Journal of Computer Science 7 (7): 1060-1071, 2011
ISSN 1549-3636
© 2011 Science Publications

Open Source Programmers’ Information Seeking
During Software Maintenance

Khaironi Yatim Sharif?Mohd Rosmadi Mokhtaand3Jim Buckley
'Software Engineering Research Group,
Fakulti S. Komputer and T. Maklumat,
University Putra Malaysia, Malaysia
“Centre of Computer Science FTSM, University Kebaags Malaysia
*The Irish Software Engineering Research Centre QER
University of Limerick, Ireland

Abstract: Problem statement: Several authors have proposed information seedsngn appropriate
case study for studying software maintenance andlugon that have provided empirical
classifications of information seeking in commersiaftware evolution setting&pproach: However,
there is minimal research in the literature deseglthe information seeking behavior of Open Source
programmers, even though Open Source contexts wsmdch to exacerbate the information seeking
problems to a certain extend; where team membergypically delocalized from each other and they
are often forced into asynchronous communicatiRkesults: This study reports on an empirical study
that classifies Open-Source programmers’ infornmaticeeds generated through open-coding of
guestions that appear on developers’ mailing li&tased on the generated Information Seeking
Schema (ISS), details of the information soughtpbggrammers on 6 different mailing lists over
several years are analyzed and discusSedclusion/Recommendations: The result shows several
interesting findings that describe the programmigr®rmation needs across the mailing lists. Rrstl
there are a similar pattern of information artifantl attribute across all projects. Secondly, nitgjof

the programmers’ information seeking concentratedhe systems’ implementations. Thirdly, the OS
programmers have also shown to be team-orientedttendtended to rely on documentation more
than what have previously reported. These resutigest the applicability of the ISS in evaluating O
programmers information seeking.

Key words: Information seeking, program comprehension, opemcsy software maintenance, probed
artifacts, theoretical review, theoretical harné@sf®rmation seeking schema

INTRODUCTION this phase has been estimated to range between 60%
and 80% of the entire lifecycle effort (Lientt al.,

Software maintenance has been part and parcel ofl®78; Mayrhauser and Vans, 1993; Pressman, 2004,
software system’s lifecycle ever since the firstZayour and Lethbridge, 2001). While the empirical
computer software was introduced more than halfbasis for such statements are dated and suggettians
century ago. Lientzet al. (1978), defines software they should be revisited have been made (Kemewkr an
maintenance as, “activites which keep systemsSlaughter, 1999), the increasing scale and conmtglexi
operational and meet user needs” while Boehm'®f newer software systems (Pressman, 2004,
(2007) defines the process of software maintenaisce Sommerville, 2008; Steist al., 2005) implies that the
“the process of modifying existing operational effort invested in maintenance of successful system
software”. The software mantainance activities enak can only have increased. Thus research in this iarea
the software systems change over time. In thiseotnt vital towards the discovery and evolution of supiver
Belady and Lehman (1976), defines software evatutio methods or tools, which could aid maintainers ieirth
as “the dynamic behavior of programming systems asoftware maintenance efforts.
they are maintained and enhanced over their lifedifn Software maintenance can be divided into 2 general

Software maintenance and evolution are largestages: “Understanding the program and actually
components of a software system's lifecycle. Theperforming the change” (Precheital., 1998). The time
amount of software lifecycle effort consumed duringinvested by the programmer in order to achieve an

Corresponding Author: Khaironi Yatim Sharif, Software Engineering Resba@roup, FSKTM, UPM Malaysia, Malaysia
1060

J. Computer i, 7 (7): 1060-1071, 2011

understanding before (and during) a successfulocument, the document is the artifact, while the
modification can consume a considerable portiothef location (i.e., where) is the attribute of the imf@tion.

maintenance activity, with typical estimates o&taffort To contextualize this, we first discuss the relate
ranging from between 50% and 90% of the entireinformation-seeking work by illustrating how the tko
maintenance effort (De Luc&al., 1996). reported here differs from the existing body of kvar

Kingrey (2002) defines Information-Seeking as thethe area. Then, the next section provides discussio
searching, recognition, retrieval and applicatioh o software maintenance in OSS, presenting the
meaningful content. Information seeking has beercharacteristic of OS that could makes different its
recognized as a core subtask in software comprigimens software development and maintenance nature. In the
within software maintenance (Curtist al., 1988; following section, the process of generating the
Seaman, 2002; Singer, 1998; Singer and Lethbridgenformation-seeking categories employed in thisigtu
1998; Sim, 1998; O'Brien and Buckley, 2005). Simis presented and the fully documented classificatio
(1998) for example, refers to maintenance prograreme schema is described. Then, the following section
as task-oriented information seekers, focusingifipaly reports on the results of the empirical study earout,
on getting the answers they need to complete ausialy before we finally conclude this paper in the |astt®n.

a variety of information sources. Likewise, Singed
Lethbridge (1998) in their case study of progransner
maintenance activities in the telecommunicationsalo,

Related works: Within this research area O’Brien and
Buckley (2005) has studied the information-seeking
found that programmers perform more searching, (i.eProcesses of programmers during the maintenance of
grep-based navigation) than any other activity. Arem commercial .software systems. In complimentary
recent study by Cleary (Cleagy al., 2008; Cleary and resegrch, S_lnger (1:998) and Seaman (2002), have
Exton, 2007) suggests that information seekingaveesry ~ Studied the information sources that programmees us
credible model for describing the goal owded when seeking information, also in commercial

opportunistic ~ software comprehension stratégie§ce”arios- The wqu reported in_this thesis extahids
employed by software engineers. research by focusing on delocalized OSS development

The nature of Open Source (OS) softwareln the tradition of O’Shea (2006), where the depelo

development could make it as a very important oante Mailing lists of OS projects are analyzed to infoom

in which to study information seeking in software the Programmer's comprehension efforts. .
maintenance. The Open Source Software (OSS ‘There have been several empirical studies that aim
development process generally involves (or has th& inform on the types of information sought by
potential to involve) large, globally distributed Programmers in the context of software comprehensio
communities of developers collaborating primarily SUSh_as Singer (1998); Ket al. (2007); Letovsky
through the internet (Feller and Fitzgerald, 2001:{1987); Pennington (1987); Good (1999); Wiedenback
Fitzgerald, 2004, Iskandarani, 2008). Interneteisrsas azngog:orrl_lfﬁre (19?1(1)! O?hea (ZOO(StLaanBuck:t.aai. that
successful collaborative environment (Sullabi and(). These studies focus on the information tha

Shukur, 2008). However, in OS context, the tyloiCalprogrammers’ might obtain and the information that

widely distributed, asynchronous development wouldthey find difficult to obtain during software

seem to make information seeking more difficultgsh maintenance, thus potentially informing the desogn

3 . software tools.
and Buckley, 2009a; Gutwiet al., 2004). But open However, most of these studies are derived from an
source programmers seem to manage to deal with lar

. ; . : %xisting ‘information-types’ schema developed by
scale code with high-code complexity (Dan@lal., popningon (1987). As this schema was developed
2009). However, to date, there is little reseaciniorm .9 4 theoretical review of the information ialze
on information seeking among OS programmers. to individuals in small segments of code, it is ol

In addressing this issue, this research aims i@, it jgnores other artifacts produced by a dewelent
characterize information seeking in Open SOUrC&eam and that it ignores some information seeking
software projects in term of the m_formathn antifa requirements specific to larger code-bases (Slaauif
probed by programmers and the information soughpyckley, 2009a). An illustrative example is theciion’
Wlthln thg proqu artifacts, henceforth referrecds$ahe jnformation type identified. O'Shea empirically
information attributes in this article. In this deRrt, estaplished that programmers sought the locatioa of
information artifact can _be desc_rlbed as the eritipt specific piece of code within the software systemher
the programmer seeks information about: the fodus oph.p. research. While this finding was in line with
information or the object of the programmers’feature and concept location work, O'Shea attrithie
information seeking attention. On the other hame, t |ateness of this finding to her adoption of Penttintp
information attribute refers to the features of theschema. This ‘theoretical harness’ thus potentially
information been sought. For example, when aconstrained O'Shea’s work and has the same padtgntia
programmer ask about the location of particularconstraining possibilities for this entire bodyresearch.

1061

J. Computer i, 7 (7): 1060-1071, 2011

In contrast, Ko et al. (2007), observed words such as “what” and “where” (Sharif and
programmers while they were working in-vivo with Buckley, 2008a; 2009a). As a result, all the dasase
proprietary or commercial software development teamused in this study-the questions in the mailing hiad
and he identified the information that they soughtto be extracted manually. Later, all of the quewtio
through his observations, in an open-coding fashionwere individually isolated in a spreadsheet, refaty
The work reported here mirrors this approach irt tha analysis. This is a prerequisite for data prepanati
relies on a schema derived from observations of tha&hen analyzing textual data in this fashion (Goad,
information types that programmers seek in-vivoisTh 1999; Sharif and Buckley, 2009b).
frees it from any potentially constraining theocati The researcher carried out a detailed analysibisf t
harnesses. Instead it places no restrictions on thdata, naming and categorizing each question asied b
information source to derive a holistic information the programmers. This open-coding procedure is
seeking schema. However, as stated above, thiy stugarried out without the aid of a coding manual or
will focus on OS programmers. schema, the coder effectively creates the categorie

from scratch. Accordingly, the researcher immersed
Software mantenance for OSS developmentThe himself in the transcript data, seeking to gainmasiy
public availability of source code for OSS makes ansights as possible into the information-seeking
difference in its software development and maimeea Pehavior of the programmers, and began to produce
can amend the code and contribute change to th§anscripts being examined as suggested by O’Baiien
software. With the source code available to all O0SA-(2001) and Pandit (1996). o
developers, they tend to work in parallel (Felleda _ 1he open-coding procedure was done iteratively,
Fitzgerald, 2001), with different individuals oroups each iteration marked by a discussion review with
working on the system simultaneously. Several othefnother researcher where a random sample, was

characteristics of generic OSS development proces%ategorized by both the first author and this other

have been suggested (Feller and Fitzgerald, zooiesegrche][. The r.e5U||tS were qomgared and ver Eimeb,
Gacek and Arief, 2004) that might impact on therium er of provisional categories began to emerge by

software maintenance process, such as the involvemeS o 2coUs: Those categories were then appliedéo ot
P ' question datasets and refined by means of reflectio

.Of large global (_:ommunities, parallel develop_ment, ual review, discussion, merging and renaming.Ikina
independent _ review, prompt feedback, motlvatedg set of categories seeme% igncreasingly rgsi?mnt t
developers and users, as well as rapid releasdidehe change and these became the final schema.

_These characteristics can be seen as factors thaty Yefining the schema the following datasets were
will give impact on OS programmers’ information employed:
seeking activities. For example the large and dloba
communities could impact the information seeking® A random dataset (a comparatively small dataset as
activites among OS programmers. The extremely initial dataset during pilot study) _
delocalized OS programmers might cause them t6 Datasets from different stages of software evatutio
actively looking for information to organize theask. ¢ A larger, time-scaled dataset _
Likewise, availability of source code to all membéan * A dataset that reflected successful OSS projects as
the communities is possibly make them inquiry about Per the characterization presented by Daefiedl.
code’s version, questions about code comprehension. (2009)
This also could lead them to ask question abougdes Ag g result, the schema employed in this study was
decision that has made for particular sets of cod®s geveloped through open coding (Krippendorff, 2004)
the same time, the huge number of community’sand content analysis of the questions contained in
members might contribute in active response fofdataset that consisting of 17 (yearly) archivesemak
information request from the community. ‘Parallel ffom 6 OSS projects. This dataset resulted in 2104
development’ possibly makes OS programmers seekmail communications from which 708 questions were
more information to coordinate their task-such #®o extracted. Table 1 describes the 6 OSS projectstand
programmers’ job status, software activities arldteel different dataset used in this study.

source code process. Initially, the archive from BSF 2007 and JDT 2003
were used in modeling the preliminary Information
MATERIALS AND METHODS Seeking Schema (ISS). Then all the archives wezé s

refining this schema with respect to modeling infation
Schema developementEarly investigations showed seeking in maintenance over time and further aisatys
that considerable number (estimated at 20%) ofhese initial findings. The process of schematicneand
questions in programmers’ emails were asked withoutefinement were discussed earlier in our previoaeskw
explicit indicators like question marks or signaglin (Sharif and Buckley, 2008a; 2008b; 2009a).
1062

J. Computer i, 7 (7): 1060-1071, 2011

Table 1: Description for OSS projects used in shisly

OSS project Description Dataset used year # of emails # of questions
The Java Bean BSF is an OS project concernedaliaing 2003 284 73
Scripting Java applications to contain embedded 4200 107 18
Framework (BSF) languages, through an API to Engpengines. 2007 275 85
Java Development JDT is an OS project concerngd wi 2002 81 43
Tool (JDT) enabling Eclipse for Java development. 002 147 90
2004 100 61
The Element ECS is an OS project to create Javs faP 2001 162 37
Construction Set (ECS) generating elements foouarmarkup 2002 39 17
languages that allows user to use Java Objects 003 2 131 11
to generate markup code. 2004 21 2
2005 17 5
2006 6 4
2007 2 1
2008 20 2
Eboard User-friendly chess interface for Internkeess Servers (ICS) 2001 182 45
SwingWT Implementation of the Java Swing and AWTIAP 2004 302 107
Resiprocate Dedicated to maintaining a completegcband 2009 228 107

commercially usable implementation of
Session Initiation Protocol (SIP)
Total 17 2104 708

Table 2: Description for information artifact cabeigs

Information artifact Definition and example
System documentation Questions referring to theshentation: Example: “Is there any Apache offigaidelines on this?”
Changes Questions that refer to changes that pnogea has made. .

Example: “Here is a patch for the changes | badbt ... Please look into it, | may have broken many
exception handling policies here”.

Tool/Technology Questions that refer to technologyools. Example: “Can we use JIRA for bug repaytior

this issue instead....”
Protocols adhered to Questions about the protodolibw. Example : “Did you got the approval tontobute your work to BSF"?
Support required Questions that ask another prageamo take on responsibility or tasks.

Example “There are 2 non-filed open issues..... Are theretakgr? “

System Implementation-Enhancement Questions thatainderstand the code in order to make changemfle : “..but | need to understand the
refactoring currently in Eclipse now. Can anysnggest me where about in the code is a goodregautiint in
understanding how the component works “

System Implementation-Debug Questions that airmtterstand the code in order to trace a bug.

Example : “(Given a situation..)l have no ideaywthis is happening. Please help me solve thislpno’
System design Question referring to the systensgde

Example : “Is jdt.core.jdom built on top of jdtre.dom?”
File configuration Question about configuration mgement.

Example: “What is the distribution directory tetsrc zip/tgz?”
Owner Question about the relevant person for sasie t

Example: “Who is the team / person in charge faudeentation?”
Task-Testing Question related to testing.

Example: “Can | invoke all junit test cases ire@r more source folders in one movement witheststiites”
Task-Implementation Question about tasks thatedeted to Implementation. Note that this is notwlmmmprehending the code b

ut more directed at the task to be undertaken.

Example :"Maybe you need to post more code, oftregou need to update ecs-1.4.1?
Stage/Completion Question about completion of tagetask or stage.

Example: “Has jakarta-ecs seen substantial del imahat time? le is ecs2 still effectively tretdst work?”

Resultant schema: Through the series of iterative Table 2 contains a definition for each of these and
refinements mentioned above, where 2 independer@*amples taken from the dataset captured.

coders applied the developing classification schéma Please note that while these seem to bear sityilari
samples of these datasets, a coding schema willediist 0 the ‘information source’ research carried out by
where every question identified in programmers’ iisna Singer (1998); Seaman (2002) and Scetsal. (1998),

was categorized with respect to information artifaed they differ, as the focus in this research is thdaat
information attribute. the programmer is looking for information aboutt no

the source through which they choose to acquire the
Information artifact: Information artifactrefers to the information. In this research the source througtictvh
external representation that the information searclthey choose to acquire the information is always th
refers to. There were 13 individual foci identified mailing list.
1063

J. Computer i, 7 (7): 1060-1071, 2011

Table 3: Description for information attribute agdeies
Information attributes Definition and example

What Questions which ask what the does (the saade or software tools). When referring to sowmge, these questions
represent the bottom-up program comprehensiategly employed by programmers (Letovsky, 1986).
Example: “What is the .rep file?”

How Questions which attempt to identify how aromifation artifact achieves its goal, how some imfation artifact
is employed or how to proceed. When applied tos®code, it often refers to a top-down compreioenstrategy
(O'Brienet al.,2004) Example: “Does anyone know how | can fis%h

Why Asking for a purpose/explanation of the infation artifact. When directed at code, this algpesents bottom-up
program comprehension by programmers (Letovs886)L Example: “l am getting an exception beimgpwn
when trying to create new java class and | wasdedng if anyone could shed any light on why?”

Who Asking for the relevant persons. Example: “firere any takers?”

Where Asking about the location of something witthia information artifact or about the locatioraof information
artifact. For exampl&wWhere | can find the sources for plug in so | cagate a patch?”

Permission Permission to do something. This styategormally related with the Protocol informatiartifact.
Example’BTW, can we use JIRA for bug reporting for thiojerct instead ..."

Confirmation Questions that confirm certain infotima/actions/tasks.
Example “... will it be incorporated into the latest versionBSF?"

Instruction Question that are asking a communitynimer to do something

Example: “Would you consider donating your pattpache?”

Table 4: Relationship between information artifeatiegories and information attribute categories
Info. Focus and

Quest. Strategy What How Why Who Where Permission onfi@mation Instruction
Changes 2 4 1 0 1 4 3 4
File Config. 2 7 2 1 5 1 1 7
Legality and Protocol 1 4 2 0 1 1 1 13
SI-Debug. 15 16 6 33 4 0 0 20
SI-Enhance. 25 12 3 10 3 5 0 27
Stage/Completion 4 11 2 1 0 3 1 15
Support required 2 1 29 1 0 2 0 3
System design 4 13 2 7 1 0 0 38
System document 0 11 5 0 18 3 0 11
Task-Impl. 28 16 23 2 1 2 5 34
Task-Testing 3 4 2 1 0 0 0 5
Tool/Tech. 46 15 10 9 4 5 1 49
Owner 0 0 9 0 0 1 0 0

Information attribute: Information attribute refers relationship between information artifact categeed

specifically to the aspect of information soughtthg information attribute categories is presented iblga.

programmer based on the information artifact. 10Discussions on these results are presented asvfollo

information attributes were derived by open codafg

the OS programmers’ email communication. These DISCUSSION

attributes are presented in Table 3. Note that the

examples shown in Table 2 and 3 are the actudhformation artifact : The graph in Fig. 1 visualizes

questions found in the dataset. result that we gathered for information artifactoss
all mailing lists across all years of the dataBetsed on
RESULTS this, it shows a similar trend of information aatif

across all projects. The essential pattern seerhsltb
The empirical studies: The empirical results described with small emphases in different system. This sagge
in this section are based on the schema presebteg.a high reliability of the schema in characterizing OS
The schema was used to examine the entire datadet t programmers’ information seeking, The different
was used in creating the schema. That is, when theesults for different data sets most probably bseanf
schema was finalized the entire data set was tedlisi different characteristic among the projects thapdnt
for analysis. When all 708 questions were extrgctedon the result. However the similar trend over atljgct
they were individually isolated in spreadsheetsc&tl ~ suggest the reliability of the schema.
facilitate categorization with respect to the schele Figure 1 suggests that OS programmers’ information
then applied content analysis to this datasetseeking is very implementation centric where Teold
categorizing each question asked by the programmetechnology, System Implementation-Enhancement,
with the aid of the current schema. We then sepdrat System Implementation-Debug and Task Implementation
the results of the analysis into different tabl&@he gained high requests across all projects & dhtaset.

1064

J. Computer i, 7 (7): 1060-1071, 2011

35 —— BSF (2003)
-m— BSF (2004}
30 BSF (2007)
R IDT (2007)
25 ; A\ *— JDT (2003)
—=— DT (2004}
—ECS5(2001)
-— ECS(2002)
— ECS (2003)
ECS (2004}
ECS (2005)
ECS (2006)

/ 'I: \ \ f
I R y [A
/I \‘ I Nooe ECS (2007)
;‘f A i 1/ A ECS (2008)
PN Y — \

Number ol requeslt

x
o N
T e . Eboard (2001)
ol == = =0 | SwingWT (2004)
5 = = = 3 3 = g i 5 = = = = Resiprocate {2009)
6 = s &5 =*5 g 2 B 2 E B B =
= & 5B = # @ = = %
= & @ 2 & &
Information focus
Fig. 1: Patern for information artifactquest
Table 5: Ranking for information artifact categsrie Implementation-Debug’ and ‘Task-Implementation’ as
Information artifact % reflecting a focus on the code base 40.4% of aktijons
1 Tool/Technology 19.21 were directed at the code base.
2 Task-implementation 14.55 In addition, closer examination of the
8 System implementation-debug 1342 «Too|Technology’ focus showed that 89% of the
4 System implementation-enhancement 12.43
5 System design 918 questions aimed at this focus related to workinthwi
6 System documentation 6.64 the code (editing code, submitting changes, delmgggi
7 Support required 5.37 and settings). As ‘Tool/Technology’ was the biggest
8 Stage/Completion 5.37 information artifact, this makes in total, 57.7% of
9 Legality/Protocol 3.39 request in the dataset was focused on the codel.base
ﬂ 2':1220229“""“0” 2:’;39 Hence, this suggests a strong code focus for thbel
ges. : 0SS projects that we have studied.
12 Task-testing 2.12) . . .
13 Owner 155 Such high request for information in

‘Tool/Technology’ might reflect the rapid changes i

: : ols that used by OS programmers. For example, a

B e e on e bion of Jaa Development K namely Jaua SE &

' . .) Had 6 updates released within 11 months in 2010
and Protocol across all projects in the datas_es also _ (Wikipedia, 2010). This rapid change is likely tive
suggest that behavior of OS programmers’ infornmatio impact on the programmers’ works such as coding and
seeking seems to less related to information Sgekindebugging. This is suggested by examples suchDas:
rather than physical artifact seeking such reqé@st you remember what version of RELOAD was current,
helps or seek a person to do a job. the time you dealt with it?”

Likewise, when we refer to Table 5 that presents th Another possible rationale for the high request for
ranking of these information artifact categorié® tesult ‘Tool/Technology’ is that many tools available f®S
shows emphasis on Tool/Technology (19.21%), Taskprojects. OS programmers might be asking a lot of
Implementation (14.55%), System Implementation-ebu questions to choose a tool that suitable for th&an
(13.42%) and System Implementation-Enhancemenive use JIRA for bug reporting for this issue indtea”
(12.43%). Hence, as suggested in our previous aotk The high request for this type of question alsohnlge
in line with other research (Sousa et al 1998, Sieg al related with request of software document. For
1998), much of the programmers’ information seekingexample, there is question in the dataset askimgitab
was directed at the systems’ implementations. Takinuser manual for specific tool in use: “Is there any
‘System Implementation-Enhancement, ‘SystemApache official guidelines on this?”

1065

J. Computer i, 7 (7): 1060-1071, 2011

[-+ BSF (2003)
335 [\ —= BSF (2004)
fla BSF (2007)

30 {i A IDT (2002)

/ \ = IDT (2003)

/\ \ —o IDT (2004)

- f-’ \ —ECS (2001)

R ——ECS (2002)

- ECS (2003)
ECS (2004)
ECS (2005)
ECS (2006)
ECS (2007)
ECS (2008)
Eboard (2001)
SwingWT (2004)

—— Resiprocate (2009)

Number of request

What How Why Who Where Permission Confinmation Instruction

—ry - g
Question strategy
Fig. 2: Patern fomformation attribute request

The higher figures for Tool/Technology, Task- ranked the 6th most requested artifacts acrogsa@écts
Implementation, System Implementation-Debug andn the dataset. Over all years of all projects,cn”% of
System Implementation-Enhancement with respect tthe questions were ‘System Documentation’ questions
System Design might reflect the OSS DevelopmenGiven the large number of total questions (708 tipes
Life Cycle. According to Feller and Fitzgerald (200 from 2104 emails) in the dataset, it suggests that
in OSS development, planning, analysis and desigdocumentation is regarded as an important issue for
stages are concatenated and performed typicallp by programmers (55 questions). The delocalized natfire
single developer or small core group. Design densi OS programmers might be the reason for a higher tha
are generally made in advance, before the largel poexpected reliance on this documentation.
developers starts to contribute. Hence, most of OS As OS programmers cannot rely on informal
programmer’s contribution is directed at the system communication with their team, they are more likidy
implementations. However, since the design decssionneed reference material in hand while doing their. j
were made in advance, it also possible that OSn addition, It is possible that due to the deloxad
programmers looking for information about systemcontext of programmers in this study. OS progransmer
design as they were not involved in making theglesi may be motivated to produce better documentation
decision. This could be the reason for the conaldler because of this delocalization, and therefore pgerha
proportion for System Design question (9%) in thetrust documentation more than in the traditionakca
maintenance phases of these projects. This also may
also be reflected in the high proportion of Information attribute: As with the information
implementation-based queries, although this thesne iartifact, the result that we obtained in Fig. Zgents a
consistent of studies of commercial programmerssimilar pattern of information attribute across all
(O’Shea, 2006; Ket al., 2007). projects with the essential pattern seems to hatd w

We have also previously reported an unanticipatedmall emphases in different system. Such pattern
finding (Sharif and Buckley, 2008a; 2008b; 2009a;indicates the high reliability of the schema. Thiso
2009b) with regards to programmers’ ‘Systemmeans that the overall trend of OS programmers’
Documentation’ requests. Specifically we noted thatinformation seeking behavior is team oriented itura
documentation seemed to play an important part3n O Such trends imply that OS programmers are often
programmers’ information requests. This was unusuahsking for confirmation for their sought informatio
because other ‘information source’ literature ssgge® and want to know who is relevant for that particula
that programmers distrusted documentation (Singeinformation. Both are expected in a delocalized
1998; Seaman, 2002; Soietal., 1998). environment. This graph also align closely witle th

The data shown in Table 5 reinforces this findingsfindings by Letovskys (1987); where lots of whatan
but with smaller emphasize, System Documentatios wahow questions and a lesser number of why questions.

1066

J. Computer i, 7 (7): 1060-1071, 2011

Pre-Commit Testing stage (Jorgensen, 2001) in OSS
life cycle for changes. Pre-Commit Testing tesdasie
before the new code is integrated with the othefeso

in project’s repository or released to other depefs to
prevent the new code from breaking the other tested

0 i ‘ -4 code. In this context, it is understandable if OS
i B What . . .
30 : Cmﬁmmm;\gf programmers need to confirm their changes with the
s ol community members. _
Where © Istruction With regard to the high percentage for who
v m Permission B . ope . -
O Confirmation question (12.29%) in the mailing list, given Kb al.

(2007) findings; this is not an entirely unexpected
result. This is because, if co-located programmesed

to ascertain their team-mates, and their roles) thes
likely that delocalized programmers will also have
increased information needs in this regard.

Fig. 3: Relationship between information artifactd

information attribute Location type queries: On the other hand, the data in

Table 6 have also shown to correspond to our algin

Table 6: Ranking for information attribute categsri findings that exhibit the presence of ‘Locationpéy
Rankinformation attribute % queries in the questions that we obtained. Thidirfig

% ng”ma“"” ié-gg is in accordance with. Based on this, we manage to
3 What 16.24 identified 38 questions which were location oriente
4 Who 12.29 (i.e., the ‘Where’ questions). This type of questio
5 Why 9.04 represents 5.37% of all questions asked, suggetbtirig

6 Where 5.37 N L . . .

7 Instruction 367 this is a S|gn|f|ca_\nt _m_formatlon seeking type f@@ _

8 Permission 1.41 programmers maintaining large systems. Thesesniindi

)) . add empirical credence to Marcugt al. (2005)
Table 6 present the ranks of information attribute:concept Location’ work.

employed in the information request in the databhé

5 most frequent information attribute traced in the :
dataset were Confirmation (32%), How (19%), what.Rm"’lt'on.Shlp bgtween information artifact and
(16%), Who (12%) and Why (9%). In addition, the 6th|nformat|on attribute: In order _to fu_rther anal_yze
ranking strategy of ‘Where' questions with 5% resfue theSe results, we present a 2-dimensional reldtipns
rate were also considered as significant. Thisnis | Petween information artifact categories and infdfara
accordance with our previous studies that suggest t attributes categories by number of request for both
there is strong team-orientation among programmerdlimensions in Fig. 3.

and the existence of Location type queries among The top 5 highest request in the dataset was
programmers. onfirmation on Tool/Technology (49 requests), How

questions on Tool/Technology (46 requests), Coafiion
Team orientation question: Upon closer analysis, the on System Design (38 requests), Confirmation ork-Tas
data presented in Table 6 is in line with Sullabda Implementation (34 requests) and Why questions on
Shukur (2008) and in keeping with another of ourSystem Implementation-Debug (33 requests). Thisrdig
preliminary finding (Sharif and Buckley, 2008a; 3B) reinforces our finding that OS programmers’ infotiora
2009a; 2009b), as there is a strong emphasis en, tlseeking is very implementation centric and theyehav
‘Confirmation’ questions and the ‘Who’' questions. strong team-oriented nature.
‘Confirmation’ questions accounted for approximgtel Task-Implementation and System Implementation-
31.64% of all questions, and were the most fredyent Debug are reflecting focus on implementation. Syste
asked type of question. Likewise ‘Who' type of design wills not normally reflecting system
questions was also popular, accounting for 12.29% dimplementation. However, in closer view, the
all questions. This emphasis on confirmation an@ wh Confirmation on System Design information is likely
questions may reflect the effort to maintain awassn asked to confirm certain design issues with intanto
among delocalized programmers reported by Gualvin do implementation task. Given the fact that in OS
al. (2004). The Confirmation questions also refléde t settings system design is normally done by “small-

1067

J. Computer i, 7 (7): 1060-1071, 2011

core” group and the OS development is located
primarily at the implementation phase (Feller and
Fitzgerald, 2001), request for System Design isnsee

CONCLUSION

This study observed OS programmers information

to have the agenda of code implementation. The higBeeking through questions found in OS projectsingail
request for how (Tool/Technology) and why (Systemist. All the extracted questions were analyzeselaon
Implementation-debug) aspect of information is alsojnformation Seeking Schema employed from previous

reflecting the implementation focus in the question

Likewise, most of the questions for
Tool/Technology (as shown in Fig. 4) in the
information artifact is around the How questiongjat
suggests a strong implementation centric in the
questions. The other information attribute withtregt
request in Tool/Technology category is the
Confirmation questions.

Another interesting finding shown earlier in F&.
is the request on System Documentation that isehnigh
than previously reported for non OS programmers’
Upon closer analysis, Fig. 4 shows that majority of
request for System Documentation is targeted onré&/he
aspect. This indicates the needs for a tool or agbp *
that can point them to required document. Anotligh h
request for this category was on What (11 requests)
Confirmation (11 request). This suggesting OS
programmers tendencies to refer to document to get

studies. In doing this, we found results that reioé
previous findings. Specifically, we found:

A similar pattern of information artifact and
attribute across all projects

Supporting evidence that OS programmers were
highly implementation centric when much of the
programmers’ information seeking was directed at
the systems’ implementations

OS programmers have also shown to repeatedly
require location information and that they are guit
team-oriented

OS programmers tended to rely on documentation
more than what have been previously reported for
non OS programmers

These findings from different insights demonstrate

confirmation on certain information and to know abo the applicability of the ISS of OS programmers. SThi

newly found (what) subject.
Besides that,

_ schema is an open schema allowing further evaluatio
Fig. 3 also shows that OSand refinement and can be replicated for futureassh

programmers often asked the Why questions for 8ystein this area (This schema is available from thet fir
Implementation-Debug (33 requests), the How questio gythor on request). By determining the informatioat

for System Implementation-Enhancement

guestions) and the How question for Task-
Implementation (28 request). This is intuitively
understood. According to a popular definition, .

debugging is a methodical process of finding and
reducing the number of bugs. Hence, it is undetstoo
when programmers asking why to find cause of errors
Likewise, how questions is likely asked to get guat
suggestion to enhance particular piece of codeuiteg

in doing the enhancement (task).

System documentation

20
131
16
14
12 11 11

10

Number of request

3

] | o 0 0

Where What Confir- Whe Instruction How Why Permission
mation

=

Fig. 4: Information attributes for system documéinta
1068

support
information-seeking’ endeavors.

- Boehm's,

(25the programmers frequently seek, this researcmelefi
the requirements for visualization tools that truly

programmers in their maintenance of

ACKNOWLEDGMENT

This study was supported, in part, by Science

Foundation Ireland grant 03/CE/I303_1 to Lero-The
Irish
(www.lero.ie).

Software Engineering Research Centre

REFERENCES

Belady, L.A. and M.M. Lehman, 1976. A model of

large program development. IBM Syst. J., 15: 225-
252. DOI: 10.1147/sj.153.0225

B.W., 2007. Software Engineering
Economics, in Software Engineering: Barry W.
Boehm’'s Lifetime Contributions to Software
Development, Management, and Research. 1st
Edn., Wiley-IEEE Computer Society Pr., ISBN-10:
047014873X, pp: 832.

J. Computer i, 7 (7): 1060-1071, 2011

Buckley, J., C. Exton and J. Good, 2004. Charagtayi

programmers’ information-seeking during software
evolution. Proceedings of the in International
Workshop on Software Technology and

industrial countries-digital divide model. J.
Comput. Sci., 4: 315-319.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.165.8042&rep=repl&type=pdf

Engineering Practice, Sept. 17-19, Chicago, IL.Jorgensen, N., 2001. Putting it all in the trunk:

pp: 7-29. DOI: 10.1109/STEP.2004.7

Cleary, B. and C. Exton, 2007. Assisting concept

location in software comprehension. Proceedings

incremental software development in the FreeBSD
open source project. Inform. Syst. J., 11: 321-336.
DOI: 10.1046/j.1365-2575.2001.00113.x

of the 19th Annual Psychology of Programming Kemerer, C.F. and S. Slaughter, 1999. An empirical

Interest Group Conference, Aug. 16, Joensu,
Finland. http://www.enterpriseresearch.ie/?p=251

Cleary, B., C. Exton, J. Buckley and M. Englishp20

approach to studying software evolution. Software
Eng., IEEE Trans., 25: 493-509. DOI:
10.1109/32.799945

An empirical analysis of information retrieval Kingrey, K.P., 2002. Concepts of information segkin

based concept location techniques in software
comprehension. Empirical Software Eng., 14: 93-
130. DOI: 10.1007/s10664-008-9095-3

Curtis, B., H. Krasner and N. Iscoe, 1988. A fistddy
of the software design process for large system«o, A.J., R. DeLine and G. Venolia, 2007. Infornoati

Commun. ACM,
10.1145/50087.50089

31: 1268-1287. DOI:

Daniel, S., K. Stewart and D. Darcy, 2009. Pattarhs

De

evolution in open source projects: A Categorization
Schema and Implications.

http://misrc.umn.edu/workshops/2009/spring/Stew Krippendorff, K.H.,

art.pdf

Lucia, A., A.R. Fasolino and M. Munro, 1996.
Understanding function behaviors through program
slicing. Proceedings of the 4th
Workshop on Program Comprehension, Mar. 29-
31, IEEE, Berlin , Germany, pp: 9-18. DOI:
10.1109/WPC.1996.501116

Feller, J. and B. Fitzgerald, 2001. Understandimpgi©

Source Software Development. 1st Edn., Addison-
Wesley, Pearson Education LimitedSBN-10:
0201734966, pp: 224.

Fitzgerald, B., 2004. A critical look at open sairc

Computer, 37: 92-94. DOI: 10.1109/MC.2004.38

Gacek, C. and B. Arief, 2004. The many meanings of

open source. Software, IEEE, 21: 34-40. DOI:
10.1109/MS.2004.1259206

Good, J., 1999. Programming Paradigms, Information
Types and Graphical Representations: EmpiricaMayrhauser, A.V. and A.M. Vans, 1993. From code

Gutwin, C., R. Penner and K. Schneider, 2004. Group

Investigations of Novice Program Comprehension.
The University of Edinburgh: Edinburgh, UK.
http://www.dart-europe.eu/full.php?id=299441

awareness in distributed software development.

and their presence in the practical library literat
Library Philosophy Practice, 4: 1-8.
http://www.webpages.uidaho.edu/~mbolin/saunder
s.PDF

needs in collocated software development teams.
Proceedings of the 29th International Conference
on Software Engineering, May 20-26, IEEE
Computer Society Washington, DC, USA., pp:
344-353. DOI: 10.1109/ICSE.2007.45

2004. Content Analysis: An
Introduction to its Methodology. 2nd Edn., Sage
Publications, , Inc., ISBN-10: 9780761915454, pp:
440.

International Letovsky, S., 1987. Cognitive processes in program

comprehension. J. Syst. Software, 7: 325-339.
DOI: 10.1016/0164-1212(87)90032-X

Lientz, B.P., E.B. Swanson, and G.E. Tompkins, 1978

Characteristics of application software
maintenance. Commun. ACM, 21: 466-471. DOI:
10.1145/359511.359522

Marcus, A., V. Rajlich, J. Buchta, M. Petrenkalah

Sergeyev, 2005. Static techniques for concept
location in object-oriented code. Proceedings ef th
13th International Workshop on Program
Comprehension, May 15-16, IEEE Computer
Society Washington, DC, USApp: 33-42. DOI:
10.1109/WPC.2005.33

understanding needs to reverse engineering tool
capabilities. Proceedings of the 6th International
Conference on Computer-Aided Software

Engineering, Jul. 19-23, IEEE, pp: 230-239. DOI:

10.1109/CASE.1993.634824

Proceedings of the 2004 ACM Conference onO’Brien, M.P. and J. Buckley, 2005. Evolving a mbde

Computer Supported Cooperative Work, Nov. 06-
10, ACM, Chicago, lllinois, USA., pp: 72-81. DOI:
10.1145/1031607.1031621

Iskandarani, M.Z., 2008. Effect of Information and

Communication Technologies (ICT) on non-
1069

of the information-seeking behavior of industrial
programmers-an empirical approach. Proceedings
of the 13th International Workshop Program
Comprehension, May 15-16, IEEE, pp: 125-134.
DOI: 10.1109/WPC.2005.24

Pressman, R.,

Seaman,

J. Computer i, 7 (7): 1060-1071, 2011

O'Brien, M.P., J. Buckley and T.M. Shaft, 2004.
Expectation-based, inference-based, and bottom-up United
software comprehension. J. Software Maintenance

Evolut.: Res. Practice, 16:
10.1002/smr.v16:6

363-447.

O’Brien, M.P., T.M. Shaft and J. Buckley, 2001. An

open-source analysis schema for identifying

DOI: Sharif,

(APIGC’08), Lancaster University,
Kingdom, pp:
http://www.ppig.org/papers/20th-sharif.pdf

K.Y. and J. Buckley, 2009a. Further
Observation of Open Source Programmers’
Information Seeking. Psychology of Programming

Interest Group, University of Limerick, Ireland,:pp

Lancaster,
1-10.

software comprehension processes. Proceedings of 1-12. http://www.ppig.org/papers/21st-sharif.pdf
the 13th Workshop of the Psychology of Sharif, K.Y. and J. Buckley, 2009b. Observation of

Programming Interest Group (WPPIG'01),
Bournemouth UK, pp: 129-146.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.1.5397&rep=repl&type=pdf

O’'Shea, P.A., 2006. An Investigation of Views and

Abstractions Employed by Software Engineers

during Software Maintenance. 1st Edn., UniversitySim, S.E.,

of Limerick, Limerick.

Pandit, N.R., 1996. The creation of theory: A récen

application of the grounded theory method.
Qualitative Report, 2: 1-20.
https://ueaeprints.uea.ac.uk/28591/

Pennington, N., 1987. Comprehension strategies in

open source programmers’ information seeking.
Proceedings of the IEEE 17th International
Conference Program Comprehension, May 17-19,
IEEE Computer Society, Vancouver, British
Columbia, Canada, pp: 307-308. DOI:
10.1109/ICPC.2009.5090071

1998. Supporting Multiple Program
Comprehension Strategies during Software
Maintenance. A thesis submitted in conformity
with the requirements for the degree of Master of
Science Graduate, Department of Computer
Science, University of Toronto.

http://www.ics.uci.edu/~ses/msc/thesis.pdf

programming. Proceedings of the 2nd Workshop inSinger, J. and T. Lethbridge, 1998. Studying work

Empirical Studies of Programmers (WESP’'87),
Ablex Publishing Corp, NJ, USA. ISBN: 0-89391-
461-4

Prechelt, L., B. Unger, M. Philippsen and W. Tichy,

1998. Re-evaluating inheritance depth on the

maintainability of object-oriented software. Int. J Singer, J.,

Empirical Software Eng., 1-16.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.48.7652&rep=repl&type=pdf

2004. Software Engineering: A
Practitioner's Approach. 6th Edn., McGraw-Hill
Science/Engineering/Math, England,
007301933X, pp: 880.

C.B., 2002. The information gathering
strategies of software maintainers. Proceedings o
the 8th International Conference on Software
Maintenance, Oct. 3-6, Montreal, Quebec, Canada,
pp: 0141.
http://doi.ieeecomputersociety.org/10.1109/ICSM.
2002.1167761

schema for open source programmers’ information-
seeking. Proceedings of the International
Symposium on Information Technology, Aug. 26-
28, IEEE, Kuala Lumpur, pp: 1-9. DOI:
10.1109/ITSIM.2008.4631611

Sharif, K.Y. and J. Buckley, 2008b. Observing open

source programmers’ information seeking.
Proceedings of the 20th Annual Psychology of
Programming Interest Group Conference

1070

Sullabi,

practices to assist tool design in software
engineering. Proceedings of the 6th International
Workshop on Program Comprehension, Jun. 24-26,

IEEE, Ischia, Italy, pp: 173-179. DOL:
10.1109/WPC.1998.693348
1998. Work practices of software

maintenance engineers. Proceedings of the 4th
International Conference on Software Maintenance
Mar. 16-19, Bethesda, Maryland, pp: 139.

http://www.computer.org/portal/web/csdl/doi/10.11

09/ICSM.1998.738502

ISBN-10: sommerville, 1., 2008. Software Engineering. 7tmEd

Pearson Education India, ISBN: 8131724611, pp:
864.

éousa, M.J. Castro and H.M. Moreira, 1998. A survey

on the software maintenance process. Proceedings
of the International Conference on Software
Maintenance, IEEE Computer Society Washington,
DC, USA., pp: 265-274. ISBN: 0-8186-8779-7

Sharif, K.Y. and J. Buckley, 2008a. Developing Stein, C., G. Cox and L. Etzkorn, 2005. Explorihg t

relationship between cohesion and complexity. J.
Comput. Sci., 1: 137-144.
http://www.doaj.org/doaj?func=abstract&id=11622
0

M.A. and Z. Shukur, 2008. CSCW for
preparing formal software specifications: issues
and implementation. J. Comput. Sci., 4: 333-340.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.165.8548&rep=repl&type=pdf

J. Computer i, 7 (7): 1060-1071, 2011

Wiedenback, S. and C.L. Corritore, 1991. What doZayour, |I. and T.C. Lethbridge, 2001. Adoption of

novices learn during program comprehension? Int.
J. Hum.-Comput. Interact., 3: 199-222. DOI:
10.1080/10447319109526004

Wikipedia, 2010. Java version history.
http://en.wikipedia.org/wiki/Java_version_history

1071

reverse engineering tools: A cognitive perspective
and methodology. Proceedings of the 9th

International Workshop on Program
Comprehension, May 12-13, IEEE, Toronto, Ont.,
Canada, pp: 245-255. DOI:

10.1109/WPC.2001.921735

