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Abstract: Problem statement: Mathematical modeling of different natural and teichl objects and
processes is one of the most important directibas needs high performance computing with huge
memory.To reduce the computational time and expenses we te carry out the calculations on
specialized subunitsApproach: We described a self-organizing approximation methend
introduced a new methodology of structural synthedispecialized parallel processing subunits for
realizing a group method of data handling algorghResults: The design procedure of the parallel
subunit in addition to the selection of the compgtiunits for this device has been introduced.
Conclusion/RecommendationsThe Group Method of Data Handling proved to be tedfective to
solve small and medium-sized problems with contirsuoutput.lt was tested on wide range of
artificial and real-world problems.
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One of the most common problems in engineering
design and control is the problem of mathematical
modeling. Consider the object under investigatisn a\Where:
“pblack box” with several input variables (inputshda  X(X1.Xz,....Xv) = The vector of the input variables
one output variable (output). The purpose of modeli A(as, &,..., a) = The vector of the summands
is to find some means of predicting the value outpu coefficients
any values of input, based on a set of learning.dat

One of f[he methods_ of the mathematical modeling |, ¢ jterative multilayered GMDH algorithm the
used for this purpose is the Group Method of Datgieration rule remains unchanged for all sequemse,
Handling (GMDH) (Ivakhnenko, 1971; Farlow, 1984; ghown in Fig. 1, the first layer tests the modbk tan
lvakhnenkoet al., 1994; Dolenket al., 1996). be derived from the information contained in any tw

There were many papers published and severglyjymns of the sample. The second uses information
books devoted to group method of data handling ang¢.om four columns, the third from any eight columns
its applications. GMDH can be considered as furthepng so forth. the exhaustive-search terminatios sl

propagation of inductive self-organizing methods tothat in each layer the optimal models are seleyetthe
the solution of more complex practical problemsminimum of external criterion e.g.

(lvakhnenko and Ivakhnenko, 1995). Most of GMDH

algorithms use the polynomial reference functions. i

This method involves sorting, that is successiveg; =" (y5 -vy,)’/m (1)
testing of models selected out of a set of candidat =

models according to specified criterion. Nearly all

known GMDH algorithms use polynomial support Where:

functions. General connection between input andgl = Selection criterion for kP> description of the

output variables can be found in the form of funcl first layer

Volterra series, whose discrete analogue is knosvn &2, = The value of the function f(x,) on ofn point
the Kolmogorov-Gabor polynomial (Madala and initial the experimental data m-number of testing
Ivakhnenko, 1994): points
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Noomoom % B X X Xa criterion. (Accurate choice of the criterion is aexte
l i l l l l i l problem.) However, it is clear that full testingr fa
- - ‘ problem with many inputs and a wide set of a basis
: 1 - ; functions is practically impossible, as it wouldeaoo
’ much time and it would require too much computer
\ ‘ ‘ First selector | memory, to reduce computational expenses, one ghoul
v l Vo l ¥ reduce the number of basis functions (and the numbe
v of input variables), which are used to build thsted
models. To do that, one must change from one-stage
S S S oo vl procedure of model selection to a multi-stage

l i l i l l procedure. _ _ _
IR | ] | Let us tgke two input variables an.d let us_comblne
. ; - - a set of basis functions. For example, if we dengiet
! i 5 i \l ) variables as xand x, let the set of basis functions be
\ ,  Secondselector ) \ {1,x1,%2, X1.X2}.(1 corresponds to constant bias and
W7 l Vi l W7 1 must be always included in the set). Now we chéfek 2
1=15 possible models and choose one that is the bes
(Any one of the tested models is often called phirti
description or PD). After that, we take anotherr i
I g input variables and repeat operation, resultingrie
l | more PD with its own value of criterion. Doing the
| i—‘ same for each possible pair of n input variables, w

- we g ma -
vy Vi vs ¥

obtain n*(n-1)/2PDs, each with its own value of the

)';“7‘

b

=N
| used criterion.

‘ e ‘ Then we compare these values and choose several
{ PDs which give better approximation for the output
y = £1. X0

variable. Usually we select a pre-defined numbef F
best PDs that must be preserved at the next step of
algorithm.
Fig. 1: Multilayered iteration algorithm The values predicted by the preserved PDs (Called
Survivors), serve at the next iteration as inpuialde
MATERIALS AND METHODS along with initial input variables of the whole sys.
All the described actions are repeated again whith t
Basics of the method:The idea of GMDH is the broadened set of input variables and then the next
following: we are trying to build an analytical fotion  iteration goes, and so on.
(called "model”) which would behave itself in sueh This method involves sorting, that is successive
way that the predicted value of the output wouldabe testing of model selected out of a set of candidate
close as possible to its actual value. For manymodels according to a specified criterion. Neary a
applications such an analytical model is much moré&nown GMDH algorithms use polynomial support
convenient than the “distributed knowledge” functions.
representation that is typical for neural network
approach. GMDH algorithms realization: A parallel computing
The most common way to deal with such problemcan be implemented for realizing all algorithmsttha
is to use linear regressing approach. In this aggro have multilayered structures and many different
first of all we must introduce a set of basis fimas.  multiprocessor systems were designed such as multi-
The answer will then be sought as a linear comluinat section and two-section pipeline architectures
of the basis functions. For example, powers of inpu(Dmitrienko et al., 1998). To get the greatest gain in
variables along with their double and triple cross-productivity of the pipeline systems, in this woikjs
products may be chosen as bases functions. recommended to carry out calculations in specidlize
To obtain the best solution, we should try all processing units (subunit) by entering in ALU ste
possible combinations of terms and choose thosehwhi additional hardware, multiplication units, divisionits,
give best predictions. The decision about qualify o addition units, subtraction units and cache menidng
each model must be made using some numeritunction of each subunit is determined: Each ofrthe
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forms on each' (i>1) layer a system of Gauss —

1
equations for all learning subsample points that ar Ye™ Zym(xm'xm)
represented as:
. : : : ) ) ypd=— Z (qu’XZq
ylpl,...pd: all)’ p1,...pd+a1' p1 pdly_lp]?_ a 2 p1,...py1 pt F
j ’ i1y 4 i1 i (2) ) ) L.
ay pl,..-de ZI%{: Ki.pL,....pdY pkY pj VoY 5 = zypkl(xlq’ Y L(x @hki=Lm sk (5)
Where: .
i = Points to the selection layer Zy(xlq, 20Y (X 19X 2) (6)
Yea.0=1,q = The best partial descriptions ﬁ‘-l)
layer -
8y 1. parBapr = Definable coefficients YoY Y p1 = Zypk(xlq,xzﬂ)y (X1 X 2V X X 2 (7)
Conditional Gauss equations on the learning— 1 .m -
P, YorY oY paY pa :*Zy ok (X 19X 29"y
subsample pointsy,,x,,%,,i=i,m for Eq. 2 could be m& (8)
written as:

yipl,...,pd(x 12X 2) =d o, pl p&" a 1,p1, ooo,;é_l pgx 1X )ﬂ' T
Zzak] pl,..., pdy (Xll’x Zj)y (X 11X 2)

k=1 j=1
sk

. L ) 4
ypl,,,,,pd(x 12X 2) =a 0.p1.,..,p&+ al1,p1,000,pdy pl(x mX 2n)+ ot

d d . i -
Zzalkj,pl ..... deplk (X 1m X 2n*)y plj (X im X

k=1 j=1
j<k

®)

2n)

wherem=>d+ ¢ +1, C2-combination of d by 2.
From the equation system (3) with>d+d +1
we got a system of normal gauss equations:

y

- _ d d
=a,+ @ Yt .t A Yt ZZ

|/\ u

d d
yypl a yp1+ a’lyplyp2+ o+ adypdyp ZZ aijypkypjyp

1

|/\ H

(4)

prdypd+ alyp]ypty p&'- T adypdy py p-éi-

33 8y

k=1 j=1
Ik

yypdy pd =a

Where:
aO = dU,pl,...pd'a'.lE a1.;)1,...ppd""'

—_ 1 m
=aq2:;l)l(xlq')(2q)

aF B

263

(X1 X20)Y s (X1 X 295X 10X 2)

Solving a system of normal linear gauss Eq. 4 for
each of the partial descriptions (2), we find

B py,.per @ 844 pa,., -COEAfiCiENtS for these

descriptions. Then the produced models estimate the
set of checking subsample points using a selection
criterion (1):

1,pl,...pd """

pl pd — Z(yq

d d

+zzalklpl pdy (qu’XZJyp](quXZQ)f

k= 11_1

Opl pd lpl .....

where, m1l-number of checking subsample points.
We can write the system of normal Gauss Eq. 4 for
the subunit in the following form:

k1l — Ak, ,p(i-1) K (i-1)
=a W+

k2 K\ p(i-1) K AG-1) (10)
=ay; &y,
Where:
NL - -1
Y=Yy, (11)
=1
NL - qi-)
Y=Yy, (12)
=1
N o(i-1)—p(i-
y:[L)(i—l) :Zy?( 1) jp( 1) (13)

=



J. Computer i, 6 (3): 261-268, 2010

o 1 L —p(i-1)—q(i-1)
yie =y 1>=Zl)yj j (14)
=
1) _ A Ca-D=ati-1)
ZARED R (15)

Where

N = Number of learning points

[ = Number of the layer (i>1)

Yi = The value of the function in th& point
of the initial data learning subsample

—p(i-1) —q(i-D)

The values of best partial descriptions
yp(i-l) yq(i-l)

i g

The design of parallel subunit: We must pass from
the formal representations (10-19) of the working
algorithm of the subunit to its parallel tear forwhich
presented by (Voevodin, 1986). Assuming that the
parallel system has five processing elements that
perform binary multiplication, two of them perfonmgj
also the division operation in addition to five pessor
elements that perform the addition and subtraction
operations.

Then we have:

—(@i-1)
yl""' le ! ylmul ! ""yNZmul ’ylp

(1) —()  —() —(-)  —(-1)
YonzmurYqr »oYana oY qrmur - +Y gn2mul

—(i-) —(i-1)
wereYon o Yotmul 1+

Data:

Parallel-tier form:

In the ["point in the initial data on (i-P)layer. Tier1: yy .y, yeR ey
The next important function of the subunit is T e ta LR e prJat 2
solving a system of Eq. 10: Yo Vi
) Ti 2- —(i-1) —(i-1) —(-)—(i-1 —(-)—(@i-1
. ykl _algqu('-l) (16) 1er 2. y2yp2 ’ 2yq2 ’ p2 Yp2 q2 Yp2
8 = yp(i-l) yp(i-l) —(i-1)—(i-1)
1 1 92 7 q2
. —(i-1) () —p(-D=p(-D) (D=1
‘2 yklyp(i—l) Tler 3 y3yp3 1 y3yq3 ! 3 p3 1 p3 yq3 '
y = —(-)=(-D S0 oD SOD=D
a;_ Y1 - (17) q3 Vg3 Y1¥p YoYp2 sees qa Ya
yarn _ ) I
2 p(i-1) a2 Yq2
y
1 TierNL yuy e vy ¥y STy ¥+
After determining the coefficients (16), (17) wetg " le' M e T e 0
the model off selection layer: —(i-1) N2 y—(-) —(-D) —(-D
N1—1yp(N1—1)v---121: yqj qj (Nt 1) q(Nt 1)
X 1=
K _ kT P | —al-1)
y =ay, +dy, (18) . B =) iy B ) =)
’ ‘ Tier N1+1: y§2 ="y, 'y, L YeP =2y, Y
j= j=1
which is evaluated on the checking subsample pbint, Ly
using the following criterion: Tier N1+2: ¢, = y_ , G, =L
y](-I 1) y](-I 1)
p p
] . i (i-1)
5=_1 N, 5=t NZ( ol k*q(i—l))z T?er N1+3: cy5”, ol
‘,\TZ; J‘WZ; Yimu =8 Yimu -~ & Yimu Tier N1+4: c,=k2-c '™, c4= 5. — ¢\, ;"
Tier N1+5: =c/c,
Where Tier N1+6: a;g
N, = The number of checking subsample yih
points Tier N1+7: af=¢-d'5=ck §¢
3, = Square error in the"j point of the Yip
. . ) —(i-1) —(i-1) —(i-1)
checking subsample Tier NI+8: & Yoy & Yoomus-++ @ Ypsmu
Y imul = The valu.e of the functlo.n_(_)f thi point TierN1+9:  at y;'l;>u“ K y221m>u| ol yq'szw Vi~
of checking subsample initial data —(i) LD
721;11:|, 7;.;1:' = The values of the partial descriptions plm”"""ysm“' % Yoom
i-1) —(i-1) —(i-1)
—(-1)  —(i . . Tier N1+10: e , , a
y:J 1), y; D on the T pOInt Of CheCkIng al p6mul p1Omul ylmul lyplmul
(i-1) k(-1 (i-1)
subsample initial data ;yqlmul""’ Ysma ~ 81 Yosmu ~ d;qumul
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the subunit the first (N-1) tiers could be replaced by
two. On the first tier all the multiplication opei@ns
with the help of 5N multiplication units and on the
second performing simultaneous addition of; N
summands.

On the tiers from (W2)™ to the (N+7)"
corresponding to (16), (17) equations, determirfes t

coefficients & , & of (4.9), equations that are synthesis

. . _ (D) —(i-1) \?
Tler N1+11 6:L _(yZmuI_al yplmul_ équlmul) L}
_ k(-1 —(i-1)
65 - (ySmul - al ypSmuI - iZ qumuI) ’
k(-1 (D)
meuI - al ymeul LA lemuI - al yplOmuI
. } k(-1 k(D)
Tier N1+12: a3 Yogmus--+1 85 Yasomu -
k(-1

i —(i-1)
Tier N1+13: yem“f % y"em“'v d;y“ﬁm“"v"" y?om“' on the f'tier of the learning subsample points. On these
A Yoroma = & Yeomar & Yoromur -+ A Vosom tiers not more than two processor elements are, used

) —D however on the (N-2)™ tier performed two division

Tier N1+14: &,,8;,-..010:  Yaamu =21 Yoramuro++s Yasou = operations.

k;,(i_l) On the tiers from (M8)" to the last(end)

prsml » determined the mean-square error for the model ¢h8)

Tier N1+15: & +5,,5,+95,,...,8,+8,, a yf;l_ll)mul,..., the checking subsample points. Forming these tiers

=D assumed that the number of checking subsamplespoint

q15mul

. ] ) —(i-1)
Tier N1+3m+7: YN, -aymut 81 Yo(n, - aymu ~ d; Yo(n,- aymut -

—(i-1) —(i-1)
yNQmul - a; ypszuI - d; qu mul
Tier N1+3m+8: 8 _,, 8y, .-+, 0y,
Tier N1+3m+9: 8, +3+...48, _,+8,+8,+8,_,...,

O +d,+..+ 0y

N, is a multiple of 5 (e.g., N= 5 m, m is an integer).
This is a general assumption, taking into accohat if
N,# 5 m we can use this parallel form of the algorithm
but some of the processor elements that are usid wi
N, =5 m, will not be used.

With N; = 5(m-1) the height of the algorithm of the
parallel form can be decreased by 1 because of
performing a part of addition operations of,88m+9}J"

and (N+3m+10J" tiers on the N+3m+8 tier. We
mention that when it is necessary we can perfoim al
multiplication operations that are related to tteues

of the model (18) on the checking subsample paints
the tiers (N+8)"-(N;+3m+6J" could be performed on

Tier N1+3m+10:5, +85+...+8, _,+08,+8,+3 5,

Oy +85+.. 48y, +8,+3+ .43,

N,
Tier N1+3m+11: 33,
=1

N, one tier, but 2M processor elements are required. With
ZQ the availability of additional N3-input addition units

Tier N1+3m+12:6=% that are necessary for computing the values
2 J3,,1/3,,...4[8, and N.inputaddition unit to produce

N2
RESULTS AND DISCUSSION the s:umZESj the last 3m+5 tiers can be replaced by 5

j=1

The first (N+1) tiers form the equation Systeém tigrg The minimal height of the algorithm parafieim
(10). On the first and second ters, only the fif®0  ith the account of two-tier exchange of the first
summands of the (11-15) equations are computed. Oﬁ\lﬁl) tiers will be 13. But, the load of such system
the N tiers not only corresponding summands arey| pe very small, because of the use of not ntbemn
computed, but also summands from the previous tierg, o processor elements on the seven tiers of the
added. This addition ends on the ;€)™ tier, algorithm.
corresponding to (11-15) equations and produces ™ The numper of addition and multiplication/division
YUYy Vi) = Y5, s, the tiers from third to gperations on each tier for an algorithm oftBm+12
N, have the maximum height of the algorithm heightis shown in Table 1.
parallel form and equal 10 and needs for realifong With N, = N, = 15 we have 36 tiers of the parallel
the algorithm five processor elements, that perform algorithm. On these tiers 240 operations are peéol;
the multiplication operation and five two input 127 multiplication and division operations and 113
addition units. On the first Niers 5N multiplication  addition and subtraction operations.
operations are performed, for performing ;5N From the parallel computing of multiplication and
multiplication operations the initial data only is addition operations follows the necessary of timing
required, so with the best performance requirements both operations using two types of computing desice
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However stands another question about implementing
one or two universal mul/div devices or multipligith
built-in one or two divisors. By entering one digid  \Where:

the number of tiers increased by 1, so the twos@w N, N, = Number of learning and checking subsample

n= N1+§N2+12: N+ Magg

operations on the (N2)-nd tier will be computed points consequently

sequentially. But entering two dividers, one ofrthe n_, = Number of tiers with multiplication operations
will be used only one time on the {\2)-nd tier and the n_,, = Number of tiers which perform only addition
second four tiers. This selection must be basethen operations

requirements to the problem-oriented computing

devices, taking into account both the performanug a On the first N+7 tiers performs 5N6

the cost of the system. In this work we use twomultiplication and division operations and 5{N+3

universal mul/div devices, which need approximatelygddition operations on the tiers from+#8 to n-3N+1

the same time to perform both operations. multiplication and division operations and 2MO0
In this work the largest time needed for addition operations. Ignoring other operations \a@ c

multiplication and addition operations and the #ddi  calculate k., -performance coefficient of the parallel
operations also needs the least time, then thets®le subunit in comparison with serial computers.:

of optimal multiplication devices directly Affecthe

subunit  characteristics. Learning the available

multipliers shows that: Kpe = (5N, + 3N, + 7)3” BN+ 2N, + 8 oy
Learning the available multiplication and division (5N, *s N )T+ 7T 4

units (Kung, 1991; Veshinchouk and Cherkasky, 1990)

shows that the best by the means of performance are

matrix ones (Kung, 1991; Veshinchouk and Cherkasky

1990). So some tiers perform only addition operetio

(Table 1a, b, and c) the best adders are the phoales

And also k,, the load coefficient of multiplier
(multiplier/divider):

(Gex, 1971; Saveliev, 1987). Ko = (5N, + 3N, + 7)t
. . mul
Knowing the timestmu, Tdivs Tadd (Tmul = Tdiv. =T, - 5(N1+§ N2+5)T+ T o
Taa<0.1T) needed to perform the arithmetic 5

operations(multiplication, division and additionh i
parallel subunit, we can evaluate its performance a Sincer,,,<0.1r, then all the addition operations on

the load coefficients of processing units accordiog any tier could be performed by one adder. Anddsll

their functionality a'go”thm-, . coefficient kqq can be calculated by the following
Form parallel-tier algorithm of the subunit and equation:

Table 1a, b, and ¢ we can see that, the compuégtion

units of the subunit have to perform not less tfia@

addition operations at the tinte In this case the total Koy = (BN, + 2N, + 8)t g
number of algorithm tiers n can be calculated by th (Nl+gN2+5)r+7radd

following expression:

Table 1a: the number of Addition, Multiplicationdadivision operations on the tiers 1 tgH¥

Tier/N® 1 2 3 4 . N Ni+1 Np+2 Ni+3  N+4  N+5  Ni+6  Ni+7
Number of mul/div operations 5 5 5 5 5 0 2div) 2 0 1(div) 1 0
Number of addition operations 0 0 5 5 5 5 0 0 2 0 0 1

Table 1b: the number of Addition, Multiplicationcdivision operations on the tierg\8 to N+ 15

Tier N +8 Ni+9 Ni+10 N+11 Ni+12 N+13 N+14 Ni+15
Number of mul/div operations 5 5 5 5 5 5 5 5
Number of addition operations 0 5 5 5 0 5 5 5

Table 1c: the number of addition, multiplicatiordadivision operations on the tiergN3m +6 to N+ 3m + 12

Tier N:+3m+6 N+3m+7 N+3m+8 N+3m+9 N+3m+10 N+3m+11 N+3m+12
Number of mul/div operations 5 0 5 0 0 0 1(div)
Number of addition operations 5 5 5 2 2 1 0
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Table 2: The numerical characteristics of the sitbun

N, 15.000 30.000 100.000 1000.000 15.000 30.000 100.00 1000.000
N, 15.000 30.000 100.000 1000.000 15.000 30.000 100.00 1000.000
Nadd 113.000 218.000 708.000 7008.000 113.000 218.000  8.000 7008.000
Nimui 27.000 247.000 807.000 8007.000 127.000 247.000 .0807 8007.000
N 36.000 60.000 172.000 1612.000 36.000 60.000 00D2. 1612.000
P 29.000 53.000 165.000 1605.000 29.000 53.000 165.00 1605.000
Nadd 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000
Tadd T 0.100 0.100 0.100 0.100 0.050 0.050 0.050 0.050
Kaut 0.872 0.930 0.977 0.998 0.874 0.931 0.978 0.998
Kadd 0.380 0.406 0.427 0.436 0.193 0.204 0.214 0.218
Tser 1383.000 2688.000 8778.000 87077.000 2653.000 5158.000 16848.000 167148.000
Towwic  297.000 537.000 1657.000 16057.000 587.000 1067.000 3307.000 32107.000
Kper 4.657 5.006 5.298 5.423 4.520 4.834 5.095 5.206
Taput Output | Output data and in 20% greater with,q4T = 0.05, so increasing the

needed 10 or 20 addition operations on the time
could be performed by one adder, the final strigctfr

EEEwa ’_LH_‘ the parallel subunit is shown in Fig. 2.

Inputdata | interface ‘1‘ ‘ > interface  =pp» number of parallel multipliers to ten or to twenthe

i

RAM

ﬁ ; CONCLUSION
> z Structural synthesis technique of specialized
—— computing devices by carrying out parallel caldolas
is developed at hardware-software realization df se
,[ Multiplier divider |qg ] organizing algorithms at a level of separate
Control unit mathematical models. This technique can be used for

synthesis specialized computing devices for anywmo
functional-oriented computing systems for data
processing by a group method of data handling.

Fig. 2: Theparallel subunit
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