
Journal of Computer Science 6 (6): 641-647, 2010
ISSN 1549-3636
© 2010 Science Publications

641

Specialization of Recursive Predicates from Positive Examples Only

Moussa Demba

Department of Computer and Information Sciences,
Aljouf University Skaka, Saudi Arabia

Abstract: Problem statement: Given an overly general (definite) program P and its intended
semantics φ (the programmer’s intentions) where P does not satisfy φ, find out a new version P’ of P
such that P’ satisfies φ. Approach: We proposed an approach for correcting overly general programs
from positive examples by exploiting program synthesis techniques. The synthesized program, P’, is a
specialization of the original one, P. In contrast to the previous approaches for logic program
specialization, no negative examples were given as input but they will be discovered by the algorithm
itself. The specialization process is performed according to the positive examples only. A method for
refining logic programs into specialized version was then proposed. Results: The proposed approach
was able to correct overly general programs using positive examples. We showed that positive
examples can also be used for inducing finite-state machines, success sequences, that models the correct
program. The failing sequences also exploited by theorem proved to produce counter-examples as in
model checking, by composing substitutions used for inducing failing sequences. Conclusion: The
contribution of the study was mainly the use of specification predicates to specialize an overly general
logic program.

Key words: Program specialization, theorem proving, positive/negative examples, folding/unfolding

rules, finite-state machine

INTRODUCTION

 Our aim is to present a top-down approach for
logic program specialization w.r.t the intended
speciation which is a first-order formula of the
following form: ∀ x ∃ Y φ (x , Y)=∀ x ∃ Y Γ (x , Y)
←∆(x) (or Γ ←∆ for short) where Γ and ∆ are
conjunction of atoms. The problem we are interested in
can be stated as follows:

Given: An overly general (definite) program P = (E+

∪C) where E+ is a recursive sub-program defining
positive examples, C is supposed to be the set of
clauses defining the overly general predicates (i.e. the
incorrect component of P) and the intended semantics
φ for P (the programmer's intentions) with M(P)| = φ
where M (P) denotes the least Herbrand model of P.

Find: A definite program D, called a specialization of
C, such that M(D) ⊆ M(C) and M(P’) |= φ where P’ =
(P/C)∪D.
 The program P’ is called a correct specialization of
P’ w.r.t E+ if M(P’) ⊆ M(P), M(E+) ⊆ M(P’) and for
any negative example e−, M(P’) |= e−.

 Roughly the approach takes an overly general pro-
gram P and its intended semantics φ and tries to
produce a program P’ that is guaranteed to satisfy the
specification and therefore does not require verification.
We outline a top-down method for synthesizing a
correct and consistent logic program P’ that satisfies the
given specification. Moreover, the negative examples
E− correspond to ground atoms that are not deducible
from P’ and are automatically discovered during the
specialization process.
 For example, assume we are given the overly
general program P = (E+ ∪C) where:

2

even(0)
E

even(n)even(s (n))
+  ←

 ←

and

len([],0)
C

len(x,n)len([a | x],s(n))
←

 ←

and its intended specification:

:even (n) len (x,n)φ ←

J. Computer Sci., 6 (6): 641-647, 2010

642

supposed to establish the claim “if n is the length of list
x, then n is even”.
 For this specification P is false as we discover
while attempting to prove it, for example there are
particular values of the list x that generate negative
examples: It is the case where the number of elements
in x is odd and the negative examples even (s2k+1(0))
k = 0,..,n will be generated (s is the successor function).
But with the specialized version D of C, the new
program P’ = (P\C)∪D satisfies φ up to renaming the
predicate len by len2 that is defined as follows:

2

len 2 ([],0)
D

len2[a,b | x],s (n)) len2(x,n)
←+ 
←

 The new predicate len2 is called a specialization
predicate of φ w.r.t the predicate len. The proposed
method consists to synthesize D.
 Throughout the study, Γ, ∆ and Λ denote
conjunctions of atoms; φ denotes the intended
specification (a first-order formula); A and B denote
atoms and θ denotes substitution. In all formulas,
existentially quantified variables are distinguished from
universal variables by giving them upper-case letters. A
program is a set of definite clauses, denoted by
calligraphic letters: P, Q,....

MATERIALS AND METHODS

Let C be a conjunction of atoms. Then µ(C) = ∅ if C is
the predicate true and the multi-set of the atoms of C
otherwise.

Definition 1: A conjunction of atoms C1 is a
specialization of (or is syntactically less general than) a
conjunction of atoms C2 (denoted 1 2C C≺) with a
substitution θ iff µ (C2θ) ⊆ µ (C1) (Flener and Deville,
1993).
 For example, suppose C1 = p(a, x)∧q (y), C2 =
p(v,w) and θ = {v/a, w/x} we have 1 2C C≺ . Indeed, µ
(C2θ) = {p (a, x)} and µ(C1) = {p (a, x),q(y)}.
 The following definition expresses the relation of
generality between two horn clauses.

Definition 2: A definite clause A←∆ is represented by
a couple of elements (A, ∆). A clause (A1, ∆1) is a
specialization of a clause (A2, ∆2), denoted (A1, ∆1) ≺
(A2, ∆2), with a substitution θ iff (i) µ(A2θ)⊆µ(A1) and
(ii) µ(∆2θ) ⊆ µ(∆1).
 For example for (A1,∆1) = (r(a, x, y), {p(a, x)
q(y)}) and (A2, ∆2) = (r(v,w, y), {p(v,w)}), we have

() ()1 1 2 2A , A , ∆ ∆≺ with the substitution θ = {v/a, w/x}
as µ(A2θ) = {r(a, x, y)} and µ(∆2θ) = {p(a, x)}.

The following definition expresses the relation of
generality between two logic programs.

Definition 3: Let P1 and P2 be two definite logic
programs, {c1,…, cn} the set of clauses of P1 and
{d1,…, dm} the set of clauses of P2. P1 is a
specialization of P2 (denoted 1 2P P≺) iff for all 1≤ i≤n,
there exists 1≤j≤m s.t. i jc d≺ .

Example: Let P1 and P2 be two definite programs:

2

1
1

2

c p(s,(0),(0)
P :

c : p(s (x) s(y)) P(x, y),q(y)

 ←


←

1

2 2

2
3

d :p(0,0)

P : d : p(s (0),0)

d : p(s (x),s(y)) p(x, y)

 ←
 ←
 ←

 Then P1 is a specialization of P2 as c1 ≺ d2 and
c2 ≺ d3.

Definition 4 (Specialization predicate): Let P1 and P2
be two definite programs defining the predicates p1 and
p2 respectively. If P1 is a correct specialization of P, i.e.,
p1 ≺ p2, w.r.t the intended specification φ, then p1 is
called a specialization predicate of p2 w.r.t φ.

Proposition 1: Let φ: Γ ←∆, p2 be the intended
specification of the program P. If p1 is a specialization
predicate of φ with respect to the predicate p2, then we
have M(P∪P1) |= ((Γ, ∆, p2)←p1) where P1 defines the
predicate p1.

Proposition 2: If p1 is a specialization predicate of φ
with respect to the predicate p2, then the two formulas
(1) and (2) are equivalent:

2 1(p) pΓ ← ∆ ← (1)

1,PΓ ← ∆ (2)

Proof: It is easy to see that the formula (1) is equivalent
to:

2 1,p pΓ ← ∆ (3)

J. Computer Sci., 6 (6): 641-647, 2010

643

 Moreover, if p1 ≺ p2, (p2 ← p1) is a theorem There-
fore, the formula (3) is equivalent to:

1,pΓ ← ∆ (4)

 For example, the formula (even (n)←len(x,n),
len2(x, n)) is equivalent to even(n)←len2(x, n).

Notation 1: Hereafter and for the sake of simplicity, the
notation <φ|p> stands for <φ←p>.
 In the definitions 5-8, we define the semantic
calculus that allows given P and its intended
specification φ such that P is faulty w.r.t φ, to find P’
such that P’ satisfies φ.

Transformation rules: The algorithm applies the
transformation rules unfolding, folding and
simplification (Sakurai and Motoda, 1988). Intuitively,
unfolding is an extension of SLD-resolution and folding
applies the induction hypotheses. Indeed, whereas an
unfold step replaces a term that “matches” the
conclusion of a definition in the program by the
corresponding hypothesis, a folding step replaces a
conjunction of atoms that match the hypothesis of an
induction hypothesis by the corresponding conclusion.
 There are two kinds of unfolding rules: The
negation as failure inference (nfi for short) that replaces
a predicate call, at the right hand side, by the
corresponding body and the definite clause inference
(dci for short) that replaces a predicate call, at the left
hand side, by the corresponding body (Sakurai and
Motoda, 1988).
 To specialize the original program, it is vital to
keep trace of substitutions in the specialization
predicates, denoted IO (for Input Output). Therefore
each transformation rule is associated with a procedure
construction of the corresponding specialization
predicates. The application of an unfolding rule on a
formula φ0 generates a finite set of formulas φi, i =
1,...,k, such that φ0 follows from the φi’s in the least
Herbrand model of the program under consideration.
Each formula φi is associated with a specialization
predicate, as it can be an overly general clause and
defined by a program, noted QR where R is the applied
rule. If φi is trivially true, its associated specialization
predicate, IOi, is set to true. If φi is trivially false
(covers only the negative examples), then its associated
specialization predicate is set to false and in this case all
clauses containing this predicate will not be included in
the synthesized program D. The process is iterated until
all the formulas newly generated are trivial. The

arguments of the input output predicate IOi are those
that appear in the corresponding formula φi.
 The folding rule (cutr for short) is necessary for
synthesizing recursive predicates.

Definition 5 (negation as failure inference): Let P be
a program, φ0: Γ ←∆, A a formula and C = {c1,...,ck}
the set of clauses of P such that ci : Bi ← ∆i and suppose
there is a substitution θi s.t Biθi = Aθi. Then the
application of the rule of nfi on φ0 w.r.t to the atom A
yields a conjunction of k formulas:

0 0

i i i i i 1,...,k

: (,A) | IO (nfi)
: (,) | IO =

< φ Γ ← ∆ >
< φ Γ ← ∆ ∆ θ >

where, IOi is the specialization predicate of φi w.r.t the
predicate A. Hence Qnfi = {IO0θi ← IOi}i=1,…,k.

Definition 6: (definite clause inference) Let P be a
program, φ0: Γ ←∆ a formula and C = {c1,..., ck} the set
of clauses of P such that ci: Bi ← ∆i and suppose there
is a substitution θi s.t Biθi = Aθi. Then the application of
the rule of nfi on φ0 w.r.t to the atom A yields a
disjunction of k formulas:

0 0

i 1,...,k i i i i

: (,A) | IO (dci)
V : () | IO=

< φ Γ ← ∆ >
< φ Γ ← ∆ θ ← ∆ >

where, IOi is the specialization predicate of φi w.r.t the
predicate A and Qdci = {IO0θi ← IOi}i=1,…,k. Unlike in
Qnfi, the substitution θi is an existential one (θi
substitutes only existential variables of A) in Qdci.

Definition 7 (folding rule or cutr): Let φ0: Λ ← Π
and θ1: Γ ←∆1, ∆2 be two formulas satisfying the
following conditions: (i) φ1 is obtained (directly or
indirectly) from φ0 by the rule of nfi, (ii) ∆1 is an
instance of Π, i.e., there is a substitution θ such that Πθ
= ∆1, (iii) for any local variable x in Π, xθ is a variable
and does not occur other than in ∆1 and (iii) θ replaces
different local variables of Π with different local
variables of ∆1. Then replace φ1 by φ2:

0 0

1 1 2 1

2 2 2

: () | IO

: (,) | IO (cutr)
: (,) | IO

< φ Λ ← ∏ >

< φ Γ ← ∆ ∆ >
< φ Γ ← Λθ ∆ >

in this case Qcutr = {IO1 ← IO0θ, IO2} defines the
predicate IO1 in terms of IO0 and IO2 where IO0, IO1

J. Computer Sci., 6 (6): 641-647, 2010

644

and IO2 are the associated specification predicates of φ0,
φ1 and φ2 respectively. φ0 thus plays the role of the
induction hypothesis. This important rule allows us to
synthesize recursive predicates.

Definition 8 (Simpification or simp): The rule of
simplification (simp) simplifies the atoms A and B if
there is an existential substitution θ s.t Aθ = B:

:(A, B,)|IO (simp)
' :()|IO'

<φ Γ ← ∆ >
<φ Γθ ←∆ >

and

simp(simp)Q {IO IO'}= θ←

 All the rules are partially correct (Demba et al.,
2005). Substitutions of variables during the
specialization process are stored into the specialization
predicates.

RESULTS

 Let P be a logic program and φ its intended
specification (intended to be true). If M(P)|=φ, then P is
buggy. Our goal is (i) to isolate the set of incorrect
axioms, denoted by C, of P w.r.t φ and (ii) to synthesize
a sub-program, denoted by D, from the proof attempt of
P w.r.t. to φ and (iii) to determine the program P’ =
(P\C)∪D where D is a specialization of C and M(P’) |=
φ.
 Suppose P = (E+ ∪C) and D the synthesized
program during the proof attempt of P w.r.t φ. Suppose
C = {c1,...,cn} and D = {d1, …, dm}, here is the
specialization algorithm Fig. 1.
 Hereafter, we will add clause numbers to
incorporate into Fig. 2 and 3 of clause sequences in
order to clarify which clauses have been resolved with.

Example 1: Consider the program P = (E+ ∪C) where
C expresses that any natural number is odd:

5 1

2
6 2

c :even (s (0)) | (IO ()

c :even (s (n)) ood(n)) | (IO (n)

←

←

together with the intended specification

:even (s(n)) odd(n)φ ←

 It is clear that M(P)|=φ, for example we have
even(0) and odd(0). Therefore, the program P and
specially the sub-program C, covers negative examples.

Fig. 1: Program specialization algorithm

Fig. 2: Specialization of odd (n) w.r.t E+

Fig. 3: Specialization of plus(x, y, Z) w.r.t E+

To fix this problem, we need to specialize the predicate
odd. To do that, assume IO0 is a specialization predicate
of odd associated toφ:

φ: even (s(n)) ← odd(n) | IO0(n)

 Note that we need to synthesize a definite program
D defining the predicate IO0 such that M (E+ ∪D) |= φ
with φ = even(s(n))←IO0(n) and M(D) ⊆ M(C). D is
initially empty.
 The specialization process of C w.r.t E+ is in the
way depicted in Fig. 2. The first step consists to unfold
Á upon the atom odd (n) using the rule of nfi to obtain
the following resultants:

5 1

2
6 2

c :even (s (0)) | (IO ()

c :even (s (n)) ood(n)) | (IO (n)

←

←

J. Computer Sci., 6 (6): 641-647, 2010

645

and IO0 is defined in terms of IO1 and IO2 in Qnfi as
follows:

0 1

0 2

IO (0) IO ()
IO (s(n)) IO (n)

←
←

 The clause c5 corresponds to a negative example as
M(E+) |= even (s(0)), then its associated specialization
predicate IO1 is set to false and the clause IO0(0)←IO1()
is not included in D:

D = ∅ ∪ {IO0(s(n)) ← IO2(n)}

 We apply again the rule of nfi on c6 upon odd(n) to
get:

()

2
7 3

3
8 4

c : even (s (n)) | IO ()

c : even (s (n)) odd (n) | | IO n

←

←

 The clause c7 corresponds to a positive example,
then IO3 is set to true and:

()() ()
()

()() ()

0 2

2

2 4

D {IO s n IO n

 IO 0

 IO s n IO n }

= ←

←

←

 Next, we unfold c8 using the rule of dci w.r.t c2, to
obtain:

c9: even (s (n)) ← odd (n) | IO5 (n)

and

()() ()
()

()() ()
() ()

0 2

2

2 4

4 5

IO s n IO n

 IO 0
D

 IO s n IO n

 IO n IO n }

 ←

 ←= 

←


←

as c9 is an instance of φ, to complete the proof we can
apply the folding rule (cutr), to obtain:

10 6 c : even(s(n)) even(s(n)) | IO (n)←

and the clause IO5(n) ← IO0(n); IO6(n) is generated.
The formula c10 can be simplified to true, IO6 is then set
to true. The final program D is then:

()() ()
()

()() ()
() ()
() ()

0 2

2

2 4

4 5

5 0

D {IO s n IO n

 IO 0

IO s n IO n

IO n IO n

IO n IO n }

= ←

←

←

←

←

 By eliminating the intermediate predicates a la
Tamaki and Sato (1984), we get the final version:

0

2
0 0

IO (s(0))
D

IO s (n)) | IO (n)

 ←


←

and we have the correct specialization program P’ =
(P\C)∪D of P w.r.t E+ and M(P’) |= φ where φ:
even(s(n)) ← IO0(n) (according to the Proposition 2).
 Note that the clause c3 is automatically removed
and c4 is refined by specialization. The success
sequences of clauses that cover only the positive
examples, E+, are of the following form c4 (c4c2c4)*c3
represented by the Fig. 2. Any other combination of
clauses will cover negative examples, then leads to
failure. From E+, we can induce the finite-state machine
of Fig. 2 that corresponds to the sub-program D.
 The Fig. 2 can be interpreted as follows: the
transition c4 corresponds to the application of the rule
of nfi while the transition c2 corresponds to the
application of the rule of dci. The loop means that
recursive specialization is necessary, that is the
application of the folding rule (cutr) is needed to
complete the process.
 The approach can also be applied to more complex
specification. For example a specification with
existential variables or an original program where the
positive examples consist of different predicates as in
the following example.

Example 2: Consider the specification:

φ: plus(x, y, Z), sup(Z, x)←nat(x), nat(y)

where the predicates sup, nat and plus are initially
defined as usual by the program, say P = (E+ ∪C):

1

2

3

4

c : sup(s,(x),0)

c : sup(s,(x),s(y)) sup(x, y)
E

c : nat(0)

c : nat(s(x)) nat(x)

+

 ←


←


←
 ←

J. Computer Sci., 6 (6): 641-647, 2010

646

5

6

c : plus(0,x,x)
C

c : plus(s(x), y,s(z)) plus(x, y,z)

 ←


←

sup(x,y) means that x>y, plus(x,y,z) means that z = x+y
and nat(x) is true if x is a natural number. P does not
satisfy its intended semantics φ for x = 0 and y = 0.
Again, to fix the problem the predicate plus has to be
specialized to IO0 that is defined as follows:

0

0 0

IO (0s,(x),s(x))
D

IO (s,(x), y,s (z)) IO (x, y,z)

 ←


←

 Surprisingly, D is a specialization of C and
M(K∪D) |= (sup(z, x) ← IO0(x, y, z)). Comparing C and
D, we can say that the error was in the first clause of C,
i.e., the underlined arguments. The correct program P’ is
then:

sup(s,(x),0)
sup(s(x),s(y)) sup(x, y)
nat(0)
nat(s(x)) nat(x)

←
 ←ε +  ←
 ←

()()

() ()
0

0 0

IO 0,s x ,s(x)
D

 IO s(x), y,s(z) IO x,y,z

 ←= 
←

 The success sequences of clauses that cover only
the positive examples, E+, are depicted by the Fig. 3.
Any other combination of clauses will cover negative
examples, then leads to failure. From E+, we can
induce the finite-state machine of Fig. 3 that
corresponds to the sub-program D.
 From E+, we can induce the finite-state machine of
Fig. 3. The transitions c3 and c4 correspond Fig. 3.
Specialization of plus(x,y,Z) w.r.t E+ to the application
of the rule of nfi and the transitions c5 and c6
correspond to the application of the rule dci. Again to
complete the process, the application of the folding rule
is needed.

DISCUSSION

 Bostrom and Idestam-Alquist (1994; 1999)
presented top down approaches such as the divide-and-
conquer, covering and SPECTRE algorithms for logic
program specialization using unfolding and clause
deletion rules. One of the limitations of those
algorithms is that the divide-and-conquer algorithm
does not work when specializing clauses that define

recursive predicates and the SPECTRE algorithm
cannot synthesize recursive specifications. A bottom-up
approach has been proposed in (Kanamori and Seki,
1986; Ferri et al., 2001; Leuschel and Massart, 2003).
Ballis (2005) claimed that his approach can be applied
as a top down or a bottom up approach. All those
approaches are driven by (a finite set) positive and
negative examples. It is not also clear how they handle
cases when some positive examples are not included in
the specification. Other works have been proposed to
correct faulty specification (Protzen, 1996 Monroy,
2000) and all deal with faulty universally quantified
equations.
 To guarantee that all positive examples are
included in the original program, we have proposed to
represent them not as a set of ground terms but a
recursive program denoted E+. The intended
specification we consider is not limited to Horn clauses
but a first-order formula with universal and existential
variables. The negative examples are not given as input
but discovered during the proof process. Recursive
predicates are synthesized, if needed.

CONCLUSION

 We have presented a new way to specialize logic
programs from positive examples only. With this
approach recursive predicates can be obtained. We have
shown that positive examples can be used for inducing
finite-state machines (success sequences). The failing
sequences could also be exploited by theorem proves to
produce counter-examples as in model checking, by
composing substitutions used for inducing failing
sequences. The presented approach is implemented in
Ocaml and integrated into the interactive proof assistant
SPES (Demba et al., 2005). The contribution of the
study is mainly the use of specification predicates to
specialize an overly general logic program.
 The framework presented here has two major
advantages: (i) The positive examples defined in E+ are
guaranteed to be included both in the meaning of the
original program and of the specialized version. Note
that in (Ballis, 2005; Alpuente et al., 2001; Bostrom
and Idestam-Almquist, 1999), E+ consists of a finite set
of ground atoms and it is not clear how they handle
cases when some positive examples are not included in
the original program. (ii) The specialization process is
performed according to the positive examples only, no
need to negative examples. (iii) It supports reasoning
about specifications whose stat-spaces may be infinite.
 But more works are needed to guarantee the
termination of the procedure. This problem is due by
the fact that the procedure is based on theorem proving
techniques.

J. Computer Sci., 6 (6): 641-647, 2010

647

REFERENCES

Alpuente, M., F.J. Correa and M. Falaschi, 2001.
Declarative debugging of functional logic
programs. Elect. Notes Theor. Comput. Sci., 57:
17-40. DOI: 10.1016/S1571-0661(04)00266-X

Ballis, D., 2005. Rule based software verification and
correction. Ph.D. Thesis, Universidad Politecnica
de Valencia, Spain.
http://hdl.handle.net/10251/1948

Bostrom, H. and P. Idestam-Alquist, 1994.
Specialization of logic programs by pruning SLD-
tree. Proceeding of the 4th International Workshop
on Inductive Logic Programming, Sept. 1994,
Bonn Germany, pp: 12-14.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.42.3200

Bostrom, H. and P. Idestam-Almquist, 1991. Induction
of logic programs by example-guided unfolding. J.
Logic Program, 40: 159-183. DOI: 10.1016/S0743-
1066(99)00017-5

Demba, M., F. Alexandre and K. Bsaies, 2005.
Correction of faulty conjectures and programs
extraction. Proceeding of the 20th International
Workshop on Disproving Non-Theorems, Non-
Validity, Non-Provability (CADE 05), July, 2005,
pp: 17-27.

Ferri, C., J. Hernandez and M.J. Ramirez, 2001.
Incremental learning of functional logic pro-grams.
Lecturer Notes Comput. Sci., 2024: 233-247.

Flener, P. and Y. Deville, 1993. Logic program
synthesis from incomplete specifications. J. Symb.
Comput., 15: 775-805. DOI: 10.1016/S0747-
7171(06)80012-X

Kanamori, T. and H. Seki, 1986. Verification of prolog
programs using an extension of execution.
Proceeding of the 3rd International Conference on
Logic Programming, (LG’86), ACM Press,
London, United Kingdom, pp: 475-489.
http://portal.acm.org/citation.cfm?id=12105

Leuschel, M. and T. Massart, 2003. Inductive theorem
proving by program specialization: Generating
Proofs for Isabelle using Ecce (invited talk).
Proceeding of the Symposium on Logic Based
Program Synthesis and Transformation, Aug. 2003,
Uppsala, Sweden, pp: 1-18.
http://eprints.ecs.soton.ac.uk/8342/

Monroy, R., 2000. The use of abduction and recursion
editor techniques for the correction of faulty
conjectures. Proceeding of the 15th IEEE
International Conference on Automated Software
Engineering, Sept. 11-15, IEEE Computer Society
Press, USA., pp: 91-99.
http://portal.acm.org/citation.cfm?id=786768.7869
77

Protzen, M., 1996. Patching faulty conjectures. Lecturer
Notes Comput. Sci., 1104: 77-91. DOI: 10.1007/3-
540-61511-3_70

Sakurai, A. and H. Motoda, 1988. Proving definite
clauses without explicit use of inductions. Lecturer
Notes Comput. Sci., 383: 11-26. DOI: 10.1007/3-
540-51564-X_52

Tamaki, H. and T. Sato, 1984. Unfold/fold
transformation on logic programs. Proceeding of
the 2nd International Conference on Logic
Programming, July 1984, IEEE Computer Society
Press, USA., pp: 127-138.

