
Journal of Computer Science 6 (11): 1341-1346, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Hairulliza Mohamad Judi, Faculty of Information Science and Technology, University Kebangsaan Malaysia,
43600 Bangi, Malaysia Tel: 00603-89216180 Fax: 00603-89256732

1341

Activity Surveillance and Hawthorne Effect to Prevent Programming Plagiarism

Hairulliza Mohamad Judi, Syahanim Mohd Salleh, Norijah Hussin and Sufian Idris

Faculty of Information Science and Technology,
University Kebangsaan Malaysia, 43600 Bangi, Malaysia

Abstract: Problem statement: Course instructors are facing serious problems in dealing with students
who plagiarize programs especially when the number of students in the course is high. Among the
proposed approach to handle this problem is by using automatic detection of plagiarism in
programming projects. Preventive action is required rather than curing the problem so that
programming students get the right message from the beginning. Approach: To address this problem,
a surveillance system was proposed to record every programming activity. It is developed in an
integrated development environment so that programming activity profile in Java format is created
when students are developing their Java program. A non-intrusive and non-experimental setting
approach was applied in which hidden data collection is conducted to observe students’ behavior in
natural programming setting. Experimental study effect i.e., Hawthorne effect and effect of expectation
on subject behavior was exploited as prevention on plagiarism. Surveillance system produces two file
types: Activity log to keep programming activity log information and Backup file to save the program
writing record. Results: The proposed programming activity surveillance system, DwiCoder presented
a programming activity report at the end of each programming session. Students can assess their own
progress in developing a program in these three activities: Compilation, execution and modification.
The report was presented in a simple and meaningful way to encourage student spend their own time in
programming activity. Conclusion: By using DwiCoder, student’s programming activity is
continuously monitored and their behavior is under control. This system provides an effective
prevention method in tackling plagiarism.

Key words: Programming activity profile, behavior monitoring, plagiarism prevention

INTRODUCTION

 In programming course, programming
assignments and projects are conducted to asses
students’ performance. One of the main problems in
this assessment is in dealing with students who copy
and modify programs. This problem is especially out
of control when the number of students in the courses
is high, as it will be very difficult to detect this
plagiarism.
 With rampant increment in plagiarism phenomena
(Joy and Luck, 1999; Sheard and Dick, 2003) necessary
efforts should be taken to provide a conducive
environment that encourages students to develop their
programming skills (Cogan and Gurwitz, 2009; Sani et al.,
(2009). Since it is so easy to copy and edit a computer
program, students would find it is tempting to get
involve in plagiarism activity.
 This study suggests a method that observes
students progress in building program in their

programming environment. A surveillance system is
proposed in an Integrated Development Environment
(IDE). This study discusses issues on plagiarism,
Hawthorne effect and some approaches to deal with
plagiarism. Then the design and architecture of the
system is brought forward. Some of the system
interface and results will be discussed. Finally the
research concludes the study.

Related work: Researchers (Joy and Luck, 1999; Daly
and Horgan, 2005; Spinellis et al., 2007) have
identified plagiarism issues in many perspectives.
Unacknowledged copying of documents or programs is
considered as an act of plagiarism. The widespread
plagiarism scenario faced by instructors’ at all
educational levels is due to two reasons: Increasing
facilities that students have for accessing to on-line
resources and the huge number of work, project or
report-based assessment of courses that need to be
evaluated by instructors.

J. Computer Sci., 6 (11): 1341-1346, 2010

1342

 Stewart-Gardiner et al. (2001) raise interesting
issues regarding collaboration and plagiarism. These
include the breaking point between collaboration and
plagiarism. While many educators feel that
collaboration belongs only in a very few upper division
programming courses, others have experience to show
that early collaboration broadens the learning of
students, to become more effective professional
individuals. They find out that a blend of the two styles
is best for students and can reduce plagiarism.
 Spinellis et al. (2007) agree with the blended
approach in dealing with plagiarism. They do not only
evaluate students’ work in terms of originality, but
also understanding, learning, fairness, difficulty, fun
and interest as a result of collaboration with other
students. They propose Jarpeb, a system that creates
individually randomized assignments, grades the
students’ programs and allows students to submit their
grade through the web. The results indicate that the
system contributes to the reduction of plagiarism,
increases the understanding and learning of the course
subject while also increasing the perceived fairness,
fun and interest of the learners.
 Hawthorne effect is a phenomenon where a study
subject’s behavior or study outcomes are altered as a
result of the subject’s awareness of being under
observation (Mangione-Smith et al., 2002). This
phenomenon was originally identified at the Hawthorne
Works Plant of the Western Electric Company in
Chicago. Several studies were conducted at this plant
between the years 1924 and 1932 in order to identify
working conditions that would increase the productivity
of the employed by the plant. The investigators found
that worker productivity increased regardless of
working conditions when the workers knew they were
under observation. For example, both more light and
less light in the workroom resulted in improved
performance when workers were aware that their
productivity was being measured.

Approach in surveillance system: The approach to
deal with plagiarism in programming assignment needs
suitable methodology and technique in which different
modes will be used to gather data and suitable to
various states and conditions. With the availability of
more complex technique of data collection, observation
study especially via embedded system is seen as more
effective (El-Mousa and Al-Suyyagh, 2010; Rath and
Meher, 2006; Rath and Dehuri, 2006). The
development of instrument to deal with plagiarism in
this study considers some important factors in physical
specifications. The approach will cover both
observational and prevention aspects.

 Observational approach requires observational
technique that monitors the programming activity
conducted by students which fulfill the following
features. First, a student programming environment: the
system should consider the study environment
including attentive to issues on students’ learning
capacity and their learning style. Student needs an
easily-used and maintained programming environment.
As such, the development of programming activity
information collection function in an embedded
Integrated Development Environment (IDE) will be one
advantage due to the capacity and availability of the
software itself. The surveillance software in a Java
programming environment is intended to record the
identified programming activity during students’ Java
program development.
 Next, a non-experimental setting: experimental
setting emphasizes variable manipulation which results-
in experimental environment constraint. Among the
major flaws in experimental setting is that subjects’
behaviors are distorted from their normal ones. On the
other hand, non-experimental setting explores the
phenomenon being studied and is very suitable if the
information regarding the study are very limited. By
using this setting, the study findings could be
generalized into a bigger group instead of certain group
representation. The integrated observation function in
an IDE environment also allows for exploratory data
collection.
 Then, observational data collection: data collection
technique plays the most critical part and identifies the
purpose of study (Taylor-Powell and Steele, 1996). In
this context, observation is made when the students are
developing their program. In this technique, the
response is not determined by subject’s needs and
capability in giving information.
 Finally, non-intrusive methodology: intrusive
observation would influence subject’s performance
whereas manual data collection is not efficient at all.
Therefore, a non-intrusive approach is applied. Hidden
data collection is conducted to observe programming
students’ behavior. Among the recorded information is
the number of compilation they are conducting and this
information is gathered without them knowing.
 In preventive approach, the software development
takes into account the encouragement effect on student
attitude. Instead of compulsory attitude change,
students are encouraged to perform well in their
assignment and fulfill their responsibility in spending
sufficient time and effort in programming activity. The
prevention approach is conducted by monitoring
students’ programming activity. They realize that their
action is recorded and controlled. Two aspects are

J. Computer Sci., 6 (11): 1341-1346, 2010

1343

considered in this approach: effect towards observation
and Hawthorne effect.
 First, effect towards observation: students need to
be given full information on study planning and the
intended result of the prevention tool. The
psychological impact would be created based on what
the subjects think on real world. Subject’s knowledge
or their own expectation on the study purpose and their
own desire to be seen as good subject in researcher’s
eye would result in action that follows researcher’s
needs. In this situation, the students will commit in
normal programming activity such as typing, debugging
and implementing their program. It is the role of course
instructor in disseminating information regarding the
study planning clearly at the beginning of the course.
 Second, Hawthorne effect: an open programming
activity pooling technique through observation would
influence subject’s behavior. Hawthorne effect is
exploited in student’s environment to maximize the
surveillance system function as a preventive approach
on plagiarism activity. Although the recording of
process information is hidden, a report is generated at
the end of each programming session that informs
student development process. The report is presented in
a simple and meaningful way to encourage student
spend their own time in programming activity.

MATERIALS AND METHODS

 The surveillance system is implemented in such a
way that no significant change is observed in the
available working environment. Surveillance system
will produce two file types: activity log (special file)
and backup file. Activity log file is created to keep
programming activity log information as reference
purposes if more information is needed. Backup file
(*.bak) is created to save the program writing record.
The surveillance function is developed by fulfilling
certain criteria as summarized in Table 1.
 In the proposed approach, each student in the
programming course is supplied with surveillance
system. It is developed in a Java programming
environment which enables recording the identified
programming activity during program development.
The software is equipped with programming activities
supervision function. Each time students are working
on the programming assignment, the system will be
able to record the activity. Even though the observation
function has been implemented in the system’s
environment, basically no obvious changes have been
made on the present programming interface
environment. The function was built transparently with
recording, analytic and programming activity sequence
display functions. Figure 1 shows the environment of
the surveillance system called DwiCoder.

Table 1: Requirements in developing surveillance function
Requirement Description
Ubiquity Enable monitoring of each activity in developing
 source program.
Quantitative Each recorded activity should contain quantitative
 information which could be used in further analysis
Not intrusive Activity recording is not made clearly
Transparent Programmer should be able to interact naturally
 with the developing environment. Log record
 should not limit of his/her choice.
Objective Analysis of log activity should be repeated using
 similar criterion
Individual Each log should be individual, i.e., it is unique for
 one file only.
Hidden Recording function should be implemented indirectly
Output Programming activity output should be displayed in
 sequence
Writing record The programming codes should be kept.
Data integrity Recorded data should have high integrity

Fig. 1: Environment of DwiCoder

Fig. 2: Model of the system

 Programming activity is recorded in hidden manner
and the information is kept in a special file called log
file. These data are kept in separate files and are created
uniquely for every program source. They have a
standard format and treated as raw data in programming
study. Observation function also produces one writing
text file which stores program text when it is compiled
for the first time. This file is built as a backup file if
source file suffers some damage. Figure 2 displays the
model of the whole system.

J. Computer Sci., 6 (11): 1341-1346, 2010

1344

Fig. 3: Flow of programming activity

 In the observation function, programming activity
record is created based on a standard format. Three
main attributes are provided: Date, time and
programming code. This requirement is important
because one programming session might pass a time
frame with changing dates. Data is recorded following
to the treatment of activity, state transition in document
program and main programming activity (Fig. 3). In the
sequence, program source would first be built (state
“N”), followed by compilation and save process (state
“C” and “S”). Next, program will be executed (state
“E1”) while state “E2” marks the end of program
execution. Program file will be closed (state “X”) when
program session ends and program file will probably be
opened (state “O”) again if the programmer want to
resume his/her programming process. Compilation,
save and execution process perhaps will occur
repeatedly in every programming session. Programmer
may end each session in four main situations: After
compilation or save, after implementation process,
when a document is created and when a document is
opened.

RESULTS

 DwiCoder presents the programming activity log in
a sequence format. The format allows for displaying as
much information as possible that can be analyzed
according to the content of activity log. The observation
function captures specific and general observation of
students’ programming behavior based on their
programming activity basis.
 A data set that represents a metric of programmer
oriented behavior is generated by the system. This
metric fall into four categories that measure different
aspects in the programming procedure: Time profile,
compilation and implementation activity, mistake
measurement and program solution equality. Table 2
lists the metric.

Table 2: Programmer oriented behavior measurement
Time profile
DT Development time
NoS Programming session number
Compilation and implementation activity
NoC Compilation number
NoE Implementation number
NoM Modification number
WT Writing time-development time until the first time of
 compilation
DTtLC Development time after the last time of compilation
CI Compilation Interval
CiSD Standard deviation of compilation interval
CoT Time needed to free the program from syntax error
MoT Modification time
EoT Implementation Time
Compilation of mistake
NoFC Failed compilation number
NoSC Success compilation number
FCP Failed compilation percentage
SCP Success compilation percentage
FCNbDT Failed compilation normalization between development
 time
SCNbDT Succeed compilation normalization between
 development time
Solution equality
Score Percentage of program equality from the whole solution

 The system generates a time graph, one of its
display tools to show activity sequence which occurred.
All information of necessity is displayed in the
sequence of time. Graphical display format (Fig. 4) is
produced so that the recorded data could be interpreted
easily to follow four main phases: Writing,
compilation, implementation and modification.
Definition of each phase is adapted fully from
program compilation, implemented and modification
classification (Takada et al., 1994).
 This report generating function is one of
DwiCoder’s menu choices so that student can see their
programming progress and print their program as an
evidence purpose. Figure 4 also shows an example of the
report for a program. With the richness and systematic
recorded information, the report is expected to give an
encouragement for students to be more responsible on
their work. The report shows that one of the expectations
in the programming assignment is sufficient time and
compilation number was fulfilled in developing the
program in these three activities: Compilation, execution
and modification. This report display is not only useful
for research use on programming even may serve as a
self reporting mechanism. Students are able to monitor
their own progress and check whether they fulfill the
assessment criteria.
 This surveillance system has the ability to record
any activity based on programmers’ selection on related
menus only. It is more difficult to consider
programmer’s mind which is not related to
programming activities or leave his/her programming
environment without closing the programming session.

J. Computer Sci., 6 (11): 1341-1346, 2010

1345

Fig. 4: Log content and graph display of activity

Fig. 5: Display of security message

As such, a security mechanism is built behind the
scenes in DwiCoder to identify keyboard activity. It
will close the programming session automatically if
there is no reaction from programmer when a warning
message appears, as in Fig. 5. It is found to be effective
in reducing time recording for activities not belong to
programming log.

DISCUSSION

 DwiCoder is a surveillance system that employs
observation and prevention approach. The former
approach enables for monitoring the programming
activity conducted by students that consider their
learning capacity in an integrated development
environment. Hidden data collection is conducted to
observe the programmers’ behavior. The later approach
takes into account the encouragement effect on student
attitude. Instead of compulsory attitude change,
students are encouraged to perform well in their

assignment and fulfill their responsibility in spending
enough time in programming activity.
 The Hawthorne effect phenomenon is a result of a
careful setting to the environment. Assuming an
increment in student performance resulting merely from
instructor attention to them is among the mistakes in the
usage of the term (Gottfredson, 2005). Remarkable
improvements in students’ performance might be
contributed by various factors such as conducive and
enjoyable laboratory environment in which students are
willing to spend long time to complete the assignment,
students’ personal goals of obtaining their degree with
flying colors, or careful attention to their performance
since the first day in that semester.
 To achieve the desired result in programming
course, course instructor plays an important role. Not
only depending on the surveillance system, it is
important for instructor to keep varying the course to
keep it from getting stale. Such changes might involve
instructor’s approach in presenting material and
collaborating with other students (Spinellis et al., 2007;
Stewart-Gardiner et al., 2001). The new and innovative
method in marking students’ assignment would
probably change and improve student’s learning style
and behavior to spend enough time to develop the
program. A reasonable change would cause an
improvement in student learning especially when they
perceive that the instructor is giving them attention that
seems special.
 With the ability to record complex data in
programming, the surveillance system gives an
advantage to implement observational study as
compared to experimental study previously done. The
inclusion of data collection function in present
environment brought to by DwiCoder is not a new
approach, tools such as AESOP and Mother are able to
gather information to monitor student’s behavior on-
line (Kivi et al., 1998).
 There are various tools and systems for automatic
detection of plagiarism in programming projects. JPlag
and Turnitin use similarity index as an evidence of
plagiarism. Daly and Horgan (2005) present a technique
for detecting plagiarism in computer code, which has
the advantage of distinguishing between the originator
and the copiers and handling a large group studying
programming in an automated learning environment.
 DwiCoder appears to be a better method for
collecting information on subject’s behavior due to its
ability to be carried out in a non-experiment
environment and does not require subject intervention.
The programmer’s action and response in the
programming environment such as pressing the
keyboard or calling on certain menus could be detected.

J. Computer Sci., 6 (11): 1341-1346, 2010

1346

This approach implies a self reporting technique which
might expose some element of bias. In future,
monitoring on some non-programming activity domains
like eating, drinking or opening email could be included
as an enhancement of the system.

CONCLUSION

 This study proposes a surveillance system called
DwiCoder to handle plagiarism problem in
programming projects. It applies observation and
preventive approach to monitor students’ programming
activity and to promote good practice in spending
enough time in programming activity.
 DwiCoder provides a learning environment in
which student’s programming activity will be
continuously under observation and their behavior is
under control; therefore the environment is an effective
prevention method in tackling plagiarism. Apart from
that, this system affords to give enough evidence on
student’s effort to resolve their assignment.

REFERENCES

Cogan, E. and C. Gurwitz, 2009. Memory tracing. J.

Comput. Sci., 5: 608-613. DOI:
10.3844/.2009.608.613

Daly, C. and J. Horgan, 2005. A technique for detecting
plagiarism in computer code. Comput. J., 48: 662-666.
DOI: 10.1093/comjnl/bxh139

El-Mousa, A.H. and A. Al-Suyyagh, 2010. Embedded
systems education for multiple disciplines. J.
Comput. Sci., 6: 186-193. DOI:
10.3844/.2010.186.193

Gottfredson, G.D., 2005. Hawthorne Effect. In:
Encyclopedia of Statistics in Behavioral Science,
Everitt, B.S. and D.C. Howell (Eds.). John Wiley
and Sons, New Jersey, ISBN: 0470860804,
pp: 784-785.

Joy, M. and M. Luck, 1999. Plagiarism in programming
assignments. IEEE Trans. Educ., 42: 129-133.
DOI: 10.1109/13.762946

Kivi, M.R., T. Gronfors and A. Koponen, 1998.
MOTHER: System for continuous capturing of
display stream. Behav. Inform. Technol., 17: 152-154.
DOI: 10.1080/014492998119517

Mangione-Smith, R., M.N. Elliott, L. McDonald and
E.A. McGlynn, 2002. An observational study of
antibiotic prescribing behavior and the hawthorne
effect. Health Serv. Res., 37: 1603-1623. DOI:
10.1111/1475-6773.10482

Rath, A.K. and P.K. Meher, 2006. Design of a merged
DSP microcontroller for embedded systems using
discrete orthogonal transform. J. Comput. Sci.,
2: 388-394. DOI: 10.3844/.2006.388.394

Rath, A.K. and S.N. Dehuri, 2006. Non-dominated
sorting genetic algorithms for heterogeneous
embedded system design. J. Comput. Sci., 2: 288-291.
DOI: 10.3844/.2006.288.291

Sheard, J. and M. Dick, 2003. Influences on cheating
practice of graduate students in IT course: What
are the factors? Proceedings of the 8th Annual
Conference on Innovation and Technology in
Computer Science Education, June 30-July 02,
ACM Press, Thessaloniki, Greece, pp: 45-49. DOI:
10.1145/961511.961527

Sani, N.F.M., A.M. Zin and S. Idris, 2009
Implementation of CONCEIVER++: An object-
oriented program understanding system. J.
Comput. Sci., 5: 1009-1019. DOI:
10.3844/.2009.1009.1019

Spinellis, D., P. Zaharias and A. Vrechopoulos, 2007.
Coping with plagiarism and grading load:
Randomized programming assignments and
reflective grading. Comput. Appli. Eng. Educ.,
15: 113-123. DOI: 10.1002/cae.20096

Stewart-Gardiner, C., D.G. Kay, J.C. Little, J.D. Chase
and J. Fendrich et al., 2001. Collaboration Vs
plagiarism in computer science programming
courses. Proceedings of the 32nd SIGCSE
Technical Symposium on Computer Science
Education, ACM Press, Charlotte, North Carolina,
United States, pp: 406-407. DOI:
10.1145/364447.364790

Takada, Y., K. Matsumoto and K. Torii, 1994. A
programmer performance measure based on
programmer state transitions in testing and
debugging process. Proceeding of the 16th
International Conference on Software Engineering,
May 16-21, IEEE Computer Society, Sorrento,
Italy, pp: 123-132. DOI:
10.1109/ICSE.1994.296772

Taylor-Powell, E. and S. Steele, 1996. Collecting
evaluation data: An overview of sources and
method. University of Wisconsin-Extention.
http://www.worldbridgeresearch.com/files/Method
s.pdf

