
Journal of Computer Science 6 (2): 163-167, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Shamim Akhter, Aida Lab, National Institute of Informatics, Tokyo, Japan
163

Sorting N-Elements Using Natural Order: A New Adaptive Sorting Approach

1Shamim Akhter and 2M. Tanveer Hasan

1Aida Lab, National Institute of Informatics, Tokyo, Japan
2 CEO, DSI Software Company Ltd., Dhaka, Bangladesh

Abstract: Problem statement: Researchers focused their attention on optimally adaptive sorting
algorithm and illustrated a need to develop tools for constructing adaptive algorithms for large classes
of measures. In adaptive sorting algorithm the run time for n input data smoothly varies from O(n) to
O(nlogn), with respect to several measures of disorder. Questions were raised whether any approach or
technique would reduce the run time of adaptive sorting algorithm and provide an easier way of
implementation for practical applications. Approach: The objective of this study is to present a new
method on natural sorting algorithm with a run time for n input data O(n) to O(nlogm), where m
defines a positive value and surrounded by 50% of n. In our method, a single pass over the inputted
data creates some blocks of data or buffers according to their natural sequential order and the order can
be in ascending or descending. Afterward, a bottom up approach is applied to merge the naturally
sorted subsequences or buffers. Additionally, a parallel merging technique is successfully aggregated
in our proposed algorithm. Results: Experiments are provided to establish the best, worst and average
case runtime behavior of the proposed method. The simulation statistics provide same harmony with
the theoretical calculation and proof the method efficiency. Conclusion: The results indicated that our
method uses less time as well as acceptable memory to sort a data sequence considering the natural
order behavior and applicable to the realistic researches. The parallel implementation can make the
algorithm for efficient in time domain and will be the future research issue.

Key words: Adaptive sorting, mergesort, natural order, partition, algorithm and complexity

INTRODUCTION

 Sorting a huge data set in a very nominal time is
always a demand for almost all fields of computer
science. As mentioned above, in the sorting technique
arena, natural order is taken into deep consideration.
And in this study, we are proposing a new sorting
approach to reduce the running time to O(nlogm),
where m <= n/2.
 A general and extremely successful strategy for
the design and analysis of algorithm is “divide and
conquer” and it is the basis of infinitude of sorting
algorithms for the usual comparison-based model of
computation. Over all view, divide and conquer is a
bottom up approach followed by a top down
traverse.
 In the recent history, measurement of disorder has
been studied as a universal method for the development
of adaptive sorting algorithms (Chen and Carlsson,
1991). In the adaptive technique, a bottom up traverse
is enough after calculating the disorderness. The design
of generic sorting algorithms results in several
advantages (Estivill-Castro and Wood, 1992a), for
example:

• The algorithm designer can focus the efforts on the
combinatorial properties of the measures of
disorder of interest rather than in the combinatorial
properties of the algorithm

• The designer can regulate the trade-off between the
number of measures for adaptivity and the amount
of machinery required

• The resulting implementations are practical and do
not require complex data structures

• Parallelism is present as the approach is inherited
from Mergesort (JaJa, 1992)

 In the proposed technique, at first, the disorderness
of the data is checked and partitioned in a single pass
over the data set. Thereafter, the partitions are merged
according to their order. It has been ensured that the
approach provides the optimum time while the bottom
up merging tree is balanced.
 In the study, we used “log” to denote the base 2
logarithms, “n” is the total number of elements in the
data set, “m” is the number of partition buffers
required. BELLOW has been used as a notation of
BELLOW(n); for example the running time for any

J. Computer Sci., 6 (2): 163-167, 2010

164

algorithm BELLOW(n) means that time needed for the
particular algorithm is at most n.

Natural order: Any raw data set contains some natural
order or sequence among them. Even in the most
disordered situation at least two elements have an
ordered sequence, may be increasing or decreasing. For
an example, let’s consider the data set {9, 5, 3, 4, 10,
12, 8 and 2}. Using these data we will get the following
Zig-zag diagram, Fig. 1. Our goal is to make the data
sorted, means the result set of the above data will be {2,
3, 4, 5, 8, 9, 10, 12}. Figure 2 presents the Zig-zag
diagram represents sorted data in natural order.

Fig. 1: Zig-zag diagram for natural disorder data set

Fig. 2: Zig-zag diagram for sorted data in natural order

Fig. 3: Revised Zig-zag diagram for natural disorder

data set

 Figure 3 and 4 will help to understand the
difference between classical sorting algorithm and
adaptive sorting algorithm. In all classical ways,
sequence Ids are shifted to gain the sorted order.
However, in adaptive sorting scheme, lines, connecting
the points are taken into consideration. And by doing
so, all the points on the two lines (currently under
process), are in action. In natural order, in the proposed
technique, at least two points are in one line and there
comes the time complexity of proposed technique:

BELLOW(m)

where, m <= n/2.
 According to the Fig. 4, we make lines L1 = <9, 5,
3>, L2 = <4, 10, 12>, L3 = <8, 2> and finally merging
these lines we will get approximately a straight line
(represents the data are successfully sorted) present in
Fig. 2.

Ordering complexity: In order to express the
performance of a sorting algorithm in terms of the
length and the disorder in the input, we must evaluate
the disorder in the input. Intuitively, a measure of
disorder is a function that is minimized when the
sequence has no disorder and depends only on the
relative order of the elements in the sequence (Estivill-
Castro and Wood, 1992a).
 There are several measures of disorder. We define
the most three common measures of disorder (Estivill-
Castro and Wood, 1992b). Runs(n) as the minimum
number of contiguous up-sequences required to cover n
data. A natural generalization of Runs is the minimum
number of ascending subsequences required to cover the
given sequence and denoted by Shuffled Up-Sequences
(SUS). We generalize again and define SMS(n) (for
Shuffled Monotone Subsequence) as the minimum
number of monotone (ascending or descending)
subsequences required to cover the given sequence.

Fig. 4: Zig-zag diagram after buffering

J. Computer Sci., 6 (2): 163-167, 2010

165

For example W0 = <6, 5, 8, 7, 10, 9, 4, 3, 2, 1> has
Runs (W0) = 8, while SUS(W0) = ||{<6, 8, 10>, <5, 7,
9>, <4>, <3>, <2>, <1>}|| = 7 and SMS(W0) = ||{<6, 8,
10>, <5, 7, 9>, <4, 3, 2, 1>}|| = 3 (Estivill-Castro and
Wood, 1992a). This technique also provide ||{<6, 5>,
<8, 7>, <10, 9, 4, 3, 2, 1>}|| = 3. The number of
ascending runs is directly related to the measure Runs,
Natural Mergesort takes O(|n| (1 + log[Runs(n) + 1]))
time. Quick sort takes O(|n| log[n+1]) running time in
average case.
 Many researches were conducted to focus on the
time complexity minimization of the sorting algorithm
and their proposed algorithms successfully partitioned
the input data, but they didn’t focus on the partitioning
with both ascending and descending order. Moreover,
the cost needed to partition is also an important point
and need to take under consideration. In our view, if we
consider both ascending and descending order, which
will be needed only at the bottom level in the bottom-up
traversing of the merge-tree and this approach will
reduce the number of partitions. Thus, the time needed
in worst case will be:

BELLOW (n + nlogm)

where, m <= n/2.
 It can also be mentioned, in an average case of
disorder in data set, m<n/2 and for the best case m = 1.
Thus, the time complexity of the new approach would
be:

O(|n|(log[m]))

 Inheriting the thoughts of co-thinkers walking in
this arena of adaptive sort, we have used merge sort to
implement the new adaptive method and that is why,
this approach will also provide the chance of
improvement using parallel algorithm. Parallelism in
merge sort improves the run time complexity. Using
merge sort algorithm, sorting a sequence of n elements
can be done optimally in O(logn log (log n)) (JaJa,
1992). According to Simple Merge Sort (JaJa, 1992),
the running time of this algorithm is O(logn log (log n))
and the total number of operations used is O(n log n)
(where PRAM model will be CREW PRAM). And just
to mention again, (Fig. 6) our technique reduces the
number of nodes in the merge tree, so reduces the time
needed by parallel processing.

MATERIALS AND METHODS

 In the classical merge sort algorithm, first comes a
top down traverse and then follows a bottom up merge.

This has been showed in Fig. 5 with a data set {9, 5, 3,
4, 10, 12, 8, 2}.
 In the adaptive sorting algorithm, using the
proposed ordering scheme, for the same data set, {9, 5,
3, 4, 10, 12, 8, 2}, the partitions will be {9, 5, 3}, {4,
10, 12}, {8, 2}. And the following merging is
represented in Fig. 5. In this averagely ordered data set,
the proposed algorithm traverse only a tree of height 3,
followed by a single pass over the data set.
 For n element data set, we first make some buffers
(m) according to their sequential order, the order may
be in ascending or descending, the running time will
need O(n). Each buffer will get information about the
starting index and the ending index of the sequential
sorted data and also a flag which will provide us the
order of the sequential data (flag 0 means ascending,
flag 1 means descending order), this flag will be needed
to check only in the first level comparisons but the rest
levels no need to check.
 In Table 1, we consider the Fig. 4, the buffer
L1 = <9, 5, 3>, where 9 is the first and 3 is the last
element of this particular data set. So, the Starting index
is 1 and Ending index is 3. Data set 9 to 3 is in
descending order, so the flag is set to 1.
 If number of buffers is m, for a data set of n
elements and divide-and-conquer is the approach to
merge the m buffers then merging m sorted buffers(total
n data) needs O(nlogm) time (Horowitz et al., 1997).
Deriving from this information, the proposed algorithm
has a time complexity of O(nlogm) where m<n. In the
best data set distribution, all the elements are sorted
naturally, in an ascending order or descending.

Fig. 5: Classical merge sort algorithm

Fig. 6: Merge sort with proposed algorithm

Table 1: The buffer information
Starting index 1
Ending index 3
Flag 1

J. Computer Sci., 6 (2): 163-167, 2010

166

Table 2: Proposed algorithm run time statistic

Size of Partitioning Buffer Tree height Comparisons in Theoretical total Algorithm
inputted data n comparisons size (m) log (m) each level value [n*log m + n] generate value
1000 1000 414 9 928 9693 9064
2000 2000 821 10 1875 21362 20154
3000 3000 1224 10 2818 33772 31905
4000 4000 1649 11 3773 46748 44320
5000 5000 2058 11 4710 60036 56845

For this Naturally Sorted data, there will be only one
buffer, i.e., m = 1 and no need to apply merge. This
reduces the best case time complexity to O(n).
 The steps of the proposed algorithm are presented
bellow, assuming n elements of data set is stored in an
array A[1..n].

Partition(n):

Beginning from index 1 in A[], continue
traversing up to index k where A[1], A[2] …
A[k] is sorted in any order (ascending or
descending). If A [1…k] is in ascending, i.e.
flag = 0, then A [k+1]<A[k] else for
descending, i.e., flag = 1, A[k]>A[k+1]. This
represents a line in the data sequence (Table 1).

Thereafter, store the information (start_index,
ending_index, flag) in an array of buffer.
Continue this procedure up to n.

 After the Partition(n) function we will get m
buffers, where m will be at most n/2 .

Sort(m):

If all data is in a Natural Sorted, means that the
number of buffers m is 1 (Reverse, if needed),
then Terminate

Otherwise merge m buffers, taking two at a
time. By following this level-by-level bottom
up procedure will assure the merging tree to be
appropriately balanced

 foreach level of the bottom up traversal
 for(i is 1 to |m|)
 merge (2i-1)th and 2ith buffers

RESULTS AND DISCUSSION

 Based on the proposed algorithm, Table 2 statistics
have been presented. In this statistics, we have used a
randomly picked data set and values are the average of
1000 times operation.

 Table 2 shows statistics sounds the same harmony
that is present in the theoretical calculation. Finding out
the natural sub-sorted sequence will need only exactly n
unit of time. Here, m denotes the number of buffers
made after partition. So, if the merging goes in a
balanced tree, height of the tree will be [log m]. In most
of the cases, calculated value is less than estimated
value. It is because, in the theoretical calculation,
merging buffers in any level of the tree needs O(n)
time. However, sometimes, it is less than that, when
sizes of the buffers are not unique. In the worst case,
time in each level we have to compare n data. So, total
needing comparison will be n*log m + n and m is n/2.
So, total comparison will be O(nlogm).

CONCLUSION

 The research evaluates the power of a new scheme
in the era of sorting algorithm. A good sorting
algorithm is always preferable for any kind of
application developed in fields Computer Aided
Technology and the proposed technique uses less time
as well as acceptable memory to sort a sequence
considering the natural order, which is already there.
 We have already mentioned that our providing
criteria will give best effort when the tree (after
buffering) will be balanced. So, there will be a great
chance for the future developer to implement this
technique using parallel approach. Additionally, for any
formal high-level language, a library function can be
provided using this algorithm, like we have for
Quicksort (Horowitz et al., 1997).

REFERENCES

Chen, V. and S. Carlsson, 1991. On partitions and

presortedness of sequences. Proceeding of the 2nd
Annual ACM-SIAM Symposium on Discrete
Algorithms, Jan. 28-30, ACM Press, San
Francisco, California, United States, pp: 63-71.
http://portal.acm.org/citation.cfm?id=127807&dl=
GUIDE&coll=GUIDE&CFID=79579737&CFTO
KEN=16004594

Estivill-Castro, V. and D. Wood, 1992a. A generic
adaptive sorting algorithm. Comput. J., 35: 505-512.

J. Computer Sci., 6 (2): 163-167, 2010

167

Estivill-Castro, V. and D. Wood, 1992b. A survey of
adaptive sorting algorithms. ACM Comput.
Surveys, 24: 441-476.
http://portal.acm.org/citation.cfm?id=146381

Horowitz, E., S. Sahni and S. Rajasekaran, 1997.
Computer Algorithms. 2nd Edn., Computer
Science Press, ISBN: 0716783169, pp: 769.

JaJa, J., 1992. An Introduction to Parallel Algorithms.
1st Edn., Addison-Wesley, ISBN: 13:
9780201548563, pp: 576.

