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Abstract: Problem statement: When the loads are applied to a brickwork structure, visco-elastic 
behavior upon their stress-strain relationships is exhibited, where the response can be classified into 
two separate parts: an instantaneous elastic strains and time-dependent creep strains. The creep strain 
represents the non- instantaneous strain that happens with time when the stress is sustained. Through 
the previous century, along with the alter in brickwork construction, A chain of creep tests on 
brickwork has shown that creep in brickwork be able to result in deformation that rise gradually with 
the way of time. Brickwork has considerable creep strain that is complicated to predict because of its 
reliance on several unrestrained parameters (e.g., relative humidity, time of load application, stress 
level). Dependable and precise prediction models for the long term, time-dependent creep deformation 
of brickwork structures are required. Artificial Neural Network (ANN) models have been determined 
useful and efficient especially in such problems for which the characteristics of the processes are 
difficult to describe using numerical models. Approach: This study introduces a creep prediction 
model based Focused Time-Delay Neural Network (FTDNN) which could detect and consider within 
its architecture the time dependency which is major factor in creep deformation in brickwork structure. 
Results: Performance of the proposed FTDNN model was examined with experimental creep data 
from brickwork assemblages collected over the last 15 years. Results showed that the FTDNN model 
has a relatively small prediction error compared to the other models with the error less than 15%. 
Conclusion: The results showed that the FTDNN model outperformed the existing ANN models and 
significantly enhance the accuracy of creep prediction. 
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INTRODUCTION 

  
 When the load is applied on a quasi-brittle 
materials (e.g., concrete and masonry), the quasi-brittle 
materials shows elastic deformation/strain, then 
followed by a slow additional increase of deformation 
with time. This slow increase of deformation is known 
as creep, which was discovered in 1907 by Hatt (1907). 
However, when the load is applied, an instantaneous 
elastic strain ε(t0) occurs at the time of load application 
t0, can be defined in this equation:  
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Where: 
σ = The applied stress 
E(t0) = The modulus of material at the time of load 

application, then the creep strain εcr(t, t0) occurs 

between the load application time t0 and the 
time t  

 
 The ratio of the creep strain to the elastic strain is 
called the creep coefficient φ(t, t0):  
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 Moreover, creep strain (at any time) can be 
separated into a basic creep and drying creep 
component. The basic creep occurs if the creep strain 
under sealed conditions or if there is no moisture 
exchange with the ambient medium, while drying creep 
is the additional creep experienced when the material is 
allowed to dry while under sustained load, drying creep 
also called the Pickett (1942) effect. The sum of basic 
and drying creep is referred to as total creep. The creep 
of quasi-brittle materials (e.g., concrete and masonry) 
under load has been studied intensively during the past 
century and many theories have been advanced to 
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explain the basic physical process which causes creep 
and relate the creep strains to the microstructure of 
quasi-brittle materials, examples of these theories: The 
mechanical deformation theory, the visco-elastic flow 
theory, the solid solution theory and the seepage theory 
(Hannant, 1968; Morgan, 1974; Neville et al., 1983). 
These theories established the bases for accurate 
modeling of creep. 
 Neville et al. (1983) defined three basic stages of 
creep: primary creep, secondary creep and tertiary 
creep. Primary and secondary creep are those 
commonly observed creep in structures under service 
load, tertiary creep may only happen when the stress 
levels are greater than service load stresses (above 40% 
of the material strength). 
 The issue of creep modeling of masonry structures 
attracted much attention in the research community 
after the collapse of the civic tower of pavia in Italy 
(Binda et al.,1989) without any warning signal, which 
was attributed to local overstressing of structural 
components as a result of combined creep and 
microcraching effects (Binda et al., 1992), the tower of 
pavia is not a secluded case and quite a few other 
famous examples can be referred, such as the collapse 
of San Nicolo Cathedral of Noto in Italy (1996), the 
collapse of the St. Magdalena bell-tower in Goch, 
Germany (1993) and the harsh damage exhibited by the 
bell-tower of the Monza Cathedral in Italy. Also other 
case in the past are comparatively well documented, for 
example the collapse of the spire of Chichester 
Cathedral in UK (1861). 
 However, it is well recognized that creep 
deformations in brickwork masonry structures are 
substantial and could result in significant stress 
redistribution in the structure during its life time 
(Harvey and Lenczner, 1993; Hamilton and Badger, 
2000). Shrive and England (1981) showed that creep 
redistribution of stresses in brickwork wall will result in 
reducing the stress on the vertical mortar joint and 
increasing it on the horizontal bed joint. It has also been 
demonstrated that different creep rates in the materials 
of grouted masonry walls might result in a decrease and 
then an increase in the stress in the masonry brick itself. 
Such stress variation could be detrimental if combined 
with stiffness degradation as a result of aging or fatigue 
(Shrive and Taha, 2003). Masonry creep also results in 
losing more than 20 of the pre-stressing force in post-
tensioned brickwork (Shrive, 1988). Therefore, accurate 
modeling of creep in masonry structures is required for 
efficient structural design of new structures (Schultz 
and Scolforo, 1992) and for a pragmatic evaluation and 
monitoring of historical structures (Anzani et al., 2000; 
Zijl, 1999). 

Conventional creep predicting models: 
Conventionally, several empirical models have been 
utilized in the last 60 years for creep predicting using 
functional mapping mathematics (Brooks and Neville, 
1978; Gardner and Zhao, 1993; Lenczner, 1986). Most 
of these models utilize curve-fitting techniques derived 
for specific experimental data sets and achieved by 
methods of linear and non-linear regression analysis. 
Usually, four typical prediction models used in 
predicting creep in quasi-brittle materials (Neville et al., 
1983), these models are: the logarithmic, the power, the 
hyperbolic and the exponential mathematical models. 
The functional mapping models have limited accuracy 
attributed to the large number of uncertain and inter-
related parameters that affect the prediction process and 
the need for a comparatively large database to establish 
a dependable model. 
 On the other hand, models based on rheological 
models have been developed over the last few decades 
to represent elastic and creep deformations in concrete 
and masonry structures. Where the rheological models 
are mechanical models that contain a group of 
connected spring and dashpots connected in series or 
parallel. Three basic rheological models usually used to 
represent elastic and creep deformations in concrete and 
masonry structures, these models are: Maxwell model, 
Kelvin model and Burgers model, further details are 
provided elsewhere (Neville et al., 1983).  
 Yet, accurate creep prediction models for masonry 
structures are uncommon due to most of the masonry 
design cods worldwide use empirical formula to predict 
creep deformations (Sayed-Ahmed et al., 1998). 
Moreover, most of the presently available models are 
sensitive to changes in the input parameters that 
considerably affect their dependability for structural 
design. Comparisons of some code creep prediction 
models to experimental results showed that most code 
models undervalue the creep strain (Zijl, 1999).  
 
Artificial neural network: Artificial Neural Network 
ANN are networks of many simple processors 
(neurons) operating in parallel, each probably having a 
small amount of local memory. The smallest network 
unit (the neuron) receives its input through a connection 
that multiplies its strength by a scalar weight and adds a 
bias. The sum of the weighted inputs and their weights 
and biases is the argument for a transfer function that 
produces the neuron output. Neural networks can be 
classified into dynamic and static categories. Static 
(feed-forward) networks have no feedback elements 
and contain no delays; the output is calculated directly 
from the input through feed-forward connections. In 
dynamic networks, the output depends not only on the 
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current input to the network, but also on the previous 
inputs, outputs, or states of the network. Dynamic 
networks can also be divided into two categories: Those 
that have only feed-forward connections and those that 
have feedback, or recurrent connections.  
 Two important characteristics of ANN that make 
them valuable for predicting time-series relationships 
such as creep are: 
 
• The ability to learn from examples without prior 

knowledge of the regularities in data 
• The ability to generalize from a previous state to a 

new one by modifying their behavior in response to 
new information. Therefore, they can be suitable 
for time-varying pattern modeling. The advantages 
of ANN based creep prediction modeling against 
the conventional methods have been discussed 
(Taha et al., 2003). Recently, a Recurrent Neural 
Network (RNN) has been developed as a modeling 
technique for predicting creep deformation in 
masonry structures and showed high accurate 
prediction when compared with conventional creep 
models (El-Shafie et al., 2009). This study takes 
masonry creep modeling on step further by 
focusing on a class of ANN known as Focused 
Time-Delay Neural Networks (FTDNN) 

 
Problem statement: Several empirical models have 
been developed within the last few decades to predict 
creep deformation in masonry structures. 
Unfortunately, most of the present conventional creep 
models techniques have not shown sufficient 
performance in predicting creep with acceptable 
accuracy. The aim of this research is to investigate the 
potential of using Focused Time Delay Neural Network 
(FTDNN) in predicting creep deformations of masonry 
structures. The benefit of this model is that the trains of 
the network faster than other dynamic networks, this is 
because the tapped delay line appears only at the input 
of the network and contains no feedback loops or 
adjustable parameters. Moreover, it has been reported 
that this networks is well suited to time-series 
prediction (Demuth et al., 2009). 
 
Dynamic neural networks: 
Focused Time Delay Neural Network (FTDNN): 
Focused Time Delay Neural Network (FTDNN) is a 
straight forward dynamic network, which consist of a 
feed forward network with a tapped delay line at the 
input layer. This is part of a general class of dynamic 
networks, called focused networks, in which the 
dynamic appear only at the input layer of a static 
multilayer feed forward network. 

 
 
Fig. 1: General architecture of FTDNN and single 

neuron calculations 
 
 The basic FTDNN consist of two components: A 
memory structure and non linear associator. The 
memory structure is a time delay line which containing 
the p most recent inputs generated by the delay element 
represented by the operator D, while the associator is 
the conventional feed-forward network. The memory 
structure hold on the relevant past information and the 
associator uses the memory to predict future occasions. 
A particular feature of the FTDNN is that the memory 
structure is focused on the input layer; this makes it 
different from the general Time Delay Neural Network 
(TDNN). A major advantage of the FTDNN is that is 
less complex than the conventional TDNN and has the 
same temporal patterns processing capability. 
Furthermore, the FTDNN can be trained even with the 
standard back-propagation algorithm (Haykin, 1994). 
Figure 1 depicts the general architecture of a FTDNN in 
addition to zooming on the internal structure of a single 
neuron. The case shown in Fig. 1 considers a tapped 
delay line that involves the p most recent inputs. This 
example shows three delay elements represented by the 
operator D. For a case of p delay elements and an input 
variable x(t), the network processes x(t), x(t-1), x(t-
2),… and x(t-p), where p is known as the tapped delay 
line memory length. Therefore, the input signal Si(t) to 
the neuron i (Fig. 1) is given as: 
 

p

i i i
k 0

S (t) w (k)x(t k) b
=

= − +∑  (3) 
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Where: 
wi(k) = The synaptic weight for neuron i 
bi = Its bias 
 
 Then the output of this neuron (Ui) is obtained by 
processing Si(t) by the non-linear activation function 
G( ), which is the most often used form of the sigmoid 
activation function for neuron i: 
 

p

i i i
k 0

U G w (k)x(t k) b
=

 
= − + 

 
∑  (4) 

 

( )
ii S ( t )

1G S (t)
1 e−=
+

 (5) 

 
 The output of the FTDNN, assuming that it has one 
output neuron j, a single hidden layer with m hidden 
neurons and one input variable as shown in Fig. 1, is 
given by: 
 

m

j ji i j
i 1

y (t) F w U
=

 = + α 
 
∑  (6) 

 
Where: 
F ( ) = The transfer activation function of the output 

neuron j (which can be chosen to be sigmoid or 
a linear function) 

αj = Its bias 
wji = The weight between the neurons of the hidden 

layer and the neuron of the output layer 
 
 FTDNN is well suited to time-series prediction. 
One nice feature of the FTDNN is that it does not 
require dynamic back-propagation to compute the 
network gradient. This is because the tapped delay line 
appears only at the input of the network and contains no 
feedback loops or adjustable parameters. For this 
reason, this network trains faster than other dynamic 
networks. However, the major property of the model 
relies on input delay elements at the input layer so that 
the output of the network depends here not only on the 
connection weights and the current input signal, but 
also on the previous states of the network. Therefore, 
the FTDNN may be suit the creep prediction task, 
where in order to predict the current state; previous 
states have to be considered. 
 

MATERIALS AND MATHODS 
 
 An experimental program to examine masonry 
creep has been carried out at The University of Calgary 
for the last 15 years. In this program, the creep 

deformation of masonry prisms subjected to different 
stress levels and the environmental conditions have 
been monitored. The experimental results of one type of 
bricks only are analyzed here for examining the 
potential use of ANN in predicting creep performance 
of masonry structures. 
 
Experimental data analysis: The test apparatus as 
shown in Fig. 2 consist of two prisms held between two 
steel plates with hydraulic ram loading the top plate. A 
steel ball is used to prevent load eccentricity and 
Dywidag bars are used to contain the apparatus. Seven 
fixed DEMEC points are marked on each prism 
creating four gauge length used to measure the creep 
deformation.  The gauge lengths are 250, 250, 50 and 
50 mm, respectively. A series of unloaded prisms 
subjected to similar environmental conditions to their 
counterpart-loaded prisms were also measured at the 
same time intervals. The use of unloaded prisms allows 
accounting for shrinkage and thermal changes. Twelve 
testing groups were included. All the groups have 
similar types of brick and mortar. The brick was a 
standard 190×90×45 mm brick with 2-20 mm circular 
holes two square 40×40 holes. Standard type N mortar 
was used. All masonry prisms were constructed from 
90×190×57 mm standard clay bricks with standard type 
N mortar (1 Portland cement: 1 Lime: 6 Sand). The 
specimens were kept under two environmental 
conditions; the first group was sealed and kept 
continuously  wet  by providing an outer source of 
water to the specimens (RH = 100%), while the second 
group  was  kept  at  the  room  humidity (RM = 40%). 
 

 
 
Fig. 2: Masonry creep testing apparatus 
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Table 1: Summary of experimental data used for training the network 
Group A1 A2 A3 A4 A5 A6 A7 A8 A9 
σ 2.4 4.8 4.8 4.8 1.2 2.4 4.8 2.4 3.6 
t 7.0 7.0 14.0 14.0 28.0 28.0 28.0 28.0 28.0 
RH 40.0 100.0 40.0 100.0 40.0 40.0 40.0 100.0 100.0 
 
Table 2: Summary of experimental data for establishing the model 
Group B1 B2 B3 B4 
σ 4.8 2.4 1.2 3.6 
t 7.0 14.0 28.0 28.0 
RH 100.0 40.0 100.0 40.0 
 

 
 (a) 
 

 
 (b) 
 
Fig. 3: Creep  coefficients versus time for different 

age of loading and stress level (a) relative 
humidity =100%; (b) relative humidity = 40% 

 
All specimens were kept in the laboratory at a 
temperature of 20±2°C. The prisms were subjected to 
different stress levels (1.21, 2.43, 3.61 and 4.86 MPa) 
representing approximately (12, 24, 36 and 48%) the 
prisms compressive strength, respectively. To 
compensate the effect of shrinkage and minor thermal 
effects, strains of unloaded prisms that were subjected 
to similar environmental conditions to their counterpart-
loaded prisms were also recorded. 
 The creep coefficient φ(t, t0) is determined from the 
testing data using Eq. 1 and 2. Figure 3 shows the 
change of the creep coefficient with time for the 
different groups for the tow different Relative Humidity 
(RH) 100 and 40% respectively.  

 
 
Fig. 4: Schematic representation of the FTDNN used 

for modeling creep 
 
 The creep data extracted from experiment on 
structural masonry prisms collected continuously in the 
last 15 years by Shrive and Tilleman (1995) have been 
used for providing the training and testing data sets 
needed for the development of the FTDNN for 
predicting creep. Thirteen experimental testing groups 
were used for training and testing the network as 
presented in Table 1 (9 training groups) and Table 2 (4 
testing groups). As all the experiments were performed 
on specimens of the same size, four parameters only 
were considered for modeling creep: The applied stress 
level (σ), the Relative Humidity (RH), the age of 
loading (t0) and the time at which creep is measured (t). 
 The effect of temperature on creep was not 
examined here. Also, the surface area to volume ratio 
was not considered as a changing parameter, being 
constant for all tests. Preliminary investigations proved 
that the inclusion of constant values representing the 
surface area and the temperature would not have any 
effect on the performance of the ANN. 
 
FTDNN training: The FTDNN for modeling creep 
deformations of structural masonry was developed. The 
network consists of an input layer with four neurons, 
two hidden layers with eight, four neurons respectively 
and an output layer with one neuron. The number of 
hidden layers and neurons for the network are given in 
Fig. 4. One delay for each input has been used meaning 
initially the network would like to see 1 (delay) + 1 
(input) before computing its associated output in the 
respect time series. That is mean, the first layer has 
weights coming from the input with the specified input 
delay, each subsequent layer has a weight coming from 
the previous layer, all layers have biases and the last 
layer is the network output. This process continues in a 
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sequential manner until the entire pulse train is run 
over. The transfer functions used in each layer of the 
network are shown in Fig. 4. The Levenberg-Marquardt 
training criterion was utilized during the learning 
process of the network with a training goal of achieving 
a mean square error MSE of 0.0001 (Haykin, 1994). 
The Levenberg-Marquardt is a quasi-Newton method in 
which the error gradient vector g as presented in Eq. 7 
is computed approximately to speed up the training 
process of the of the network: 
 
 Tg J E=  (7) 
 
where, J is the jacobian matrix including the network 
gradient error and the network error vector E. A 
learning matrix including 47 training sample drawn 
from 10 training groups was used in training the 
network. 
 In order to achieve fast training convergence to the 
target MSE of 0.0001, the input and output data were 
normalized with respect to the corresponding maximum 
values in the input vectors using linear normalization 
functions. The iterative procedure stops after achieving 
a certain objective mean square error MSE, which is 
normally chosen to be the sum of squares of the error 
between the network output (YP) and the desired 
response (YO) on the training data set defined as: 
 

 
n

2
oi Pi

i 1

1MSE (Y Y )
2 =

= −∑  (8)  

 
 The network successfully achieved the target MSE. 
The structure of the network, transfer functions and the 
number of tapped delay line clearly affect the number 
of iterations needed during the training procedure of the 
network to achieve the target MSE. Several learning 
algorithms have been proposed for training FTDNN. In 
practice, Levenberg-Marquardt is faster and finds better 
optima for a variety of problem than other methods for 
training. The FTDNN model successfully achieved the 
target MSE after 48 iterations. The number of iterations 
also represents the time needed for the network 
training. 
 

RESULTS 
 
 The FTDNN was tested using a matrix of 80 
samples drawn from the four testing groups presented 
in Table 2. These groups were not used in training the 
network. The FTDNN model was used to predict the 
creep coefficient φ(t, t0). Comparison of the creep 
coefficient as predicted by the FTDNN model versus 
the creep coefficient determined experimentally is 
presented in Fig. 5. To assess the efficiency of the 
FTDNN model, the predicted  creep  compliance  J(t, t0) 

 
 (a) 
 

 
 (b) 
 

 
 (c) 
 

 
 (d) 
 
Fig. 5: Samples of creep prediction using FTDNN 

model versus measured creep coefficient φ(t, t0), 
(a) testing Group 1; (b) testing Group 2; (c) 
testing Group 3 and (d) testing Group 4 
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 (a) 
 

 
 (b) 
 

 
 (c) 
 
Fig. 6: FTDNN, RNN and M. Burger models for 

predicting creep compliance 
 
Was calculated and was compared to the measured 
creep compliance. Comparison between the predicted 
versus measured creep compliance are visually 
presented using the 45° line of graph and to deviation 
lines the ±15% deviation from the 45° lines as shown in 
Fig. 6. The network with prediction falling between the 
dashed lines represents prediction accuracy within 15%. 
To examine the difference between FTDNN model, 
RNN model and creep prediction models developed 
using curve-fitting technique, the experimentally 

measured creep was also compared to the modified 
Burgers model as presented in Eq. 9 and 10: 
 
 0.3 Rt

0(t, t ) R t (1 e )−φ = + −  (9) 
 
 6

0R 0.112 3.35 10 E(t )−= − ∗ ∗  (10) 
  
It can be observed from Fig. 6a that the FTDNN 
model  was  able  to  predict creep compliance within 
±15%, while the modified Burgers model was not able 
to achieve similar level of accuracy as shown in Fig. 6c. 
The accuracy of creep compliance prediction of the 
FTDNN model was also compared to the accuracy of 
creep compliance prediction using RNN model (El-
Shafie et al., 2009). The RNN model used for 
comparison includes feedback connections from its 
hidden layers neurons back to its input (Elman RNN), 
in addition to the feed-forward network includes three 
hidden layers that have 8 neurons in the first hidden 
layer, 6 neurons in the second hidden layer and 3 
neurons in the third hidden layer. Creep prediction 
using RNN model for the same input data is shown in 
Fig. 6b. 
 

DISCUSSION  
 
 The results showed that the use of FTDNN 
significantly improves the accuracy of creep prediction. 
This might be attributed to the architecture of FTDNN 
which can detect and consider the time dependency 
which is major factor in creep deformation in masonry 
structure. The performance of the RNN model was 
comparable to that of the FTDNN model, where both 
models having much butter accuracy than the 
conventional functional mapping models. However, 
FTDNN model still has the advantage of faster training 
process that makes it more robust and reliable than 
RNN model.  
 
Statistical analyses: The statistical comparisons 
between predicted and measured creep for the three 
models were performed by determining the Prediction 
Error (PE) which measures the average squared error 
between the predicted creep obtained from the model 
and the factual measured creep. The Prediction Error 
(PE) is determined as shown in Eq. 11: 
 

 
m

ti pi
i 1

1PE (y y )
m =

= −∑  (11) 

 
Where: 
ypi = The predicted value 
yti = The experimentally measures value 
m = Represents the number of samples in each 

testing group 
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Table 3: Prediction Error (PE) between predicted and experimentally 
measured creep 

Model Prediction Error 
 ----------------------------------------------------------------- 
 Group 1 Group 2 Group 3 Group 4 
FTDNN 0.03 0.012 0.002 0.067 
RNN 0.117 0.051 0.195 0.092 
M.Burger 0.133 0.699 0.509 0.748 
 
 Prediction errors for the FTDNN model, the RNN 
model and the modified Burgers model are listed in 
Table 3. It is obvious from Table 3 that creep 
predictions models using ANN have a smaller 
prediction error and consequently higher accuracy than 
classical creep prediction models using conventional 
regression analysis (modified Burgers model). More 
particularly, the accuracy of the FTDNN model is 
obviously higher than that one developed using RNN. 
 

CONCLUSION 
 
 While accurate prediction of creep deformations is 
required to increase the level of confidence in 
serviceability analysis, it is obvious that high level of 
accuracy cannot be achieved with classical curve-fitting 
techniques because of the large uncertainty in the 
analysis. Therefore, the use of artificial intelligence is 
necessary to increase the level of accuracy in predicting 
creep. A model to predict creep deformations of 
brickwork structures using artificial intelligence has 
been developed. The model utilizes Focused Time 
Delay Neural Network (FTDNN). The model capability 
to predict creep of masonry is compared with other 
model utilizes Recurrent Neural Network (RNN), 
includes feedback connections from its hidden layers 
neurons  back to its input in addition to the feed-
forward network, recently developed by the co-authors 
(El-Shafie et al., 2009). The Statistical analysis of the 
FTDNN model showed that the model has a 
comparatively small prediction error compared to the 
RNN model and M. Burger model. 
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