Journal of Computer Science 6 (3): 253-260, 2010
ISSN 1549-3636
© 2010 Science Publications

UML Diagrams Generator: A New CASE Tool to Construct the Use-Case
and Class Diagrams from an Event Table

Mohammad I. Muhairat, Rafa E. Al-Qutaish and AkramAbdelgader
Department of Software Engineering, Alzaytoonahvdrsity of Jordan,
Airport Street, Amman 11733, Jordan

Abstract: Problem statement: Building UML diagrams is a very important and tim@nsuming task

for both requirements and design phases. Howewsare ©f these diagrams, such as use-case and class
diagrams can be considered as a transition bettheervo phase#\pproach: Through this study, the
event table will be used to derive the use-case cask diagramsResults: A new CASE tool to
automate the proposed approach will be introdutieat, is, the UML diagrams generator (UMLdQ).
Conclusion: It is clearly noted that the proposed CASE tooM({ldig) gives an ideal and reasonable
methodology to construct the intended use-casectss diagrams from any comprehensive event
table. Furthermore, this tool will save the time tlee building process of such diagrams.

Key words. Requirements specification, software design, CA&H, tUML, use-case diagram, class
diagram

INTRODUCTION Building the use-case and class diagrams is a very
important task since it represents a transitiorwbeh
Nowadays, there are many different techniqueshe requirements and design phases. However, bgildi

(approaches) to identify the use-cases, for exasnple such diagrams is a time consuming process and reeeds

complete understanding of the requirements. In this
Listing of all users and define their needspaper, we introduce an approach to derive the ase-c
(Bennettet al., 2005; Larman, 2004; Liang, 2003; and class diagrams from an event table. In additon

Reed, 2001; Schach, 2003) new CASE tool for automating the new approach will
Defining all system functions and adding newbe discussed. The new approach with the new CASE
functions that user may be need (Benrettl., tool will facilitate and speed the generation pescef
2005; Larman, 2004; Reed, 2001; Satzingeal., these diagrams. Taking into account that this aggro
2004; Schach, 2003) will completely depend on the availability of a
List all Graphical User Interfaces that may be usedomprehensive event table which to be built from th
by users (Cockburn, 2000; Larman, 2004) available requirements.

Defining of all users’ goals in using the system

(Chung and Supakkul, 2004; Larman, 2004; Lee MATERIALSAND METHODS

and Xue, 1999; Liang, 2003; Satzingeal., 2004)) _ _
Event table: Since 1980s, the event analysis technique

Many analysts used the fourth approach to get ak¥cMenamin and Palmer, 1984; Yourdon, 1988; Page-

initial list of use-cases. However, the most used’ones, 1999) has been the preferred one of event
approach for defining a use-case model is ever@nalysis during the requirements engineering. The
decomposition technique (Larman, 2004; Reed, 2001r€esults of event analysis are documented in anteven
Satzingeret al., 2004). This technique focusing on table. In the structured approach, event analysis

events a system must respond to and looking at&iow '€cognizes a basic set of processes. While inttject
system responds. oriented approach, each event discourses an essenti

the system (Larman, 2004; Reed, 2001; Satziegalr, = SUPPOTt the use-case diagrams (Purhonen, 2002). In
2004). addition, the event table has been used by Garganti

Corresponding Author: Rafa E. Al-Qutaish, Department of Software Engiimgg Alzaytoonah University of Jordan,

Airport Street, Amman 11733
253

J. Computer i, 6 (3): 253-260, 2010

and Heitmeyer (1999) to generate a suite test Extends: Which is used to determine the existence
sequences. Moreover, Snoeck and Dedene (2001) have of extends relationship between actions
proposed a new form of event table called objeehev « Specializes: Which is used to determine the

table to be a useful technique for modeling inteoac existence of specializes relationship between
between domain object types. actions

Business modeling help analyst to understand the pestination: It is an actor which receives the ftesu
business process. As result of that modeling, legsin of an event execution

events are identified and documented in an evédt.ta
Event table is a list of actions that lists eventsows
and the information about each event in columns. .
Analyst can use event table to define use-case Imodl@'Ith examp!es. However,
and domain class model. However, analyst has teemal€Vents, thatis:

some decisions when building a use-case model. The

first one is to combined business events into cse u ¢ External Events (EE): An event that occurs outside
case. For example, the business events of adding, of the system, usually initiated by external acior
deleting, updating customer information, analysh ca user

combined them in one use-case, that is, Maintain Temporal Internal Events (TIE): An event that

Figure 1 illustrates the three types of eventaiglo
there are three types of

Customer Information. Also, analyst makes decistons happens when the system reaches a specific point
split one business event into multiple use-cases. F in time

example, the business event customer withdraws his conditional Internal Events (CIE): An event occurs
cash, analyst can split it to two use-cases, that i when something happens inside the system and the

Withdraw Cash and Identify Customer and he can gystem must initiate some process to response for
identify the relationship between them, for example
Withdraw Cash<<include>>ldentify Customer.

As a result of this splitting, the traditional ete) _)
table contains the following core elements (colynns ~ USe-case diagram: The system or subsystem behaviors
can be captured by the use-case diagram. Howdeer, t
use-case diagram represents the interaction bettheen

: sEc\)ﬁr:att:hiﬁg event which causes the system to d%\ctors and some functionality (called use-cases). A

) 'e:xctor may be an external person, another software
* Source: The source of an event (an actor for an Es stem, a hardware device, or process interactitly w
and the system for a TIE and CIE) Y ' O P

» Action: The system functionality which we need the system, subsystem or class to achieve a ugedll

» Object: The object affected by this action (Boggs and Bc.)g.gs, 2092; Rumbaugh al., 2004)‘
Actors can participate with one or more use-casas v

exchanging messages.

For the purpose of building a complete use-case An abstract actor description is shared and
model and domain class model, we need to extend ﬂ'@gmented by one or more specific actor descrigtion
traditional table and make some modification totadn that is, an actor can be defined in generalizdtierarchy.
other elements, as the following:

this event

Types of events]

* Input message: For external events, the message i ¥ v ¥
i ; T TTiternal it
data entering the system and for internal evehés, t . . i) ().

message is reaching point in time (timer) that
makes the system process

e General source or special source: It is the type of
an event source which is used to define a

tudent reordere:
books when the

reordered point is

reached

Lxamples

Student wants t . :
Time to print
search for a boo s
ftem book item report

3. Book item-affected
object.

object.
3. Search-action.

the reordered point is

sources

e Output message: It is the output which is produced
by the system, if exist

* Includes: Which is used to determine the existence
of includes relationship between actions Fig. 1: Types of events with examples

254

reached
3. Book item-affected

i
e e e B e

i
'
3 3 Lo .) i E 1. Student-source . Time or 'system'-sourc 1. Student-source
generalization/specialization relationship between | |2 Bookitemuafected | p. Print-action 2. Reordered-action: if

J. Computer i, 6 (3): 253-260, 2010

An actor is denoted as a small stick person with th Attributes are generally used for pure data values
name below it. An use-case is a consistent unit ofithout identity, such as numbers and strings and
externally visible functionality provided by a ctifier ~ @ssociations are used for connections among objects
(called the subject) and expressed by sequences yiith identity. Whereas, the behaviors are _descrme_d
messages exchanged by the subject and one or maigt Of Operations; a method (or function in C++jhis

actors of the system unit (Boggs and Boggs, 2002_mp|ementati0n of an operation. The notation foisess

L S . Is a rectangle with sections for the name of tless|
Rumbaugkhet al., 2004). In addition to association with tributes and operations, as shown in Fig. 2.

actors, a .use-case can part|C|patg n severfﬁ Relationships among class diagram are association,
relat!onsh!ps, Table 1 for the details of thesegeneralization and various kinds of dependency,
relationships. including realization and usage, as shown in Table

Class diagram: A class can be used to represent a RESULTS
discrete concept within the application being medel
in order demonstrate things of a particular kind
(Rumbaughet al., 2004). Also, a class shows a set of
objects with similar structure, behavior and
relationships. Every class contains a set of aiteib
along with the related operations. In addition,lass
defines a set of objects that have states and lhav
The State is described by attributes and #esoiTs.

Deriving the use-case diagram: This process consists
of five steps a use-case diagram, that is:

Identify the actors for each event or action frdw t
sources and destinations

Identify the relationships between actors, if exist
There is only one type of relationship between

actors, that is, a generalization/specialization
Table 1: Use-case relationships relationship

Relationship _Function Notation « Identify the use-cases. The analyst can derive the

Association To indicate the communication - . .
between actors and Use-cases. use-case from the action which proceeded by an

Extend To indicate the insertion of additional <s¢emds>> actor

behavior into a base use-case. e + ldentify the relationships between use-cases, if
Include To describe a behavior that is inserted nelides>> . . .

explicitly into a base use-case. -~ > exists. As we mentioned above, there is three type
Use-case To indicate the communication between-a—> of relationships between use-cases (includes,
generalization features to it. General use-catie wore extends and use-case generalization)

specific use-case that inherits and adds

e Integrate all use-cases and actors with all

S relationships types in one use-case diagram
Table 2: Class relationships

Relationship Function Notation)
Association A connection between objects or classes——> From a given event table we can map the use-cases
Dependency A relationship between two model ~ ------- > and the actors, as in Fig. 3.
elements (class, package) . . .
Generalization A relationship between more specific ———>) However, this mapping could _be 'mplemented
and more general classes using the two types of events, that is, Externatriv
Realization Relationship between a specification -~ > (EE) and Internal Event (TlE ClE) Figure 4 and 5
and its implementation (interface, class) . ! ’ 2
Usage Represents that one element requires <<kind>> illustrate examples of both types, respectively.
another element for its functioning ~ ~=----- >
Event Source Action Object Destination
Order Class name

id: Integer J' J' #

date: Date Attributes ;Ot %

newOrder(): Order
cancel()

Operations Actor Actor

Fig. 3: Mapping the use-cases and actors from antev
Fig. 2: Example of class notation table

255

J. Computer i, 6 (3): 253-260, 2010

. Output .
Event Source | Imput message | Action bu Object

Event Source Action Object Destination message

Student wants to Student searchltem Book Item Student B}
e
ass name

» Attributes

b\

X —C= '
 Operation (g
g

Student

Return ...
Fig. 4: Example of mapping a use-case and acton fro >
an EE
Fig. 6: Mapping a class diagram from an event table
Event Source Action Object Destination
Event Source Input Action Cutput Object
Message Message
Time toprint a System prntBockltam | Bockltem | Library Student wamtsto search for |Student| bookID | semrchftem | bookID Bock Item
Employee a bock item bookName
| ¢
BooklItem
mﬁ bookID
3 =S
Librarv Emplovee searchltem ﬂ:!ukID)
Ly retumbookID
Fig. 5: Example of mapping a use-case and acton fro Bocktame 3
aTIE and CIE
Deriving the class diagram: This process consists of Fig. 7: Example of mapping a class diagram from an
the following five steps to build a class diagram: EE
» Identify the classes for each event or action from Event Sowee | o Action | Owtput Obfeet
the sources and Objects Timito plintalmok System Reachapoint | printBookltem | ------- Book Item
« Identify the relationships between sources and — e ,
objects, if exists. There are many types of Bookliem
relationships between classes as mentioned abowt : :
in Table 2. Our application, by default, will | e
generate association relationship with 1...n }
multiplicity and the analyst will change it manyall
by necessity Fig. 8: Example of mapping a class diagram from a

» ldentify the attributes. The analyst can derive the TIE and CIE
attributes from t he input and output messages
Also, the input messages can be used to define a However, this mapping could be implemented
method parameters list and the output messagassing the two types of events, that is, Externagriv
can be used to define a method return values (EE) and Internal Event (TIE, CIE). Figure 7 and 8
Identify operations which can be directly derived jllustrate examples of both types, respectively.
from an action. Also, in event table, we will write
all actions in an uncomplicated way. For example;The UMLdg CASE tool description: Figure 9 shows
(create, search, cancel) not (maintain) whichthe inputs and the outputs of the UML diagrams
consist of (create, update and delete) generator (UMLdg) CASE tool. However, we can note
* Integrate all classes with all relationships types that the outputs are divided into two distinct typthat

one class diagram is, the event-based use-case and event-based class

diagrams which are to be constructed based on an
From a given event table we can map the classefdividual event and the integrated use-case and
attributes, operations with their parameter listd an integrated class diagrams which to be construcased
return values, as in Fig. 6. on the whole events.

256

J. Computer i, 6 (3): 253-260, 2010

[}

: Event-based use- Event-baszed clas

: case diagram 1 diagram 1

]
1 Event-based use- Event-bazedclas
:'* case diagram 2 diagram 2

]

: Event-based use- Event-based class
1 case diagram 3 diagram 3
[}

1 N
: :
]

]

]

[}

classes diagram s

[Event- based use- Event- based class
case diagramm > diagramn

Evenl-baged Wae-cage and

Integrated class

diagram

Fig. 9: The UMLdg inputs and outputs

1 Dagrams Lavers st

UML Diagrams Genaralor

Bulld Events Table

Build Event Based Use Case Diagram

Generate Use-Case Dlagram

Build Event Based Class Dingram

Generae Class Diagram

Exit

Fig. 10: Snapshot of the UMLdg main screen

Events Table

Event Id: 1

Event: none
Input Message:
General Source:
Special Source:
Action:

Object:

Output Message:

Includes Action:
Extends Action:
Specialization Action:
Destination:

[Event Input Message General SourceSpecial Source Action __ Object _ Output Message Includes Action Extends Actic

none
Patron want to { bTitle Patron Wember NonH{searchBod Book | bTitle bAuthor,{ View result |
Patron browse { bISBN Patron Wember NonH{browseBo{Book | bISBN.bTitle | View result |
Pation logon | pName.pPass{ Patron Wember logon _[Pawon_|— i —
Pation logoff_| pName.pPass{ Patron Wember logoff__[Pawon |- - Togon
Patron make a | bTitle.bEditior Patron Wember i ld.rDate _ Togon
Clerk check out| bTitle,bEdition| Clrek - checkOutf{ Loan | lld.Date,bTitle.[— -
Clerk check n I| pNo Clerk - oan__|lldIDate,bTitle |—
< I

Fig. 11: Snapshot of the ‘build event table’ screen

To build an event table, we need to enter all the
elements of each event as the following: eventutinp
message, general source, special source, actifatgtpb
output message, includes action, extends action,
specialization action and destination; Fig. 11. Hw@
details of these elements refer to materials anithads
section above.

After the event table has been completely entered,
the other features can be used. However, the ‘build
event based use-case diagram’ button will prodbee t
related use-case(s), actor(s) and relationshipfs@dch
event and the ‘build event based class diagrantbhut
will produce the related class(s) for each event.
Furthermore, the ‘generate use-case diagram’ and
‘generate class diagram’ will produce the integtate
use-case diagram and class diagram for the wheletev
table, respectively.

DISCUSSION

As an example, suppose we have an event table
which has been entered to the new UML diagrams
generator (UMLdg) CASE tool, Table 3 contains the
list of events that are related to the library egst

After the event table has been completely entered

The UMLdg CASE tool has been built to generateyy the UMLdg tool, we can select the first featurbst
the use-case and class diagrams using the entezatl e is, ‘build event based use case diagram’ to buill t

table. However, this new CASE tool contains theyse-case diagram which is related to the ‘patrontsva

following features (functionalities), Fig. 10:

* Build events table

« Build event based use-case diagram
* Generate use-case diagram

* Build event based class diagram

» Generate class diagram

257

to search for a book title’ event (the first event
Table 3). Figure 12 shows the resulted event based
case diagram.

In addition, selecting the ‘build event based €las
diagram’ for the same event (the ‘patron wants to
search for a book title’ event), will produce the
corresponding class diagram for that event.

Table 3: The event table of the library system

J. Computer i, 6 (3): 253-260, 2010

Input General Special Output Includes Extends ecflizes Destination
Event message source source Action Object messageictiofi” “Action” “Action”
Patron want to btitle Patron Member Search bookkBoo bTitle View ----meee- Look for = -------e--
search for a Non-member title bAuthor results boak
book title bPublisher
bEdition
Patron browse a bISBN Patron Member Browsea Book ISBN View —--eeeeee Look fora = ----------
book by ISBN Non-member book bTitle results koo
Patron logon pName Patron Member Logon Patron -—-
pPassword
Patron logoff pName Patron Member Logoff Patron —- - Logon = ---meeeeem e
pPassword
Patron make a bTitle Patron Member New Reservatiop----- --------—- Logon = ---eeeeeem emeeeeees
book reservation bEdition reservation
rid
rDate
Clerk check out bTitle Clerk ---oeeee Check out o&n Iid
books bEdition books IDate
bCopyNo bEdition
bld bCopyNo
pld
Clerk check pNo Clerk =--meeee- Check in Loan Iid
in books books IDate
bTitle
Stocking clerk bTitle Stocking ---------- Add new 0Bk
enter new book bISBN clerk book
information bEdition
bAuthor
bPublisher
bPubYear
bCopyNo
bCategory
Time to print Prin Loan Manager
overdue books overdue
books
Print book bTitle Manager — ---------- Print book —--
title report title report
Delete book bTitle Manager — ---------- Delete Book
information bEdition book
bCopyNo
Time to produce Print book Reservation Manager
all books reservation

reservation report

Build Event Based Use Case Diagram

/ Look for a book
<<Includes>

------- >

O

View result

o

Patron

[
Xt

NonMemb

-

searchBookTitle

Member

Patron want to search for a book title

Fig. 12: Snapshot of the resulting event-basedcase-

diagram for the patron wants to search for a

book title’ event

Figure 13 shows the resulted event-based classadiag

Furthermore, selecting the ‘build use-case diagramaf

‘build class diagram’ features of the UMLdg wgive
258

d Class Diagram

Patron Book

bTitle,bAuthor,bPublisher,bEdit

searchbooktitle (bTitle) { ..,
eturn(bTitle,bAuthor,bPublisher,bEdit)
}

A

|

) =
| [—

Patron want to search for a book title

Fig. 13: Snapshot of the resulting event-basedsclas
diagram for the ‘patron wants to search for a
book title’ event

us the integrated use-case and class diagramslifor a
events (12 events) in Table 3. Figure 14 and 1%sho
the resulted use-case and class diagrams, resggctiv
for the whole system (all events).

J. Computer i, 6 (3): 253-260, 2010

It can be clearly noted from the above sectioas th

pv\\ - . this approach gives an ideal and reasonable
T L h*@ Q S methodology to construct the intended use-case and

L o class diagrams from any comprehensive event table.
* D Furthermore, the UMLdg CASE tool will save the time
o m for the building process of the use-case diagram.

/ \ @ e As a future research, this approach could be
o A Q*ﬁt extended in order to generate other UML diagransh su
X x Q o as activity diagram and sequence diagram. Moreover,

P S———- the CASE tool could be extended to include these
diagrams.

Fig. 14: Snapshot of the integrated use-case diagra REFERENCES

for the library system Bennett, S., S. Mcrobb and R. Farmer, 2005. Object-
Oriented Systems Analysis and Design Using
UML. 3rd Edn., McGraw Hill Education, USA.,
ISBN: 978-0077110000, pp: 624.

Generate Class Diagram

Reservation.

. Boggs, W. and M. Boggs, 2002. Mastering UML with
7 e E—— Rational Rose. 1st Edn., SYBEX Inc., USA,
= BRI = ISBN: 978-0782140170, pp: 828.
m"'"r " s e Chung, L. and S. Supakkul, 2004. Representing NFRs
e Tt and FRs: A goal-oriented and use case-driven
— ﬁ‘—, approach. Proceedings of the 2nd International
B ra Conference on Software Engineering Research,
i = Management and Applications, May 4-5, Los
bt Angeles, CA., USA., pp: 29-41.
Cockburn, A., 2000. Writing Effective Use Cases 1s
e TEr e [Cear][ot Edn., Addison-Wesley, Boston, MA., USA., ISBN:

978-0201702255, pp: 304.
Gargantini, A. and C. Heitmeyer, 1999. Using model

Fig. 15: Snapshot of the integrated class diag@mthie checking to generate tests from requirements

library system specifications. ACM SIGSOFT Software Eng.
Notes, 24: 146-162. DOI:; 10.1145/318774.318939
CONCLUSION Larman, C., 2004. Applying UML and patterns: An

Introduction to Object Oriented Analysis and

Constructing the use-case and class diagrams is a Design and lterative Development. 3rd Edn.,
very important and essential task to go ahead ¢o th Prentice Hall, USA., ISBN: 978-0131489066,
design process. However, the use-case and class pp: 736.
diagrams represent a transition stage between theee, J. and N. Xue, 1999. Analyzing user requirgsen
requirements and design phases. Furthermore, bgildi by use cases: A goal-driven approach. IEEE,
such diagrams is a time consuming task and needs a Software, 16: 92-101. DOI: 10.1109/52.776956
complete understanding of the user requirements. lhiang, Y., 2003. From use cases to classes: A way 0
this paper, we have introduced an approach to eleriv building object model with UML. J. Inform.
the use-case and class diagrams from an event table Software Technol., 45: 83-93. DOI:
This new approach will facilitate and speed up the 10.1016/S0950-5849(02)00164-7
generation process of the use-case and class diagra McMenamin, S.M. and J.F. Palmer, 1984. Essential
However, this approach is completely dependinghen t Systems Analysis. 1st Edn., Yourdon Press, New
availability of a comprehensive event table which York, USA., ISBN: 978-0917072307 pp: 408.
should be built from the available user requirersent Page-Jones, M., 1999. Fundamentals of Object-

during very early tasks. In addition, a new CAS& to Oriented Design in UML. 2nd Edn., Addison-
implement this approach is introduced, that is, v Wesley, Boston, MA., USA., ISBN: 978-
diagrams generator (UMLdg) CASE tool. 0201699463, pp: 480.

259

J. Computer i, 6 (3): 253-260, 2010

Purhonen, A., 2002. Quality Driven Multimode DSP Snoeck, M. and G. Dedene, 2001. Core modelling

Software Architecture Development. 1st Edn., concepts in object-oriented conceptual modeling.
Julkaisija-Utgivare Publisher, Oulu, Finland, Proceeding of the 38th Technology of Object-
ISBN: 951-38-6005-1, pp: 154. Oriented Languages and Systems Conference, Mar.

Reed, P.R., 2001. Developing Applications with Java 12-14, Zurich, Switzerland, pp: 170-179. DOI:
and UML. 1st Edn., Addison Wesley, Boston, 10.1109/TOOLS.2001.911769
MA., USA., ISBN: 978-0201702521, pp: 504. Stumpf, R. and L. Teague, 2005. Teachings object-
Rumbaugh, J., I. Jacobson and G. Booch, 2004. The oriented system analysis and design with UML.
Unified Modeling Language Reference Manual. Proceedings of the Information Systems Education
2nd Edn., Wesley, Boston, MA., USA., ISBN: 978- Conference (ISECON’05), October 6-9, Columbus,
0321245625, pp: 752. OH, USA., pp: 1-14.
Satzinger, J.W., R.B. Jackson and S.D. Burd, 2004. http://www.csupomona.edu/~rvstumpf/isecon/teac
Object-Oriented Analysis and Design with the hing_0OO.ppt
Unified Process. 1st Edn., Thomson CourseYourdon, E., 1988. Modern Structured Analysis. 1st
Technology, Cengage Learning, Florence, KY., Edn., Yourdon Press, Englewood Hills, NJ., USA,
USA., ISBN: 978-0619216436, pp: 608. ISBN: 978-0135986240, pp: 688.
Schach, S.R., 2003. An Introduction to Object-Ciaen
System Analysis and Design with UML and
Unified Process. 1st Edn., McGraw-Hill, USA.,
ISBN: 978-0071215107, pp: 395.

260

