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Abstract: Problem statement: Given an overly general (definite) program P and its intended 
semantics φ (the programmer’s intentions) where P does not satisfy φ, find out a new version P’ of P 
such that  P’ satisfies φ. Approach: We proposed an approach for correcting overly general programs 
from positive examples by exploiting program synthesis techniques. The synthesized program, P’, is a 
specialization of the original one, P. In contrast to the previous approaches for logic program 
specialization, no negative examples were given as input but they will be discovered by the algorithm 
itself. The specialization process is performed according to the positive examples only. A method for 
refining logic programs into specialized version was then proposed. Results: The proposed approach 
was able to correct overly general programs using positive examples. We showed that positive 
examples can also be used for inducing finite-state machines, success sequences, that models the correct 
program. The failing sequences also exploited by theorem proved to produce counter-examples as in 
model checking, by composing substitutions used for inducing failing sequences. Conclusion: The 
contribution of the study was mainly the use of specification predicates to specialize an overly general 
logic program. 
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INTRODUCTION 
 
 Our aim is to present a top-down approach for 
logic program specialization w.r.t the intended 
speciation which is a first-order formula of the 
following form: ∀ x ∃ Y φ ( x , Y )=∀ x ∃ Y Γ ( x , Y ) 
←∆( x ) (or Γ ←∆ for short) where Γ  and ∆ are 
conjunction of atoms. The problem we are interested in 
can be stated as follows:  
 
Given: An overly general (definite) program P = (E+ 

∪C) where E+ is a recursive sub-program defining 
positive examples, C is supposed to be the set of 
clauses defining the overly general predicates (i.e. the 
incorrect component of  P) and the intended semantics 
φ for P (the programmer's intentions) with M(P)| = φ 
where M (P) denotes the least Herbrand model of P.  
 
Find: A definite program D, called a specialization of 
C, such that M(D) ⊆ M(C) and M(P’) |= φ where P’ = 
(P/C)∪D. 
 The program P’ is called a correct specialization of 
P’ w.r.t E+ if M(P’) ⊆ M(P), M(E+) ⊆ M(P’) and   for  
any negative example e−, M(P’) |= e−. 

 Roughly the approach takes an overly general pro-
gram P and its intended semantics φ and tries to 
produce a program P’ that is guaranteed to satisfy the 
specification and therefore does not require verification. 
We outline a top-down method for synthesizing a 
correct and consistent logic program P’ that satisfies the 
given specification. Moreover, the negative examples 
E− correspond to ground atoms that are not deducible 
from P’ and are automatically discovered during the 
specialization process. 
 For example, assume we are given the overly 
general program P = (E+ ∪C) where: 
 

2

even(0)
E

even(n)even(s (n))
+  ←

 ←
 

 
and  
 

len([],0)
C

len(x,n)len([a | x],s(n))
←

 ←
 

 
and its intended specification: 
 

:even (n) len (x,n)φ ←  
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supposed to establish the claim “if n is the length of list 
x, then n is even”. 
 For this specification P is false as we discover 
while attempting to prove it, for example there are 
particular values of the list x that generate negative 
examples: It is the case where the number of elements 
in x is odd and  the negative examples even (s2k+1(0)) 
k = 0,..,n will be generated (s is the successor function). 
But with the specialized version D of C, the new 
program P’ = (P\C)∪D satisfies φ up to renaming the 
predicate len by len2 that is defined as follows: 
 

2

len 2 ([],0)
D

len2[a,b | x],s (n)) len2(x,n)
←+ 
←

 

 
 The new predicate len2 is called a specialization 
predicate of φ w.r.t the predicate len. The proposed 
method consists to synthesize D. 
 Throughout the study, Γ, ∆ and Λ denote 
conjunctions of atoms; φ denotes the intended 
specification (a first-order formula); A and B denote 
atoms and θ denotes substitution. In all formulas, 
existentially quantified variables are distinguished from 
universal variables by giving them upper-case letters. A 
program is a set of definite clauses, denoted by 
calligraphic letters: P, Q,.... 
 

MATERIALS AND METHODS 
 
Let C be a conjunction of atoms. Then µ(C) = ∅ if C is 
the predicate true and the multi-set of the atoms of C 
otherwise. 
 
Definition 1: A conjunction of atoms C1 is a 
specialization of (or is syntactically less general than) a 
conjunction of atoms C2 (denoted 1 2C C≺ ) with a 
substitution θ iff µ (C2θ) ⊆ µ (C1) (Flener and Deville, 
1993). 
 For example, suppose C1 = p(a, x)∧q (y), C2 = 
p(v,w) and θ = {v/a, w/x} we have 1 2C C≺ . Indeed, µ 
(C2θ) = {p (a, x)} and µ(C1) = {p (a, x),q(y)}.  
 The following definition expresses the relation of 
generality between two horn clauses. 
 
Definition 2: A definite clause A←∆ is represented by 
a couple of elements (A, ∆). A clause (A1, ∆1) is a 
specialization of a clause (A2, ∆2), denoted (A1, ∆1) ≺  
(A2, ∆2), with a substitution θ iff (i) µ(A2θ)⊆µ(A1) and 
(ii) µ(∆2θ) ⊆ µ(∆1). 
 For example for (A1,∆1) = (r(a, x, y), {p(a, x) 
q(y)}) and (A2, ∆2) = (r(v,w, y), {p(v,w)}), we have 

( ) ( )1 1 2 2A ,  A ,   ∆ ∆≺ with the substitution θ = {v/a, w/x} 
as µ(A2θ) = {r(a, x, y)} and µ(∆2θ) = {p(a, x)}. 
  
The following definition expresses the relation of 
generality between two logic programs.  
 
Definition 3: Let P1 and P2 be two definite logic 
programs, {c1,…, cn} the set of clauses of P1 and 
{d1,…, dm} the set of clauses of P2. P1 is a 
specialization of P2 (denoted 1 2P P≺ ) iff for all 1≤ i≤n, 
there exists 1≤j≤m s.t. i jc d≺ . 
 
Example: Let P1 and P2 be two definite programs: 
 

2

1
1

2

c p(s,(0),(0)
P :

c : p(s (x) s(y)) P(x, y),q(y)

 ←


←
 

 
1

2 2

2
3

d :p(0,0)

P : d : p(s (0),0)

d : p(s (x),s(y)) p(x, y)

 ←
 ←
 ←

 

 
 Then P1 is a specialization of P2 as c1 ≺ d2 and 
c2 ≺ d3. 
 
Definition 4 (Specialization predicate): Let P1 and P2 
be two definite programs defining the predicates p1 and 
p2 respectively. If P1 is a correct specialization of P, i.e., 
p1 ≺ p2, w.r.t the intended specification φ, then p1 is 
called a specialization predicate of p2 w.r.t φ. 
 
Proposition 1: Let φ: Γ ←∆, p2 be the intended 
specification of the program P. If p1 is a specialization 
predicate of φ with respect to the predicate p2, then we 
have M(P∪P1) |= ((Γ, ∆, p2)←p1) where P1 defines the 
predicate p1. 
 
Proposition 2: If p1 is a specialization predicate of φ 
with respect to the predicate p2, then the two formulas 
(1) and (2) are equivalent: 
 

2 1( p ) pΓ ← ∆ ←  (1) 
 

1,PΓ ← ∆  (2) 
 
Proof: It is easy to see that the formula (1) is equivalent 
to: 
 

2 1,p pΓ ← ∆  (3) 
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 Moreover, if p1 ≺ p2, (p2 ← p1) is a theorem There-
fore, the formula (3) is equivalent to: 
 

1,pΓ ← ∆  (4) 
 
 For example, the formula (even (n)←len(x,n), 
len2(x, n)) is equivalent to even(n)←len2(x, n). 
 
Notation 1: Hereafter and for the sake of simplicity, the 
notation <φ|p> stands for <φ←p>. 
 In the definitions 5-8, we define the semantic 
calculus that allows given P and its intended 
specification φ such that P is faulty w.r.t φ, to find P’ 
such that P’ satisfies φ. 
 
Transformation rules: The algorithm applies the 
transformation rules unfolding, folding and 
simplification (Sakurai and Motoda, 1988). Intuitively, 
unfolding is an extension of SLD-resolution and folding 
applies the induction hypotheses. Indeed, whereas an 
unfold step replaces a term that “matches” the 
conclusion of a definition in the program by the 
corresponding hypothesis, a folding step replaces a 
conjunction of atoms that match the hypothesis of an 
induction hypothesis by the corresponding conclusion.  
 There are two kinds of unfolding rules: The 
negation as failure inference (nfi for short) that replaces 
a predicate call, at the right hand side, by the 
corresponding body and the definite clause inference 
(dci for short) that replaces a predicate call, at the left 
hand side, by the corresponding body (Sakurai and 
Motoda, 1988).  
 To specialize the original program, it is vital to 
keep trace of substitutions in the specialization 
predicates, denoted IO (for Input Output). Therefore 
each transformation rule is associated with a procedure 
construction of the corresponding specialization 
predicates. The application of an unfolding rule on a 
formula φ0 generates a finite set of formulas φi, i = 
1,...,k, such that φ0 follows from the φi’s in the least 
Herbrand model of the program under consideration. 
Each formula φi is associated with a specialization 
predicate, as it can be an overly general clause and 
defined by a program, noted QR where R is the applied 
rule. If φi is trivially true, its associated specialization 
predicate, IOi, is set to true. If φi is trivially false 
(covers only the negative examples), then its associated 
specialization predicate is set to false and in this case all 
clauses containing this predicate will not be included in 
the synthesized program D. The process is iterated until 
all the formulas newly generated are trivial. The 

arguments of the input output predicate IOi are those 
that appear in the corresponding formula φi. 
 The folding rule (cutr for short) is necessary for 
synthesizing recursive predicates.  
 
Definition 5 (negation as failure inference): Let P be 
a program, φ0: Γ ←∆, A a formula and C = {c1,...,ck} 
the set of clauses of P such that ci : Bi ← ∆i and suppose 
there is a substitution θi s.t Biθi = Aθi. Then the 
application of the rule of nfi on φ0 w.r.t to the atom A 
yields a conjunction of k formulas:  
 

0 0

i i i i i 1,...,k

: ( ,A) | IO (nfi)
: ( , ) | IO =

< φ Γ ← ∆ >
< φ Γ ← ∆ ∆ θ >

 

 
where, IOi is the specialization predicate of φi w.r.t the 
predicate A. Hence Qnfi = {IO0θi ← IOi}i=1,…,k. 
 
Definition 6: (definite clause inference) Let P be a 
program, φ0: Γ ←∆ a formula and C = {c1,..., ck} the set 
of clauses of P such that ci: Bi ← ∆i and suppose there 
is a substitution θi s.t Biθi = Aθi. Then the application of 
the rule of nfi on φ0 w.r.t to the atom A yields a 
disjunction of k formulas: 
 

0 0

i 1,...,k i i i i

: ( ,A ) | IO (dci)
V : ( ) | IO=

< φ Γ ← ∆ >
< φ Γ ← ∆ θ ← ∆ >

 

 
where, IOi is the specialization predicate of φi w.r.t the 
predicate A and Qdci = {IO0θi ← IOi}i=1,…,k. Unlike in 
Qnfi, the substitution θi is an existential one (θi 
substitutes only existential variables of A) in Qdci. 
 
Definition 7 (folding rule or cutr): Let φ0: Λ  ← Π 
and θ1: Γ ←∆1, ∆2 be two formulas satisfying the 
following conditions: (i) φ1 is obtained (directly or 
indirectly) from φ0 by the rule of nfi, (ii) ∆1 is an 
instance of Π, i.e., there is a substitution θ such that Πθ 
= ∆1, (iii) for any local variable x in Π, xθ is a variable 
and does not occur other than in ∆1 and (iii) θ replaces 
different local variables of Π with different local 
variables of ∆1. Then replace φ1 by φ2: 
 

0 0

1 1 2 1

2 2 2

: ( ) | IO

: ( , ) | IO (cutr)
: ( , ) | IO

< φ Λ ← ∏ >

< φ Γ ← ∆ ∆ >
< φ Γ ← Λθ ∆ >

 

 
in this case Qcutr = {IO1 ← IO0θ, IO2} defines the 
predicate IO1 in terms of IO0 and IO2 where IO0, IO1 
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and IO2 are the associated specification predicates of φ0, 
φ1 and φ2 respectively. φ0 thus plays the role of the 
induction hypothesis. This important rule allows us to 
synthesize recursive predicates. 
 
Definition 8 (Simpification or simp): The rule of 
simplification (simp) simplifies the atoms A and B if 
there is an existential substitution θ s.t Aθ = B: 
 

:(A, B, )|IO (simp)
' :( )|IO'

<φ Γ ← ∆ >
<φ Γθ ←∆ >

 

 
and  
 

simp(simp)Q {IO IO'}= θ←  
 
 All the rules are partially correct (Demba et al., 
2005). Substitutions of variables during the 
specialization process are stored into the specialization 
predicates. 

 
RESULTS 

 
 Let P be a logic program and φ its intended 
specification (intended to be true). If M(P)|=φ, then P is 
buggy. Our goal is (i) to isolate the set of incorrect 
axioms, denoted by C, of P w.r.t φ and (ii) to synthesize 
a sub-program, denoted by D, from the proof attempt of 
P w.r.t. to φ  and (iii) to determine the program P’ = 
(P\C)∪D where D is a specialization of C and M(P’) |= 
φ.  
 Suppose P = (E+ ∪C) and D the synthesized 
program during the proof attempt of P w.r.t φ. Suppose 
C = {c1,...,cn} and D = {d1, …, dm}, here is the 
specialization algorithm Fig. 1. 
 Hereafter, we will add clause numbers to 
incorporate into Fig. 2 and 3 of clause sequences in 
order to clarify which clauses have been resolved with. 
 
Example 1: Consider the program P = (E+ ∪C) where 
C expresses that any natural number is odd: 
 

5 1

2
6 2

c :even (s (0)) | (IO ()

c :even (s (n)) ood(n)) | (IO (n)

←

←
 

 
together with the intended specification 
 

:even (s(n)) odd(n)φ ←  
 
 It is clear that M(P)|=φ, for example we have 
even(0) and odd(0). Therefore, the program P and 
specially the sub-program C, covers negative examples. 

 
 
Fig. 1: Program specialization algorithm 
 

 
 
Fig. 2: Specialization of odd (n) w.r.t E+ 
 

 
 
Fig. 3: Specialization of plus(x, y, Z) w.r.t E+ 
 
To fix this problem, we need to specialize the predicate 
odd. To do that, assume IO0 is a specialization predicate 
of odd associated toφ: 
 

φ: even (s(n)) ← odd(n) | IO0(n) 
 
 Note that we need to synthesize a definite program 
D defining the predicate IO0 such that M (E+ ∪D) |= φ 
with φ = even(s(n))←IO0(n) and M(D) ⊆ M(C). D is 
initially empty. 
 The specialization process of C w.r.t E+ is in the 
way depicted in Fig. 2. The first step consists to unfold 
Á upon the atom odd (n) using the rule of nfi to obtain 
the following resultants: 
 

5 1

2
6 2

c :even (s (0)) | (IO ()

c :even (s (n)) ood(n)) | (IO (n)

←

←
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and IO0 is defined in terms of  IO1 and IO2 in Qnfi as 
follows: 
 

0 1 

0 2 

IO (0)  IO ()
IO (s(n))  IO (n)

←
←

 

 
 The clause c5 corresponds to a negative example as 
M(E+) |= even (s(0)), then its associated specialization 
predicate IO1 is set to false and the clause IO0(0)←IO1() 
is not included in D: 
 

D = ∅ ∪ {IO0(s(n)) ← IO2(n)} 
 
 We apply again the rule of nfi on c6 upon odd(n) to 
get: 
 

( )

2
7 3 

3
8 4 

c :  even (s (n)) | IO ()

c :  even (s (n))  odd (n) |  |  IO n

←

←
 

 
 The clause c7 corresponds to a positive example, 
then IO3 is set to true and: 
 

( )( ) ( )
( )

( )( ) ( )

0 2 

2

2 4

D  {IO s n   IO n

 IO  0

 IO s n   IO  n }

= ←

←

←

 

 
 Next, we unfold c8 using the rule of dci w.r.t c2, to 
obtain: 
 

c9: even (s (n))  ← odd (n)  | IO5 (n) 
 
and 
 

( )( ) ( )
( )

( )( ) ( )
( ) ( )

0 2 

2 

2 4 

4 5

IO s n   IO n

 IO 0  
D  

 IO s n  IO n

 IO n  IO  n }

 ←

 ←= 

←


←

 

 
as c9 is an instance of φ, to complete the proof we can 
apply the folding rule (cutr), to obtain: 
 

10 6 c : even(s(n)) even(s(n)) | IO (n)←  
 
and the clause IO5(n) ← IO0(n); IO6(n) is generated. 
The formula c10 can be simplified to true, IO6 is then set 
to true. The final program D is then: 

( )( ) ( )
( )

( )( ) ( )
( ) ( )
( ) ( )

0 2 

2

2 4

4 5

5 0 

D  {IO s n   IO n

 IO  0   

IO  s n  IO  n

IO  n   IO  n  

IO  n   IO n }

= ←

←

←

←

←

 

 
 By eliminating the intermediate predicates a la 
Tamaki and Sato (1984), we get the final version:  
 

0

2
0 0

IO (s(0))
D

IO s (n)) | IO (n)

 ←


←
 

 
and we have the correct specialization program P’ = 
(P\C)∪D of P w.r.t E+ and M(P’) |= φ where φ: 
even(s(n)) ← IO0(n) (according to the Proposition 2). 
 Note that the clause c3 is automatically removed 
and c4 is refined by specialization. The success 
sequences of clauses that cover only the positive 
examples, E+, are of the following form c4 (c4c2c4)*c3 
represented by the Fig. 2. Any other combination of 
clauses will cover negative examples, then leads to 
failure. From E+, we can induce the finite-state machine 
of Fig. 2 that corresponds to the sub-program D. 
 The Fig. 2 can be interpreted as follows: the 
transition c4 corresponds to the application of the rule 
of nfi while the transition c2 corresponds to the 
application of the rule of dci. The loop means that 
recursive specialization is necessary, that is the 
application of the folding rule (cutr) is needed to 
complete the process. 
 The approach can also be applied to more complex 
specification. For example a specification with 
existential variables or an original program where the 
positive examples consist of different predicates as in 
the following example. 
 
Example 2: Consider the specification: 
 

φ: plus(x, y, Z), sup(Z, x)←nat(x), nat(y) 
 
where the predicates sup, nat and plus are initially 
defined as usual by the program, say P = (E+ ∪C):  
 

1

2

3

4

c : sup(s,(x),0)

c : sup(s,(x),s(y)) sup(x, y)
E

c : nat(0)

c : nat(s(x)) nat(x)

+

 ←


←


←
 ←
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5

6

c : plus(0,x,x)
C

c : plus(s(x), y,s(z)) plus(x, y,z)

 ←


←
 

 
sup(x,y) means that x>y, plus(x,y,z) means that z = x+y 
and nat(x) is true if x is a natural number. P does not 
satisfy its intended semantics φ for x = 0 and y = 0. 
Again, to fix the problem the predicate plus has to be 
specialized to IO0 that is defined as follows: 
 

0

0 0

IO (0s,(x),s(x))
D

IO (s,(x), y,s (z)) IO (x, y,z)

 ←


←
 

 
 Surprisingly, D is a specialization of C and 
M(K∪D) |= (sup(z, x) ← IO0(x, y, z)). Comparing C and 
D, we can say that the error was in the first clause of C, 
i.e., the underlined arguments. The correct program P’ is 
then: 
 

sup(s,(x),0)
sup(s(x),s(y)) sup(x, y)
nat(0)
nat(s(x)) nat(x)

←
 ←ε +  ←
 ←

 

 
( )( )

( ) ( )
0

0 0

IO 0,s x ,s(x)  
D  

 IO s(x), y,s(z)   IO x,y,z

 ←= 
←

 

 
 The success sequences of clauses that cover only 
the positive examples, E+, are depicted by the Fig. 3. 
Any other combination of clauses will cover negative 
examples, then leads to failure. From E+, we can 
induce the finite-state machine of Fig. 3 that 
corresponds to the sub-program D. 
 From E+, we can induce the finite-state machine of 
Fig. 3. The transitions c3 and c4 correspond Fig. 3. 
Specialization of plus(x,y,Z) w.r.t E+ to the application 
of the rule of nfi and the transitions c5 and c6 
correspond to the application of the rule dci. Again to 
complete the process, the application of the folding rule 
is needed. 
 

DISCUSSION 
 
 Bostrom and Idestam-Alquist (1994; 1999) 
presented top down approaches such as the divide-and-
conquer, covering and SPECTRE algorithms for logic 
program specialization using unfolding and clause 
deletion rules. One of the limitations of those 
algorithms is that the divide-and-conquer algorithm 
does not work when specializing clauses that define 

recursive predicates and the SPECTRE algorithm 
cannot synthesize recursive specifications. A bottom-up 
approach has been proposed in (Kanamori and Seki, 
1986; Ferri et al., 2001; Leuschel and Massart, 2003). 
Ballis (2005) claimed that his approach can be applied 
as a top down or a bottom up approach. All those 
approaches are driven by (a finite set) positive and 
negative examples. It is not also clear how they handle 
cases when some positive examples are not included in 
the specification. Other works have been proposed to 
correct faulty specification (Protzen, 1996 Monroy, 
2000) and all deal with faulty universally quantified 
equations.  
 To guarantee that all positive examples are 
included in the original program, we have proposed to 
represent them not as a set of ground terms but a 
recursive program denoted E+. The intended 
specification we consider is not limited to Horn clauses 
but a first-order formula with universal and existential 
variables. The negative examples are not given as input 
but discovered during the proof process. Recursive 
predicates are synthesized, if needed. 

 
CONCLUSION 

 
 We have presented a new way to specialize logic 
programs from positive examples only. With this 
approach recursive predicates can be obtained. We have 
shown that positive examples can be used for inducing 
finite-state machines (success sequences). The failing 
sequences could also be exploited by theorem proves to 
produce counter-examples as in model checking, by 
composing substitutions used for inducing failing 
sequences. The presented approach is implemented in 
Ocaml and integrated into the interactive proof assistant 
SPES (Demba et al., 2005). The contribution of the 
study is mainly the use of specification predicates to 
specialize an overly general logic program. 
 The framework presented here has two major 
advantages: (i) The positive examples defined in E+ are 
guaranteed to be included both in the meaning of the 
original program and of the specialized version. Note 
that in (Ballis, 2005; Alpuente et al., 2001; Bostrom 
and Idestam-Almquist, 1999), E+ consists of a finite set 
of ground atoms and it is not clear how they handle 
cases when some positive examples are not included in 
the original program. (ii) The specialization process is 
performed according to the positive examples only, no 
need to negative examples. (iii) It supports reasoning 
about specifications whose stat-spaces may be infinite. 
 But more works are needed to guarantee the 
termination of the procedure. This problem is due by 
the fact that the procedure is based on theorem proving 
techniques. 
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