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Abstract: Problem statement: The advancement of the biochemical research gives profound effect to 
the collection of biochemical data. Approach: In the recent years, data and networks in biochemical 
pathways are abundant that allow to do process mining in order to obtain useful information. By using 
graph theory as a tool to model these interactions, it can be formally find the solution. Results: The 
core of the problem of mining patterns is a subgraph isomorphism which until now has been in the NP-
class problems. Early identification showed that in the context biochemical pathways has unique node 
labeling that result simplifying pattern mining problem radically. Conclusion: Process will be more 
efficient because the end result that is needed is maximum pattern that could reduce redundant 
patterns. The algorithm that used is a modification of the maximum item set patterns that are 
empirically most efficiently at this time. 
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INTRODUCTION 
 

 The advance developments in biochemical 
pathways have impact to the increasing availability of 
molecular data that allows analyzing the connectivity 
and interaction between biochemical pathways 
(Hartwell et al., 1999; Oltvai and Barabasi, 2002; 
Inokuchi et al., 2001; Cook and Holder, 2000; Rives 
and Galitski, 2003). The fast escalation of molecular data 
was suspected by successfully developed of BLAST and 
CLUSTAL (Altschul et al., 1997; Thompson et al., 
1994) that have contributed to the availability of data in 
various processes biochemical pathways.  
 Biochemical pathways interaction data, in 
general, lead to biological or cellular networks 
(Krishnamurthy et al., 2003). They are often 
abstracted using graph modeling. Despite the 
availability of adequate data, the analysis of the 
efficiency of data generated by BLAST and CLUSTAL 
are not yet available.  
 The complexity of biochemical pathways can be 
understood by using a variety of concepts in graph 
theory. For example, biochemical pathways, is a model 
which uses hyperGraph, where the vertices are expressed 
as molecules and hyperedge expressed enzymes 
(reaction). It is possible to reduce the model into a more 
general connected graph with nodes as enzymes and the 
edge directed from an enzyme to the other states as the 
process of being consumed by the first enzyme reaction 
catalyzed by the others (Hartwell et al., 1999; Oltvai and 
Barabasi, 2002).  

 Two main issues in the graph that arise in the 
context of biochemical pathways datasets are aligning 
multiple graphs and find the frequent subgraph from the 
collection of graphs. Analysis of biochemical pathways 
in the context of both these problems will respond to 
various issues including the analysis of differences 
between the biochemical pathways structure among 
different organisms, as well as patterns of gene 
regulation (Akutsu et al., 1998; Olken, 2003; Ito et al., 
2001; Ho et al., 2002).  
 In this study, we formulate the problem of frequent 
pattern that discovered from a collection of graphs is 
called biochemical pathways mining. 
 Frequent pattern mining is still an open problem 
because the core of graph mining is subgraph 
isomorphism problem which is classified as NP-hard 
class. However, modeling of biochemical pathways 
network can simplify the problem of graph mining. In 
the context of biochemical pathways that has a unique 
vertex labeling. This has resulted simplification pattern 
mining problem significantly. Algorithm for the 
extraction process to find the frequent pattern among 
biochemical pathways datasets using the model that 
proposed by (Karp and Mavrovouniotis, 1994; Gaol and 
Widjaja, 2008).  
 In this study, we will discuss the use of graph 
theory for the formalization of biochemical pathways. It 
will be discussed modeling to biochemical pathways 
and how to analyze it. In the discussion, will be 
discussed in depth the results of observation. The final 
part, will be concluded and the various aspects of 
advanced research that can be done.  
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MATERIALS AND METHODS 
 
Approach: Graph mining is a very challenging issue 
because it deals with issues isomorphisma subgraph 
which is a NP-hard. Graph mining is more exciting 
because a lot of modeling graphs appear in many state of 
the art applications, industrial and scientific. Existence of 
graph mining algorithms in general is based on frequent 
pattern mining, which had already appeared in much 
literature (Patel et al., 2005; Razali and Ali, 2009). 
Definition and complication of the problem of graph 
mining is significantly dependent on the target 
application.  
 For example, one class of algorithms defined the 
issue a problem to find the sub-pattern isomorphism 
(not dependent labeling) in the database of graphs or a 
graph is large (Mamitsuka et al., 2003; Goto et al., 
1997; Tohsato et al., 2000).  
 This approach is suited to applications that intend 
to focus on the relationship between entities. 
However, this contributes to the large computing time 
because the root of the problem of subgraph 
isomorphism is NP-problem that must solve in every 
step of the algorithm. As a result of research in graph 
mining is focused on sorting the node and several 
optimization techniques that simplify the problem of 
subgraph isomorphism (Kuramochi and Karypis, 
2001; Mamitsuka et al., 2003).  
 A discussion of mining in the context graph will 
begin with the following definition (Olken, 2003).  
 
Definition 1: Biochemical pathways of P (M, Z, R) is a 
collection of metabolites M, Z enzymes and reactions 
R, where each r ∈ R reactions are enzymes associated 
with Z (r)⊆Z, a set of substrates S (r) ⊆ M and a set of 
products T (r) ⊆M. 
 The goal of mining is to find the biochemical 
pathways of certain patterns from the interaction of 
enzymes related to one another. The modeling of 
biochemical pathways with a simple digraph will be 
modeled the interaction of information efficiently. Each 
enzyme is symbolized by a unique vertex in a collection 
of pathway. This effectively simplifies the problem of 
graph mining significantly. Simplification process is 
certainly does not omit information but increasingly 
facilitate the process of information extraction. This 
will be increasingly facilitating the process of 
information extraction.  
 
Definition 2: Biochemical pathways of P(M,Z,R), 
graph G(V, E) P can be constructed with the following: 
for enzyme zi ∈ Z, there is node vi ∈ V. There is an 
edge from vi to vj, i.e (vi, vj )∈E. Iff ∃r1, r2 ∈R, such 
that zi∈ Z(r1), zj ∈ Z(r2) and T(r1) ∩ S(r2) ≠ ∅. 

 Biochemical pathways can be modeled using graph 
modeling. There is a connation from one enzyme to 
other enzymes in the two enzymes If and only if graph 
part is of a product from one to another. A biochemical 
pathway was illustrated in Fig. 1. In the pathways, 
enzymes expressed as square, oval while metabolites 
otherwise. Each vertex represents a single enzyme in 
the oval-shaped graphs. The direction of the edges can 
be ignored, but shows the interaction between the 
enzymes. 
 
Algorithm for mining biochemical pathways: 
Biochemical pathways for the mining algorithm based 
on (Gaol and Widjaja, 2008) using graph modeling in 
the previous section which facilitates the process of 
mining frequent pattern.  
 
Definition 3: Given collection of graphs, G1, G2,. . ., Gn 

and support threshold ε, Maximum Frequent subgraph 
search process is the process of finding all maximum 
connected subgraph containing at least εn from the 
input graph. 
 This definition states that the support of a subgraph 

contained in n’ a collection of graphs is  
/n

n
.  

 A subgraph is frequent if its support is greater than 

or equal
/n

n
. The connectivity requires frequent 

interaction that must relate to one another. Formally, a 
graph is connected if there is at least one path that 
connecting any two vertex in a graph. The use of the 
connectivity is to reduce maximum subgraph that is 
redundant. Frequent subgraph is maximum frequent if 
not contained in another subgraph. 
 Gaol and Widjaja (2008) mentioned that 
although the graph mining is a difficult issue but by 
using the framework above, has simplified the 
problem. It was due to the above model that has a 
unique  labeling  of  nodes  resulting edges are also unique. 
 

 
 (a)  (b) 

 
Fig. 1: Digraph modeling to biochemical pathways (a) 

part of the glycolysis pathway and (b) 
representation of the digraph 
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It makes possible to reduce problem to frequent 
itemset mining using edges as data. To frequent 
itemset mining algorithms will be selected among the 
existing algorithms.  
 Because vertices labels are unique, then every edge 
that there are uniquely expressed by the labels of 
neighboring nodes to each other. This study leads to the 
idea to declare a connected subgraph with the set of 
edges, because of the uniqueness of each edge lead to 
the uniqueness of the subgraph that represent by the 
collection of edges. 
  
Definition 4: An edge e which is a collection of labels 
of two vertices vi, vj. A set of unique edges ES = (e1, 
e2,. . . , Ek) is called the set of connected edge (edge sets 
connected) iff all the edges in these sets are connected, 
ie every subset of ES '⊆ES together using at least one 
node left in the edges ES\ES. 
 In the context of frequent motifs mining, a 
transaction is a set of motifs. In data mining we can 
made relationship between maximum frequent pattern 
can set up with frequent motifs mining, in which 
pathways relate with the relationship and a collection of 
linked edge corresponding motifs. The problem is how 
to find all frequent motifs contained in transactions that 
meet the threshold of support.  
 The basic idea of mining frequent item sets will be 
adapted for subgraph mining with a focus only for the 
connected set of edge that will pass through the search 
process. Besides it is necessary for elimination of 
redundancy in the sense that the same set of edges over 
more than one order. Subgraph mining is a modified 
algorithm based on (Gouda and Zaki, 2001). This 
algorithm in accordance with experimental results for 
the maximum pattern mining algorithm with the 
computational time is the most efficient compared to 
other algorithms maximum itemset pattern. This is due 
to its depth first backtracking enumeration based 
principles, which expand each subgraph with only the 
edges of the candidate set of edges. To ensure 
connectivity, the addition of edges to the subgraph is 
connected and to avoid redundancy by keeping track 
that you have visited.  
 Based on the research of Mamitsuka et al. (2003), 
one of the reasons for selecting the depth-first procedure 
is a limitation of memory size becomes very problematic 
when the database graph bigger. Algorithm for frequent 
pattern   mining   is   expressed in Fig. 2, developed by 
(Mamitsuka et al., 2003) that the most efficient 
experimentally compared with other algorithms.  
 The algorithm will expand the edge sets of all 
edges in a collection of candidates one by one. If 
collection of an expanded edge is frequent, then the 

procedure will be called back. The algorithm terminate 
when an edge sets cannot be e again. In the algorithm, 
C (ei) of the edge ei neighboring states. Figure 3 is the 
example of execution for Algorithm Depth-first 
enumeration for mining frequent subgraph. 
 D is a set of edges that have been visited by the 
algorithm. Mining Path ways procedures (MFS, (ei), 
C(ei), (e1, e2, ..., ei-1)), for each edge ei are frequent in 
the collection of graphs.  
 Procedure Mining Path ways MFS, Ek, Ck, D): 
 
MFS: Collection of maximum frequent subgraph 
Ek: Frequent subgraph with k edges 
 

 
 
Fig. 2: Algorithm Depth-first enumeration for mining 

frequent subgraph 
 

 
(a) 

 

 
(b) 

 
Fig. 3: Example of execution from mining frequent 

subgraph. (a) Input from graph collection; (b) 
result from tree enumeration of frequent edges  
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Fig. 4: Mining pathways that are repeated for various values of support threshold in glutamine among 255 
organisms 

 
Ck: Collection from candidate of edges 
D: Collection of visited edges 
 

RESULTS AND DISCUSSION 
 
Experiment: By using the algorithm MiningPathways, 
mining process of collection, which is extracted from 
Biochemical pathway databases KEGG. Current KEGG 
biochemical pathways have a complete database which 
is also a basic reference path ways that can be displayed 
as networks enzyme formed manually. Pathway-
pathway organisms formed automatically with the help 
enzyme genes identification. At the end of the year 
2009, KEGG contains pathway maps from several 
processes including carbohydrate metabolism, energy, 
lipid, nucleotide and amino acid metabolism to 257 
organisms.  
 Mining was conducted in several pathways that are 
part of metabolism for several different organisms. 
Samples from the sub-sub-pathways are repeated in this 
collection. They are part of the pathway that 
metabolizes glutamate metabolism, alanine-aspartate 
and pyrimidine as stated in Fig. 4 s/d Fig. 6 
respectively. Base on KEGG ID, vertices in graphs are 
labeled by an enzyme, which can be queried from the 
KEGG website for more detailed information.  
 We successfully found some repeated sub-
pathways. For example, a pathway of metabolism 
glutamine containing 6-vertices and eight edges that 
appears in 50 from 255 organisms. Sub-pathway that 
is represented by the node-edge thickness and edge in 
Fig. 4. Consisting of enzyme-enzyme, Citrate cycle, 

Cyanoamino acid metabolism, amino sugar and 
nucleotide sugar, Peptidoglycan biosynthesis.  
 We will try with some different support threshold 
in various metabolic pathways. For example, when the 
support threshold was reduced to 2.99% (35 organisms) 
for the metabolism of glutamate, the largest a sub-
pathways that can be found consisting of 3 vertices and 
12 edges. Sub-pathway was expressed by vertex 
thickness and edges. As stated in the figure, this 
pathway contains Citrate cycle, which is also related to 
another enzyme with L-glutamine. When the reduction 
of support threshold to 3.97% (35 organisms), in this 
research managed to find a sub-pathway of 6-vertices 
and 13 edges, which is expressed in the whole graph in 
the picture. Loop for Cyanoamino acid implies that 
these enzymes involved in two successive reactions, 
which was part of a sub-pathway-subpathway repeats.  
 In Fig. 5, the biggest pathways that is found in 
metabolism Metabolism of Terpenoids and Polyketides 
for the three levels of support threshold is different. The 
bold sub-pathway of 5-vertices and eight edges 
occurred in 50 of 196 organisms (35.1%), thick sections 
with a 5 vertices and 11 edges occurred in 30 organisms 
(17.4%) and overall graph of six-vertices and 16 edges 
occurred in 18 organism (11.5%). Note that 
Biosynthesis of type II polyketide backbone and 
Tetracyclines. The interaction with the Cyanoamino, 
expressed by the dashed line in Fig. 5, included in a 
repeated sub-pathway of the metabolism of alanine-
aspartate but not including the sub-sub-pathways that is 
greater than the smaller frequency, which is an 
important result to be written.  
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 Figure 6 show that the analysis of various levels 
from the threshold of sub-recurring pathway for 
metabolism Tetracycline biosynthesis. There are beta-
Alanine biosynthesis, cytosine, Uridine, glutamine, 
Pyrimidine, of 4-vertek vertek and five edge-edge 

occurred in 43 of 276 organisms (23.6%), thick sections 
with a 5- vertices and 7 edges of the organisms 
occurred in 34 (21.8%) and overall from the graph of 7-
vertices and 13 edges occurred in 23 of organisms 
(15.4%). 

 

  
Fig. 5: The discovery of sub-pathway that repeated for a variety of different support values on alanine-aspartate 

metabolism among 157 organisms 
 

 
 

Fig. 6: The discovery of pathway-sub-sub-recurring pathway for a variety of different support values on 
Tetracycline biosynthesis metabolism among 156 organisms 



J. Computer Sci., 6 (11): 1276-1282, 2010 
 

1281 

Table 1: Time used in mining various different biochemical pathway 
for various different minimum support 

 Min support No. of subpathway No. of most  Runtime 
Metabolism  (%) frequent of edges (sec) 
Glutamate 
 10.0 34 15 0.52 
 12.5 39 13 0.17 
 15.0 21 11 0.03 
 20.0 12 9 0.00 
 10.0 120 15 0.44 
Metabolism of Terpenoids and Polyketides 
 12.5 78 15 0.19 
 15.0 49 12 0.04 
 20.0 23 7 0.00 
Tetracycline biosynthesis 
 10.0 34 16 3.08 
 12.5 25 16 1.84 
 15.0 21 12 0.15 
 20.0 15 11 0.02 
 
 In Table 1 the report base on results from mining 
collections biochemical pathway some minimum 
supports. The report is based on number of repeated 
maximum path, the number of edges in the discovery of 
path-the biggest path and time in seconds for executions 
of the metabolism. Metabolism of Terpenoids and 
Polyketides collection has a total of 2804 vertices and 
11339 edges from 155 organisms. Collections of 
Tetracycline biosynthesis pathway have 2681 vertices 
and 8481 edges from collection of 156 organisms.  
 By using a Pentium Core Duo with 2 GB of 
memory can be mined collections of less than a second 
pathway to support the value of a relatively high 
threshold to obtain meaningful results in the sense that 
the size of the pathways repeatedly found. For lower 
values of support, many sub-sub-pathways that became 
recurrent and size of the pathways increased 
significantly. For this reason, need more time to 
produce all the pathway are frequent. We conclude that 
with the increasing of the pathways that will give an 
exponential effect with the time computation. The 
exponential effect with the time computation will give 
more challenging for finding the knowledge inside the 
Biochemical Pathways www.kegg.com. 
 

CONCLUSION 
 
 With the increasing amount of data and 
interactions of bio-molecular networks, that will affect 
the problem of mining patterns, motifs and modules 
within the network biology become very interesting. 
This study provides a framework for mining is the 
process of biological networks using graph model that 
emphasizes the efficiency of computation time by 
using the method (Gaol and Widjaja, 2008) which has 
a highly efficient computing time to the present. For 
further research will be reviewed preprocessing 
techniques to data from www.kegg.com and empirical 
testing uses a model algorithm. 
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