NAckReq ++
 Transmit Packet
 LIST←LIST ∪ (Packet_ID, Checksum)
 Setup timer for Packet_ID
 else
 Transmit Packet
 end if
 end if
 end if
 if (TwoHopAck packet received) then
 Search for the Packet_ID carried by TwoHopAck
 in LIST
 if (found) then
 Check the checksum carried by TwoHopAck is
 equal to stored checksum
 if (match) then
 Check validity of hi
 LIST←LIST - (Packet_ID, Checksum)
 Clear timer for Packet_ID
 TrustValueLink ++
 if (RAck=RFull) then
 RAck←RPart
 end if
 else
 TrustValueLink --
 LIST←LIST - (Packet_ID, Checksum)
 if (TrustValueLink <=Negative_Threshold) then
 Send Misbehavior Report to Packet
 Originator
 MisbehavingLinkList←MisbehavingLinkList
 ∪ Link
 Setup the second chance timer for the Link
 end if
 if (RAck!=RFull) then
 RAck←RFull
 end if
 end if
 end if
 end if
 if (TwoHopAck Timeout Event Occurred) then
 LIST←LIST − (Packet_ID, Checksum)
 TrustValueLink --
 if (TrustValueLink <= Negative_Threshold) then

J. Computer Sci., 7 (8): 1157-1166, 2011

1161

 Send Misbehavior Report to Packet Originator
 MisbehavingLinkList←MisbehavingLinkList
 ∪ Link
 Setup the second chance timer for the Link
 end if
 if (RAck!=RFull) then
 RAck←RFull
 end if
 end if
 if (Second Chance Timer Expires) then
 MisbehavingLinkList←MisbehavingLinkList−Link
 TrustValueLink←TrustValueLink / 2
 end if
end while

Authenticating the two HopAck packet: Since, the
TwoHopAck packets are forwarded by an intermediate
node without proper protection, a misbehaving
intermediate node can fabricate TwoHopAck packets
and claim that they were sent by TwoHopAck

originator. Therefore, an authentication technique is
needed in order to protect TwoHopAck packets from
being forged. A simple way to stop intermediate nodes
from forging the TwoHopAck packets is to use the
digital signature algorithm. A digital signature is a
small number of extra bits of information attached by
TwoHopAck originator. The signature is unique and
usually computationally impossible to forge unless the
security key of TwoHopAck originator is disclosed.
Further, the signature may be used to assure the
integrity of the transmitted data. An asymmetric
cryptography technique such as RSA (Johnson, 1999) is
used to implement the digital signature. However, such
asymmetric operations are too expensive for the mobile
nodes in ad hoc networks which are usually resource
constrained. Hu et al. (2003), an efficient algorithm
termed one-way hash chain (Lamport, 1981) was used
to guard against security attacks such as DoS and
resource consumption attacks in the Destination
Sequenced Distance Vector (DSDV) routing protocol
(Perkins and Bhagwat, 1994).

Fig. 2: Data Structure maintained by twohopack requester

Fig. 3: Components of acknowledgment scheme

J. Computer Sci., 7 (8): 1157-1166, 2011

1162

Fig. 4: Data structure of explicit route error packet

Fig. 5: Data Structure of RREQ with misbehaving link list

Fig. 6: Packet Format of two HopAck

 A one-way hash chain can be constructed based on
a one-way hash function �. The hash function is a
transformation that takes a variable-length input and
returns a fixed-length bit string, that is,
H:{0,1} ∗→{0,1} p, where P is the length in bits, of the
output of hash function. An ideal hash function H
should have the following properties:

• The input can be of any length
• The output has a fixed length
• H(x) is relatively easy to compute for any given

input �
• It is computationally infeasible to calculate x from

H(x)
• H(x) is collision free

To create a one-way hash chain, a node picks up a
random initial value �∈ {0, 1} $ and computes its hash
value. The first number in the hash chain h0 is
initialized to x. By using the general formula hi = H(hi-

1) for 0<i≤n, for some n, a chain of hi is formed:

H0, h2, h3,….hn (1)

 It can be proved that, given an existing
authenticated element of a one-way hash chain, it is
feasible to verify the other elements preceding it. For
example, given an authenticated value of ℎ(, a node can
authenticate hn-3 by computing H (H(H(hn-3))) and
comparing the result with hn (Hu et al., 2003).
 The proposed scheme uses the above one-way hash
chain to protect the TwoHopAck packets against
fabrication. In order to use the one-way hash chain in
(1) to authenticate TwoHopAck packets, the

TwoHopAck Originator must distribute the hn, element
to two Hop Ack Requester. A traditional approach for
such information distribution is through a trusted
certificate authority. However, in a MANETs, nodes
move from one place to another and there is usually no
central server or base station to act as a trusted
certificate entity. The proposed system uses the
transmission extension technique mechanism as
mentioned in (Liu et al., 2007). Using this technique,
the Originator increases the transmission power to send
the hn element directly to the Requester. This technique
bypasses the intermediate forwarding node, the
potential threat to the distribution of hn. While such a
technique consumes more energy from the Originator
but it takes place rather infrequently. The distribution of
a new hn element is only needed when the entire chain
has been used. Once the hn element is distributed from
Originator to Requester, the Originator can use hi

(0≤i<n) sequentially to sign the TwoHopAck packets
to be sent to Requester. The hi elements will be
disclosed by Originator one at a time. Let’s assume that
hi+1 has been disclosed initially, (I = n-1). When the
Originator needs to send a TwoHopAck packet, it
calculates a Message Authentication Code (MAC)
based on ℎ+-1 and attaches the MAC and the ℎ+ value to
the TwoHopAck packet. The packet format of
TwoHopAck packet is shown in Fig. 6.
 Since hi+1 is known to Requester, it compares H(hi)
with hi+1. If the results match, the hi element is accepted
and recorded. The TwoHopAck packet must have been
sent from the Originator. However, the integrity of the
TwoHopAck packet can only be proved when the next
TwoHopAck packet arrives (with hi-1).

J. Computer Sci., 7 (8): 1157-1166, 2011

1163

Table 1: Simulation parameters
Parameter Value
Simulation area 1000 m * 1000 m
Simulation time 900 s
Number of nodes 50
Node mobility 5 m/s
Pause time 30 s
Transmission range 250 m
Antenna Omni Directional
Maximum connections 15
Seed value 1-20
Traffic type CBR (UDP)
Positive threshold 1
Negative threshold -1
Initial trust value of node 0

 0.025
� 0.05
� 0.1
Acknowledgment timeout 150 ms

When hi-1 is disclosed to Originator, it can be used to
verify the integrity of the TwoHopAck packet
received last time by calculating the MAC and
comparing it with the received one. This is the so-
called “delayed disclosure” technique due to Hu et al.
(2003). The overhead caused by the authentication of
the TwoHopAck packets is not studied in this study
but compared to traditional security measures; the
computation cost of the one-way hash function is
relatively low Hu et al. (2003). The communication
overhead depends on the length of each element and
the value of n (size of the one-way hash chain). When
n and the size of each element are chosen reasonably
then the overhead occurred due to the transmission of
hn will be low.

Simulation study: The proposed system is
implemented in ns2.34 as an add-on to the DSR. The
simulation utilizes Random Waypoint (RWP) mobility
model to mimic the real world movement of the mobile
nodes and evaluated the performance of the proposed
system. The simulation parameters that are used in the
simulation are shown in Table 1.

Modeling the misbehavior: The proposed system is
simulated by introducing five different kinds of
misbehavior as mentioned below:

• Misbehavior Type 1: These nodes participate in the

DSR Route Discovery and Route Maintenance
phases, but refuse to forward data packets on
behalf of other nodes.

• Misbehavior Type 2: These nodes participate in
neither the Route Discovery phase, nor forwarding
data packets. They only use their energy for their
own packet transmission.

• Misbehavior Type 3: These nodes behave
differently based on their energy levels. When the
energy lies between initial energy -+ and a
threshold T1, the node behaves properly. On the
other hand, if the energy level lies between .1 and
another lower threshold T2 then it behaves like a
node of Misbehavior Type 1. Finally for an energy
level lower than T2, it behaves like a node of
Misbehavior Type 2.

• Misbehavior Type 4: These nodes modify the
packet forwarded on behalf of other nodes.

• Misbehavior Type 5: This type of nodes spoofs its
identity in order to get back the network resources.

Performance metrics: The performance of the
proposed system has been measured by using the
following parameters:

• Packet loss ratio (%): The packet Loss Ratio is

measured in terms of the ratio of data packets not
delivered to the destinations to those generated by
the Constant Bit Rate (CBR) sources

• Normalized routing load (packets): The number of
routing packets including TwoHopAck control
packets transmitted per data packet delivered at the
destination

• False detection (%): The percentage of nodes
detected falsely as a misbehaving node

• Average end to end delay (sec): This includes all
possible delays caused by buffering during route
discovery latency, queuing at the interface queue,
retransmission delays at the MAC, propagation and
transfer times

• Average energy dissipation (joules) - The average
amount of network energy dissipated over the
simulation period

• Malicious drop (packets): The total number of
packets dropped by the misbehaving nodes

• Send buffer drop (packets): The number of data
packets dropped in the send buffer of the packet
originated node due to delay in finding the route to
the destination

RESULTS

 The simulation results of the proposed system were
compared with DSR and the existing scheme PLRSA
(Li and Lee, 2006). The packet loss ratio has been
decreased by 18-50% and 7-18% when compared to
DSR and PLRSA respectively as shown in Fig. 7. As
shown in Fig. 8, the normalized routing load has been
increased when compared to DSR and PLRSA. The
false detection has been decreased from 38-58%
when compared to PLRSA as shown in Fig. 9.

J. Computer Sci., 7 (8): 1157-1166, 2011

1164

As shown in Fig. 10, the send buffer drop has been
decreased by 77-86% and 77-84% when compared to
DSR and PLRSA respectively. The malicious drop has
been decreased by 75-81% and 27-54% when compared
to DSR and PLRSA respectively as shown in Fig. 11. As
shown in Fig. 12, the average end-end delay has been
reduced when compared to DSR and PLRSA
respectively. The average energy dissipation has been
gradually increased when compared to DSR and PLRSA
as shown in Fig. 13.

Fig. 7: Packet loss ratio in %

Fig. 8: Normalized routing load in packets

Fig. 9: False detection in %

Fig. 10: Send buffer drop in packets

Fig. 11: Malicious drop in packets

Fig. 12: Average end-end delay in seconds

Fig. 13: Average energy dissipation in joules

J. Computer Sci., 7 (8): 1157-1166, 2011

1165

DISCUSSION

 The result shows that the proposed system has
enough alternative routes to the destination even with
the presence of misbehaving nodes. Since the average
energy dissipation is directly proportional to overall
network throughput and control packets spent, the
energy dissipation is higher in the case of proposed
system. This scheme is immune to overhearing
technique drawbacks mentioned in (Buttyan and
Hubaux, 2000) due to explicit TwoHopAck packet.

CONCLUSION

 This scheme employs a dynamic acknowledgment
mechanism based reputation system which detects and
isolates the misbehaving links. The simulation result
shows that the packet loss ratio, malicious drop, false
detection and send buffer drop were greatly reduced. It
shows the effectiveness of the proposed system in
detecting, isolating the misbehaving links and finding
out the alternative routes.

ACKNOWLEDGMENT

 The first researcher would like to acknowledge the
support received from CSIR-HRDG (Council of
Scientific and Industrial Research-Human Resource
Development Group), India, through Senior Research
Fellowship.

REFERENCES

Balakrishnan, K., J. Deng and P.K. Varshney, 2005.

TWOACK: Preventing selfishness in mobile ad
hoc networks. Proceedings of the Networking
Conference on Wireless Communication and
Networking, Mar.13-17, IEEE Xplore Press, USA.,
pp: 2137-2142. DOI:
10.1109/WCNC.2005.1424848

Buchegger, S. and J.Y. Le Boudec, 2002. Performance
Analysis of the CONFIDANT Protocol.
Proceedings of the 3rd ACM International
Symposium on Mobile Ad Hoc Networking and
Computing, (MAHNC’02), ACM, New York, pp:
226-236. DOI: 10.1145/513800.513828

Buttyan, L. and J.-P. Hubaux, 2003. Stimulating
cooperation in self-organizing mobile ad hoc
networks. J. Mobile Networks Appli., 8: 579-592,
DOI: 10.1023/A:1025146013151

Conti, M. and S. Giordano, 2007. Multihop ad hoc
networking: The reality. J. IEEE Commun. Mag.,
45: 88-95. DOI: 10.1109/MCOM.2007.343617

Deng, H., W. Li and D.P. Agrawal, 2002. Routing
security in wireless ad hoc networks. J. IEEE
Commun. Mag., 40: 70-75. DOI:
10.1109/MCOM.2002.1039859

Gopalakrishnan, K. and V. Rhymend Uthariaraj, 2011.
Collaborative Alert in a Reputation System to
Alleviate Colluding Packet Droppers in Mobile Ad
Hoc Networks. In: Advances in Networks and
Communications, Meghanathan, N., B.K. Kaushik
and D. Nagamalai, (Eds.). Springer, Heidelberg,
ISBN : 3642178774, pp: 135-146.

Hu, Y-C., D.B. Johnson and A. Perrig, 2003. SEAD:
Secure efficient distance vector routing for mobile
wireless ad hoc networks. Ad Hoc Networks, 1:
175-192. DOI: 10.1016/S1570-8705(03)00019-2

Johnson, D.B., 1999. ECC, Future Resiliency and High
Security Systems. Citeulike.
http://www.citeulike.org/user/mgran/article/887959

Johnson, D.B., D.A. Maltz and J. Broch, 2007. The
Dynamic Source Routing Protocol (DSR) for
Mobile Ad Hoc Networks. IETF Trust.
http://www.ietf.org/rfc/rfc4728.txt

Jun, D. and L.W. Hua, 2010. A security routing
optimization scheme for multi-hop wireless
networks. Inform. Technol. J., 9: 506-511. DOI:
10.3923/itj.2010.506.511

Kaabneh, K., A. Halasa and H. Al-Bahadili, 2009. An
effective location-based power conservation
scheme for mobile ad hoc networks. Am. J.
Applied Sci., 6: 1708-1713. DOI:
10.3844/ajassp.2009.1708. 1713

Lamport, L., 1981. Password Authentication with
insecure communication. J. Commun. ACM, 24:
770-772. DOI:10.1145/358790.358797

Li, J-S. and C-T.Lee, 2006. Improve routing trust with
promiscuous listening routing security algorithm in
mobile ad hoc networks. J. Elsevier Comput.
Commun., 29: 1121-1132. DOI:
10.1016/j.comcom.2005. 06.025

Liu, K., J. Deng, P.K. Varshney and K. Balakrishnan,
2007. An acknowledgment-based approach for the
detection of routing misbehavior in Manets. J.
IEEE Transa. Mobile Comput., 6: 536-550. DOI:
10.1109/TMC. 2007.1036

Marti, S., T.J. Giuli, K. Lai and M. Baker, 2000.
Mitigating routing misbehavior in mobile ad hoc
networks. Proceedings of the 6th annual
international conference on Mobile computing and
networking, (MobiCom '00), ACM, New York, pp:
255-265. DOI: 10.1145/345910.345955

J. Computer Sci., 7 (8): 1157-1166, 2011

1166

Perkins, C.E. and P. Bhagwat, 1994. Highly dynamic
Destination-Sequenced Distance-Vector routing
(DSDV) for mobile computers. J. ACM
SIGCOMM Comput. Commun. Rev., 24: 234-244,
DOI: 10.1145/190809.190336

Zhong, S., J. Chen and Y.R. Yang, 2003. Sprite: a
simple, cheat-proof, credit-based system for mobile
ad-hoc networks. Proceeding of the INFOCOM,
22nd Annual Joint Conference of the IEEE
Computer and Communication, Mar. 30-Apr. 3,
IEEE Xplore Press, USA,, pp: 1987-1997. DOI:
10.1109/INFCOM.2003

