Journal of Computer Science 6 (11): 1341-1346, 2010
ISSN 1549-3636
© 2010 Science Publications

Activity Surveillance and Hawthorne Effect to Prevent Programming Plagiarism
Hairulliza Mohamad Judi, Syahanim Mohd Salleh, MdérHussin and Sufian Idris

Faculty of Information Science and Technology,
University Kebangsaan Malaysia, 43600 Bangi, Makys

Abstract: Problem statement: Course instructors are facing serious problentealding with students
who plagiarize programs especially when the nundfestudents in the course is high. Among the
proposed approach to handle this problem is by gusintomatic detection of plagiarism in
programming projects. Preventive action is requimadher than curing the problem so that
programming students get the right message fronbéiginning. Approach: To address this problem,

a surveillance system was proposed to record epesgramming activity. It is developed in an
integrated development environment so that progragractivity profile in Java format is created
when students are developing their Java programoA-intrusive and non-experimental setting
approach was applied in which hidden data collecttoconducted to observe students’ behavior in
natural programming setting. Experimental studeeff.e., Hawthorne effect and effect of expectatio
on subject behavior was exploited as preventioplagiarism. Surveillance system produces two file
types: Activity log to keep programming activityglanformation and Backup file to save the program
writing record.Results: The proposed programming activity surveillanceeys DwiCoder presented

a programming activity report at the end of eaabgpemming session. Students can assess their own
progress in developing a program in these threites: Compilation, execution and modification.
The report was presented in a simple and meanimgfylto encourage student spend their own time in
programming activity. Conclusion: By using DwiCoder, student's programming activitg
continuously monitored and their behavior is undentrol. This system provides an effective
prevention method in tackling plagiarism.

Key words: Programming activity profile, behavior monitoringagiarism prevention

INTRODUCTION programming environment. A surveillance system is
proposed in an Integrated Development Environment
In programming course, programming (IDE). This study discusses issues on plagiarism,

assignments and projects are conducted to assétawthorne effect and some approaches to deal with
students’ performance. One of the main problems implagiarism. Then the design and architecture of the
this assessment is in dealing with students whoy copsystem is brought forward. Some of the system
and modify programs. This problem is especially outinterface and results will be discussed. Finallg th
of control when the number of students in the cesirs research concludes the study.
is high, as it will be very difficult to detect #hi
plagiarism. Related work: Researchers (Joy and Luck, 1999; Daly
With rampant increment in plagiarism phenomenaand Horgan, 2005; Spinellit al., 2007) have
(Joy and Luck, 1999; Sheard and Dick, 2003) nepgssaidentified plagiarism issues in many perspectives.
efforts should be taken to provide a conduciveUnacknowledged copying of documents or programs is
environment that encourages students to develop theconsidered as an act of plagiarism. The widespread
programming skills (Cogan and Gurwitz, 2009; Saal., plagiarism scenario faced by instructors’ at all
(2009). Since it is so easy to copy and edit a aderp educational levels is due to two reasons: Incrgasin
program, students would find it is tempting to getfacilities that students have for accessing to ine-|
involve in plagiarism activity. resources and the huge number of work, project or
This study suggests a method that observeeeport-based assessment of courses that need to be
students progress in building program in theirevaluated by instructors.

Corresponding Author: Hairulliza Mohamad Judi, Faculty of Information &ete and Technology, University Kebangsaan Malaysia
43600 Bangi, Malaysia Tel: 00603-89216180 Fax03089256732

1341

J. Computer <ci., 6 (11): 1341-1346, 2010

Stewart-Gardineret al. (2001) raise interesting Observational approach requires observational
issues regarding collaboration and plagiarism. &hestechnique that monitors the programming activity
include the breaking point between collaboration an conducted by students which fulfill the following
plagiarism. While many educators feel thatfeatures. First, a student programming environniet:
collaboration belongs only in a very few upper gioh ~ system should consider the study environment
programming courses, others have experience to shoincluding attentive to issues on students’ learning
that early collaboration broadens the learning ofcapacity and their learning style. Student needs an
students, to become more effective professionatasily-used and maintained programming environment.
individuals. They find out that a blend of the tatyles As such, the development of programming activity
is best for students and can reduce plagiarism. information collection function in an embedded

Spinellis et al. (2007) agree with the blended Integrated Development Environment (IDE) will beson
approach in dealing with plagiarism. They do noyon advantage due to the capacity and availability hef t
evaluate students’ work in terms of originality,tbu software itself. The surveillance software in a alav
also understanding, learning, fairness, difficultyn programming environment is intended to record the
and interest as a result of collaboration with othe identified programming activity during students'vda
students. They propose Jarpeb, a system that sreaterogram development.
individually randomized assignments, grades the Next, a non-experimental setting: experimental
students’ programs and allows students to subrait th setting emphasizes variable manipulation whichltesu
grade through the web. The results indicate that thin experimental environment constraint. Among the
system contributes to the reduction of plagiarismmajor flaws in experimental setting is that sulgect
increases the understanding and learning of theseou behaviors are distorted from their normal ones.tign
subject while also increasing the perceived faisnes other hand, non-experimental setting explores the
fun and interest of the learners. phenomenon being studied and is very suitable d@f th

Hawthorne effect is a phenomenon where a studynformation regarding the study are very limitedy B
subject’s behavior or study outcomes are altered as using this setting, the study findings could be
result of the subject's awareness of being undegeneralized into a bigger group instead of cenmoup
observation (Mangione-Smithet al., 2002). This representation. The integrated observation function
phenomenon was originally identified at the Hawtigor an IDE environment also allows for exploratory data
Works Plant of the Western Electric Company incollection.

Chicago. Several studies were conducted at thist pla Then, observational data collection: data coltecti
between the years 1924 and 1932 in order to identiftechnique plays the most critical part and idessifihe
working conditions that would increase the produgti purpose of study (Taylor-Powell and Steele, 1996).

of the employed by the plant. The investigatorsntbu this context, observation is made when the studamts
that worker productivity increased regardless ofdeveloping their program. In this technique, the
working conditions when the workers knew they wereresponse is not determined by subject's needs and
under observation. For example, both more light anadapability in giving information.

less light in the workroom resulted in improved Finally, non-intrusive methodology: intrusive
performance when workers were aware that theiobservation would influence subject’'s performance
productivity was being measured. whereas manual data collection is not efficienglht

Therefore, a non-intrusive approach is applied.ddid
Approach in surveillance system: The approach to data collection is conducted to observe programming
deal with plagiarism in programming assignment seedstudents’ behavior. Among the recorded informat®n
suitable methodology and technique in which différe the number of compilation they are conducting dnsl t
modes will be used to gather data and suitable tinformation is gathered without them knowing.
various states and conditions. With the availabitf In preventive approach, the software development
more complex technique of data collection, obsérmat takes into account the encouragement effect orestud
study especially via embedded system is seen as moattitude. Instead of compulsory attitude change,
effective (EI-Mousa and Al-Suyyagh, 2010; Rath andstudents are encouraged to perform well in their
Meher, 2006; Rath and Dehuri, 2006). Theassignment and fulfill their responsibility in sjkmg
development of instrument to deal with plagiariam i sufficient time and effort in programming activitfhe
this study considers some important factors in @ays prevention approach is conducted by monitoring
specifications. The approach will cover both students’ programming activity. They realize thagit
observational and prevention aspects. action is recorded and controlled. Two aspects are

1342

J. Computer <ci., 6 (11): 1341-1346, 2010

considered in this approach: effect towards obgsienva Table 1: Requirements in developing surveillancefion

and Hawthorne effect. Requirement

Description

First, effect towards observation: students need tUbiauity
be given full information on study planning and the
intended result of the prevention tool. The
psychological impact would be created based on whatot intrusive
the subjects think on real world. Subject’'s knowjled Transparent
or their own expectation on the study purpose aed t
own desire to be seen as good subject in rese&chebpjective
eye would result in action that follows researcher’

Quantitative

needs. In this situation, the students will cominit ~Individual
normal programming activity such as typing, deboggi 4qen
and implementing their program. It is the role oficse output

instructor in disseminating information regardirge t 3
study planning clearly at the beginning of the seur Writing record
Data integrity

Enable monitoring of each activity in dévging
source program.
Each recorded activity should contpiantitative
information which could be used in further anadysi
Activity recording is not made clegarl
Programmer should be able to inteatatally
with the developing environment. Log record
should not limit of his/her choice.
Analysis of log activity should be rephtising
similar criterion
Each log should be individual, i.e.istunique for
one file only.
Recording function should be implementedraudy
Programming activity output should be digpthin
sequence
The programming codes should be .kept
Recorded data should have high hitieg

Second, Hawthorne effect: an open programming
activity pooling technique through observation wbul
influence subject’'s behavior. Hawthorne effect is
exploited in student’s environment to maximize the
surveillance system function as a preventive apgroa
on plagiarism activity. Although the recording of
process information is hidden, a report is gendraite
the end of each programming session that informs
student development process. The report is predémte
a simple and meaningful way to encourage student
spend their own time in programming activity.

MATERIALSAND METHODS

Observation
function

Integrated Development Envirenment (IDE)

i Writing log

I Activity log

Fig. 1: Environment of DwiCoder

The surveillance system is implemented in such a
way that no significant change is observed in the
available working environment. Surveillance system
will produce two file types: activity log (speciéile)
and backup file. Activity log file is created to éqe
programming activity log information as reference

-—l Writing log file display (*hak)

B hellenvortd - Motepad

purposes if more information is needed. Backup file
(*.bak) is created to save the program writing rdco
The surveillance function is developed by fulfigin
certain criteria as summarized in Table 1.

In the proposed approach, each student in th
programming course is supplied with surveillance L

B hellonvorld - Hatopad
fie Lt fome en meb

Activity log file display (*.log)

system. It is developed in a Java programming

environment which enables recording the identifiedFig. 2: Model of the system

programming activity during program development.
The software is equipped with programming actigitie
supervision function. Each time students are waykin
on the programming assignment, the system will b
able to record the activity. Even though the obston

function has been implemented in the system
environment, basically no obvious changes have be
made on the present programming
environment. The function was built transparentithw

Programming activity is recorded in hidden manner
and the information is kept in a special file cdlleg
Sile. These data are kept in separate files andrmated
,Suniquely for every program source. They have a
esfandard format and treated as raw data in progragim
interfaceStudy. Observation function also produces one ngiti
text file which stores program text when it is coleg

recording, anaiytic and programming activity seqeen for the f_irSt time. This file is built a_S a baCk[ﬂtE if
display functions. Figure 1 shows the environmeht osource file suffers some damage. Figure 2 disptlags
the surveillance system called DwiCoder. model of the whole system.

1343

J. Computer <ci., 6 (11): 1341-1346, 2010

Table 2: Programmer oriented behavior measurement

Time profile
DT Development time
NoS Programming session number
Compilation and implementation activity
NoC Compilation number
NoE Implementation number
NoM Modification number
WT Writing time-development time until the firsirte of
compilation
DTtLC Development time after the last time of colaion
Cl Compilation Interval
CisD Standard deviation of compilation interval
CoT Time needed to free the program from syntaorerr
Fig. 3: Flow of programming activity '\E/'STT m;g’;a;ﬁg&”;eﬂm .
Compilation of mistake
In the observation function, programming activity NoFC Failed compilation number

. NoSC Success compilation number
record is created based on a standard format. Thrgep Failed Comp“gﬂon percentage

main attributes are provided: Date, time andscp Success compilation percentage
programming code. This requirement is importantFCNbDT I_:ailed compilation normalization betweenalepment

i i i i time
22?::5\; tfcl) nci;;g% rgrgg?[:ansg ngaSI?Sn rglggegafzsbt[;:vitm}%NbDT Succeed compilation normalization between

e it . development time

to the treatment of activity, state transition bcdment solution equality
program and main programming activity (Fig. 3)the Score Percentage of program equality from the wholation
sequence, program source would first be built €stat
“N™), followed by compilation and save process {sta
“C” and “S”). Next, program will be executed (state
“E1") while state “E2” marks the end of program

execution. Program (1;|Ie ng be close(]il_l(sta'f mg;; produced so that the recorded data could be iretrgr
program Session ends and program tiie wifl pro y easily to follow four main phases: Writing,

opened (state “O”) again if the programmer want to

. . o ““compilation, implementation and modification.
resume his/her programming process. Compilationpafinition of each phase is adapted fully from

save and execution process perhaps will occuprggram compilation, implemented and modification

repeatedly in every programming session. Programmed|assification (Takadet al., 1994).

may end each session in four main situations: After Thijs report generating function is one of

compilation or save, after implementation processpwiCoder's menu choices so that student can sée the

when a document is created and when a document ffogramming progress and print their program as an

opened. evidence purpose. Figure 4 also shows an examples of
report for a program. With the richness and systema
recorded information, the report is expected tee gwn

RESULTS X

encouragement for students to be more responsible o

DwiCoder presents the programming activity log in their work. The report shows that one of the exptemis

a sequence format. The format allows for displayiag in the programming assignment is sufficient timel an

much information as possible that can be analvze ompilation number was fulfiled in developing the
. P o naly érogram in these three activities: Compilation,cexien
according to the content of activity log. The olsgion

function captures specific and general observatibn and modification. This report display is not oniset

, ; . _for research use on programming even may serve as a
students’ programming ~behavior based on theilget reporting mechanism. Students are able to tooni

programming activity basis. _ their own progress and check whether they fulfite t
A data set that represents a metric of programmegssessment criteria.

oriented behavior is generated by the system. This Thjs surveillance system has the ability to record
metric fall into four categories that measure défeé any activity based on programmers’ selection oateel
aspects in the programming procedure: Time profilemenus only. It is more difficult to consider
compilation and implementation activity, mistake programmer's mind which is not related to
measurement and program solution equality. Table Programming activities or leave his/her programming
lists the metric. environment without closing the programming sassio

1344

The system generates a time graph, one of its
display tools to show activity sequence which ooedr
All information of necessity is displayed in the
sequence of time. Graphical display format (Figis4)

J. Computer <ci., 6 (11): 1341-1346, 2010

it/ Comp/Exec/ Mot assignment and fulfill their responsibility in sjkmg
e - enough time in programming activity.

The Hawthorne effect phenomenon is a result of a
careful setting to the environment. Assuming an
increment in student performance resulting menedynf
instructor attention to them is among the mistakdhe
usage of the term (Gottfredson, 2005). Remarkable
improvements in students’ performance might be
contributed by various factors such as conducivé an
enjoyable laboratory environment in which studerts
willing to spend long time to complete the assignine

00.00

00.30

01.00

ol

Detadl programmer activity sequeace report students’ personal goals of obtaining their deguéth
Compled 45 \é»;r:'nﬁ;id 110 mat fI_ying coIo_rs, or c:_;\reful attention to their penfmaince
Modificd: 7= Exevated 203 mnt since the first day in that semester.

Sessiom 3 Modified 1447 To achieve the desired result in programming
course, course instructor plays an important rblet

only depending on the surveillance system, it is
CodelC20022 java 9/21/200% . . .
2 important for instructor to keep varying the coutee
keep it from getting stale. Such changes might lievo

Fig. 4: Log content and graph display of activity instructor's approach in presenting material and
collaborating with other students (Spinelisal., 2007;
[_ ‘ Stewart-Gardineet al., 2001). The new and innovative
method in marking students’ assignment would
DwiCoder did not receive any input from you probably change and improve student’s learningestyl
and about to end the program in and behavior to spend enough time to develop the
program. A reasonable change would cause an
02:69 improvement in student learning especially whery the
perceive that the instructor is giving them attemtihat
Stop and Continue seems special.
With the ability to record complex data in

programming, the surveillance system gives an
Fig. 5: Display of security message advantage to implement observational study as

compared to experimental study previously done. The
As such, a security mechanism is built behind thenclusion of data collection function in present
scenes in DwiCoder to identify keyboard activity. | environment brought to by DwiCoder is not a new
will close the programming session automatically ifapproach, tools such as AESOP and Mother are able t
there is no reaction from programmer when a warningjather information to monitor student’s behavior on
message appears, as in Fig. 5. It is found to feetefe line (Kivi et al., 1998).

in reducing time recording for activities not bejoto There are various tools and systems for automatic
programming log. detection of plagiarism in programming projectslagP
and Turnitin use similarity index as an evidence of
DISCUSSION plagiarism. Daly and Horgan (2005) present a tepmi

for detecting plagiarism in computeode, which has
DwiCoder is a surveillance system that employsthe advantage of distinguishing between the ortgina
observation and prevention approach. The formeandthe copiers and handling large group studying
approach enables for monitoring the programmingprogramming in an automated learnamyironment.
activity conducted by students that consider their DwiCoder appears to be a better method for
learning capacity in an integrated developmentcollecting information on subject’'s behavior dueit®
environment. Hidden data collection is conducted taability to be carried out in a non-experiment
observe the programmers’ behavior. The later ambroa environment and does not require subject intereanti
takes into account the encouragement effect oreatud The programmer’'s action and response in the
attitude. Instead of compulsory attitude changeprogramming environment such as pressing the
students are encouraged to perform well in theikkeyboard or calling on certain menus could be detec

1345

J. Computer <ci., 6 (11): 1341-1346, 2010

This approach implies a self reporting techniquéctvh Rath, A.K. and P.K. Meher, 2006. Design of a merged
might expose some element of bias. In future, DSP microcontroller for embedded systems using
monitoring on some non-programming activity domains discrete orthogonal transform. J. Comput. Sci.,

like eating, drinking or opening email could belimed 2:388-394. DOI: 10.3844/.2006.388.394
as an enhancement of the system. Rath, A.K. and S.N. Dehuri, 2006. Non-dominated
sorting genetic algorithms for heterogeneous
CONCLUSION embedded system design. J. Comput. Sci., 2: 288-291

DOI: 10.3844/.2006.288.291

This study proposes a surveillance system calle@heard, J. and M. Dick, 2003. Influences on cheatin
DwiCoder to handle plagiarism problem in practice of graduate students in IT course: What
programming projects. It applies observation and are the factors? Proceedings of the 8th Annual
preventive approach to monitor students’ prograngmin Conference on Innovation and Technology in
activity and to promote good practice in spending Computer Science Education, June 30-July 02,
enough time in programming activity. ACM Press, Thessaloniki, Greece, pp: 45-49. DOI:

DwiCoder provides a learning environment in 10.1145/961511.961527
which student’'s programming activity will be Sani, N.F.M., AM. Zin and S. Idris, 2009

continuously under observation and their behavior i Implementation of CONCEIVER++: An object-
under control; therefore the environment is anctife oriented program understanding system. J.
prevention method in tackling plagiarism. Apartnfro Comput. Sci., 5: 1009-1019. DOL:
that, this system affords to give enough evidenge o 10.3844/.2009.1009.1019
student’s effort to resolve their assignment. Spinellis, D., P. Zaharias and A. Vrechopoulos, 200
Coping with plagiarism and grading load:
REFERENCES Randomized programming assignments and

reflective grading. Comput. Appli. Eng. Educ.,
Cogan, E. and C. Gurwitz, 2009. Memory tracing. J. 15: 113-123. DOI: 10.1002/cae.20096

Comput. Sci., 5: 608-613. DOI: Stewart-Gardiner, C., D.G. Kay, J.C. Little, J.ChaSe
10.3844/.2009.608.613 and J. Fendrichet al., 2001. Collaboration Vs
Daly, C. and J. Horgan, 2005. A technique for ditgc plagiarism in computer science programming
plagiarism in computer code. Comput. J., 48: 66@-66 courses. Proceedings of the 32nd SIGCSE
DOI: 10.1093/comjnl/bxh139 Technical Symposium on Computer Science

El-Mousa, A.H. and A. Al-Suyyagh, 2010. Embedded Education, ACM Press, Charlotte, North Carolina,
systems education for multiple disciplines. J. United States, pp: 406-407. DOl:

Comput. Sci., 6: 186-193. DOLl: 10.1145/364447.364790
10.3844/.2010.186.193 Takada, Y., K. Matsumoto and K. Torii, 1994. A
Gottfredson, G.D., 2005. Hawthorne Effect. In: programmer performance measure based on

Encyclopedia of Statistics in Behavioral Science, programmer state transitions in testing and
Everitt, B.S. and D.C. Howell (Eds.). John Wiley debugging process. Proceeding of the 16th
and Sons, New Jersey, ISBN: 0470860804, International Conference on Software Engineering,

pp: 784-785. May 16-21, IEEE Computer Society, Sorrento,
Joy, M. and M. Luck, 1999. Plagiarism in programgin Italy, pp: 123-132. DOI:

assignments. |IEEE Trans. Educ., 42: 129-133. 10.1109/ICSE.1994.296772

DOI: 10.1109/13.762946 Taylor-Powell, E. and S. Steele, 1996. Collecting
Kivi, M.R., T. Gronfors and A. Koponen, 1998. evaluation data: An overview of sources and

MOTHER: System for continuous capturing of method. University of Wisconsin-Extention.

display stream. Behav. Inform. Technol., 17: 152-15 http://www.worldbridgeresearch.com/files/Method

DOI: 10.1080/014492998119517 s.pdf

Mangione-Smith, R., M.N. Elliott, L. McDonald and
E.A. McGlynn, 2002. An observational study of
antibiotic prescribing behavior and the hawthorne
effect. Health Serv. Res., 37: 1603-1623. DOI:
10.1111/1475-6773.10482

1346

