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Abstract: Problem statement: The advancement of the biochemical research girafeynd effect to

the collection of biochemical datApproach: In the recent years, data and networks in bioch&mic
pathways are abundant that allow to do processnigiimi order to obtain useful information. By using
graph theory as a tool to model these interactiinsan be formally find the solutiofResults: The
core of the problem of mining patterns is a sublgigpmorphism which until now has been in the NP-
class problems. Early identification showed thathi@ context biochemical pathways has unique node
labeling that result simplifying pattern mining ptem radically.Conclusion: Process will be more
efficient because the end result that is needethagimum pattern that could reduce redundant
patterns. The algorithm that used is a modificatadnthe maximum item set patterns that are
empirically most efficiently at this time.

Key words: Biochemical pathways, graph theory, subgraph ispimiem, NP problems, maximum
itemset pattern

INTRODUCTION Two main issues in the graph that arise in the
context of biochemical pathways datasets are aggni
The advance developments in biochemica|multipl_e graphs and find the.freque_nt subgraph fthen
pathways have impact to the increasing availabdity —collection of graphs. Analysis of biochemical pattys
molecular data that allows analyzing the connegtivi in the context of both these problems will respdad
and interaction between biochemical pathwaysvarious issues _|ncIud|ng the analysis of difference
(Hartwell et al., 1999; Oltvai and Barabasi, 2002; between the biochemical pathways structure among
Inokuchi et al., 2001; Cook and Holder, 2000; Rives different organisms, as well as patterns of gene
and Galitski, 2003). The fast escalation of molacdhata rzeo%ullg':;orét(ﬁl\ku;%gal., 1998; Olken, 2003; Itet al.,
was suspected by successfully developed of BLAST an , noetal., )-
CLUSTAL (Altschul et al., 1997; Thompsoret al., In this study, we formulate the prot_)lem of frequen
1994) that have contributed to the availabilitydata in pattern that discovered from a collection of graphs

various processes biochemical pathways. callelg b'OCh?m'Cal pathquys ’T“”";%- bl
Biochemical pathways interaction data, in requent patiern mining 1S stil an open problem

general, lead to biological or cellular networksbecause the core of graph mining is subgraph

(Krishnamurthy et al., 2003). They are often isomorphism problem which is classified as NP-hard

abstracted using graph modeling. Despite theclass. However, modeling of biochemical pathways

availability of adequate data, the analysis of thenetwork can Si”_‘p”fy th_e problem of graph mining._l
efficiency of data generated by BLAST and CLUSTAL the context .Of bloc_hem|cal pathways th.a.t hffls aueniq
are not yet available. vertex labeling. ThIS. he}s_ resulted S|mpl|f|cat|cmttprn
) . . mining problem significantly. Algorithm for the
The complexity of biochemical pathways can be : .

’ . . extraction process to find the frequent pattern rgno
understood by using a varle_ty of concepts_ n graplP)iochemical pathways datasets using the model that
the_ory. For example, biochemical pathyvays, is aeghod proposed by (Karp and Mavrovouniotis, 1994; Gaal an
which uses hyperGraph, where the vertices are sxpde Widjaja, 2008).
as molecules and hyperedge expressed enzymes | this study, we will discuss the use of graph
(reaction). It is possible to reduce the model mtmore  theory for the formalization of biochemical pathwait
general connected graph with nodes as enzymeshand twill be discussed modeling to biochemical pathways
edge directed from an enzyme to the other statéSeas and how to analyze it. In the discussion, will be
process of being consumed by the first enzyme imeact discussed in depth the results of observation. firtz
catalyzed by the others (Hartwellal., 1999; Oltvai and part, will be concluded and the various aspects of
Barabasi, 2002). advanced research that can be done.
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MATERIALSAND METHODS Biochemical pathways can be modeled using graph
o o modeling. There is a connation from one enzyme to
Approach: Graph mining is a very challenging issue gther enzymes in the two enzymes If and only ipbra
because it deals with issues isomorphisma subgraplghrt is of a product from one to another. A biochzam
which is a NP-hard. Graph mining is more excitingpathway was illustrated in Fig. 1. In the pathways,
because a lot of modeling graphs appear in maig sfa enzymes expressed as square, oval while metabolites
the art applications, industrial and scientificistance of  jiherwise. Each vertex represents a single enzyme i
graph mining algorithms in general is based onue®q  he oval-shaped graphs. The direction of the edges

pattern mining, which had already appeared in muclye jgnored, but shows the interaction between the
literature (Patelet al., 2005; Razali and Ali, 2009). enzymes.

Definition and complication of the problem of graph

mining . is significantly dependent on the tarQEtAIgorithm for mining biochemical pathways
application. , , Biochemical pathways for the mining algorithm based
For example, one class of algorithms defined thg,, (Gaol and Widjaja, 2008) using graph modeling in

issue a problem to find the sub-pattern isomorphismne previous section which facilitates the process
(not dependent labeling) in the database of graples mining frequent pattern.

graph is large (Mamitsukat al., 2003; Gotoet al.,

1997; Tohsatet al., 2000). o _ Definition 3: Given collection of graphs, GG,,. . ., G,
This approach is suited to applications that idten and support threshole, Maximum Frequent subgraph

to focus on the_ relationship between entities.qearch process is the process of finding all masximu
However, this contributes to the large computimgeti connected subgraph containing at least from the
because the root of the problem of subgrapk]nput graph

isomorphism is NP-problem that must solve in every ; -
step of the algorithm. As a result of researchripb This definition states that the supp/ort of a sappr
mining is focused on sorting the node and severa¢ontained in n’ a collection of graphsfg;_
optimization techniques that simplify the problem o i . no
subgraph isomorphism (Kuramochi and Karypis, A Subgraphis frequent if its support is greakemt
2001; Mamitsukaet al., 2003).

A discussion of mining in the context graph will
begin with the following definition (Olken, 2003). interaction that must relate to one another. Fdgmal

graph is connected if there is at least one path th

Definition 1: Biochemical pathways of P (M, Z, R) is a connecting any two vertex in a graph. The use ef th
collection of metabolites M, Z enzymes and reaction connectivity is to reduce maximum subgraph that is
R, where each B R reactions are enzymes associatededundant. Frequent subgraph is maximum frequent if
with Z (r)0Z, a set of substrates S (f)M and a set of ot contained in another subgraph.
products T (rIM. Gaol and Widjaja (2008) mentioned that

The goal of mining is to find the biochemical although the graph mining is a difficult issue tyt
pathways of certain patterns from the interactidn ousing the framework above, has simplified the
enzymes related to one another. The modeling oproblem. It was due to the above model that has a
biochemical pathways with a simple digraph will be unique labeling of nodes resulting edges @@ @hique.
modeled the interaction of information efficientyach
enzyme is symbolized by a unique vertex in a ctibec
of pathway. This effectively simplifies the problesh
graph mining significantly. Simplification process
certainly does not omit information but increasyngl
facilitate the process of information extractionhis
will be increasingly facilitating the process of
information extraction.

/
or equaf%. The connectivity requires frequent

Definition 2: Biochemical pathways of P(M,Z,R),
graph G(V, E) P can be constructed with the folluyvi
for enzyme z0O Z, there is node;V] V. There is an Fig. 1: Digraph modeling to biochemical pathwayy (a
edge from yto v, i.e (v, v; )OE. Iff Oy, r, OR, such part of the glycolysis pathway and (b)
that zO Z(ry), z 0 Z(rz) and T(g) n S(r) 2 O. representation of the digraph
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It makes possible to reduce problem to frequenprocedure will be called back. The algorithm teratén
itemset mining using edges as data. To frequenivhen an edge sets cannotéagain. In the algorithm,
itemset mining algorithms will be selected among th C (g) of the edge jeeighboring states. Figure 3 is the
existing algorithms. example of execution for Algorithm Depth-first

Because vertices labels are unique, then every edgnumeration for mining frequent subgraph.
that there are uniquely expressed by the labels of D is a set of edges that have been visited by the
neighboring nodes to each other. This study leadlse  algorithm. Mining Path ways procedures (MFS),(e
idea to declare a connected subgraph with the et &€(g), (e, &, ..., 1)), for each edge; are frequent in
edges, because of the uniqueness of each edgé¢oleadthe collection of graphs.
the uniqueness of the subgraph that represent dy th  Procedure Mining Path ways MFS,, E;, D):
collection of edges. ) )

MES: Collection of maximum frequent subgraph

Definition 4: An edge e which is a collection of labels B« Frequent subgraph with k edges

of two vertices ¥ v;. A set of unique edges ES =,(e Maximume true

e,. . ., i) is called the set of connected edge (edge sets Forall of edges ¢; < Cy do
connected) iff all the edges in these sets are exiad, D«Du {e}

ie every subset of ESIES together using at least one Een e Exw {e}
node left in the edges ES\ES. If Exy are frequent then

ismaximume« false

In the context of frequent motifs mining, a _
Cir  (Cx N (&) D

transaction is a set of motifs. In data mining ves c MinePathways (MFS, By, Cyet, D)

made relationship between maximum frequent pattern If is maximumthen

can set up with frequent motifs mining, in which If Ex do not have superset in MFS then
pathways relate with the relationship and a calbecof MFS + MFS UE,.

linked edge corresponding motifs. The problem & ho

to find all frequent motifs contained in transaodhat ~ Fig. 2: Algorithm Depth-first enumeration for migin

meet the threshold of support. frequent subgraph
The basic idea of mining frequent item sets wéll b
adapted for subgraph mining with a focus only foz t o o

connected set of edge that will pass through thecke °
process. Besides it is necessary for elimination of

redundancy in the sense that the same set of edges

more than one order. Subgraph mining is a modified Graph Gy Graph G
algorithm based on (Gouda and Zaki, 2001). This
algorithm in accordance with experimental resutis f
the maximum pattern mining algorithm with the
computational time is the most efficient compared t
other algorithms maximum itemset pattern. Thisus d
to its depth first backtracking enumeration based
principles, which expand each subgraph with onky th
edges of the candidate set of edges. To ensure @ ()

connectivity, the addition of edges to the subgraph l \

g

©

Graph G Graph Gy

@)

connected and to avoid redundancy by keeping track
that you have visited.

.

Based on the research of Mamitsugaal. (2003), {ab} (4) {ac} (3) {de} (3)
one of the reasons for selecting the depth-firstgdure
is a limitation of memory size becomes very protdém l

when the database graph bigger. Algorithm for fezqu
pattern mining is expressed in Fig. 2, dgwetbby
(Mamitsuka et al., 2003) that the most efficient ()
experimentally compared with other algorithms.

The algorithm will expand the edge sets of allFig. 3:Example of execution from mining frequent
edges in a collection of candidates one by one. If subgraph. (a) Input from graph collection; (b)
collection of an expanded edge is frequent, then th result from tree enumeration of frequent edges
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Fig. 4: Mining pathways that are repeated for uaiosalues of support threshold in glutamine amob§ 2

organisms
C: Collection from candidate of edges Cyanoamino acid metabolism, amino sugar and
D: Collection of visited edges nucleotide sugar, Peptidoglycan biosynthesis.
We will try with some different support threshold
RESULTSAND DISCUSSION in various metabolic pathways. For example, when th

support threshold was reduced to 2.99% (35 orgas)ism

Experiment: By using the algorithm MiningPathways, for the metabolism of glutamate, the largest a sub-
mining process of collection, which is extractednfr  pathways that can be found consisting of 3 vertaes
Biochemical pathway databases KEGG. Current KEGGA2 edges. Sub-pathway was expressed by vertex
biochemical pathways have a complete database whidhickness and edges. As stated in the figure, this
is also a basic reference path ways that can Ipéagiexd  pathway contains Citrate cycle, which is also esdato
as networks enzyme formed manually. Pathwayanother enzyme with L-glutamine. When the reduction
pathway organisms formed automatically with thephel of support threshold to 3.97% (35 organisms), is th
enzyme genes identification. At the end of the yearesearch managed to find a sub-pathway of 6-vertice
2009, KEGG contains pathway maps from severabnd 13 edges, which is expressed in the whole graph
processes including carbohydrate metabolism, energyhe picture. Loop for Cyanoamino acid implies that
lipid, nucleotide and amino acid metabolism to 257these enzymes involved in two successive reactions,
organisms. which was part of a sub-pathway-subpathway repeats.

Mining was conducted in several pathways that are  In Fig. 5, the biggest pathways that is found in
part of metabolism for several different organisms.metabolism Metabolism of Terpenoids and Polyketides
Samples from the sub-sub-pathways are repeatdiisin t for the three levels of support threshold is défer The
collection. They are part of the pathway thatbold sub-pathway of 5-vertices and eight edges
metabolizes glutamate metabolism, alanine-aspartateccurred in 50 of 196 organisms (35.1%), thick isest
and pyrimidine as stated in Fig. 4 s/d Fig. 6with a5 vertices and 11 edges occurred in 30 dasgan
respectively. Base on KEGG ID, vertices in graptes a (17.4%) and overall graph of six-vertices and 1@e=d
labeled by an enzyme, which can be queried from theccurred in 18 organism (11.5%). Note that
KEGG website for more detailed information. Biosynthesis of type Il polyketide backbone and

We successfully found some repeated subTetracyclines. The interaction with the Cyanoamino,
pathways. For example, a pathway of metabolisnexpressed by the dashed line in Fig. 5, included in
glutamine containing 6-vertices and eight edges¢ tharepeated sub-pathway of the metabolism of alanine-
appears in 50 from 255 organisms. Sub-pathway thaspartate but not including the sub-sub-pathwagsish
is represented by the node-edge thickness andiadgegreater than the smaller frequency, which is an
Fig. 4. Consisting of enzyme-enzyme, Citrate cycleimportant result to be written.
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Figure 6 show that the analysis of various levelsoccurred in 43 of 276 organisms (23.6%), thick isest

from the threshold of sub-recurring pathway forwith a 5- vertices and 7 edges of the organisms

metabolism Tetracycline biosynthesis. There ar@-bet occurred in 34 (21.8%) and overall from the grapi-o

Alanine biosynthesis, cytosine, Uridine, glutamine,vertices and 13 edges occurred in 23 of organisms

Pyrimidine, of 4-vertek vertek and five edge-edge(15.4%).
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Fig. 5: The discovery of sub-pathway that repedteda variety of different support values on

metabolism among 157 organisms
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Table 1: Time used in mining various different hiemical pathway REFERENCES
for various different minimum support

Min support  No. of subpathway No. of most  Runtime Akutsu, T_, S. Kuhara, 0. Maruyama and S. Miyano,

obdlem  Of frequent ofedges  (sec) 1998. Identification of gene regulatory networks by
100 34 15 052 strategic gene disruptions and gene over
125 39 13 0.17 expressions. Proceeding of the 9th Annual
e a n oo ACMSIAM Symposium on Discrete Algorithms,
100 120 15 0.44 Jan. 25-27, Society for Industrial and Applied

MetaboliwofTerf;oidsanddel;gides 5 016 Mathematics, San Francisco, California, United
150 49 12 0.04 States, pp: 695-702.
20.0 23 7 0.00 http://portal.acm.org/citation.cfm?id=314613.315050

Te“acydi”ebiow%h;ﬂs o " 208 Altschul, S.F., T.L. Madden, A.A. Scheffer, J. Zgan
125 25 16 184 and Z. Zhanget al., 1997. Gapped BLAST and
150 21 12 015 PSIBLAST: A new generation of protein database
20.0 15 11 0.02

search programs. Nucleic Acids Res., 25: 3389-3402.

DOI: 10.1093/nar/25.17.3389

In Table 1 the report base on results from miningCOOk DJ. and LB. Holder. 2000 Graph-based data
collections biochemical pathway some minimum rﬁinir.lg. IEEEI intell éyst '15. 3[32_41 DOI:

supports. The report is based on number of repeated 10.1109/5254.850825

maximum path, the number of edges in the discovéry G501 FL. and B. Widjaja, 2008. Semistructured

path-the biggest path and time in seconds for ei@wi mining and its application. Int. J. Comput. Inform.
of the metabolism. Metabolism of Terpenoids and  gyst "4: 97-1009.

Polyketides collection has a total of 2804 vertieesl  Goto,” S., H. Bono, H. Ogata, W. Fujibuchi and T.
11339 edges from 155 organisms. Collections of  Nishiokaet al., 1997. Organizing and computing
Tetracycline biosynthesis pathway have 2681 vestice metabolic pathway data in terms of binary
and 8481 edges from collection of 156 organisms. relations. Pac. Symp. Biocomput.,, 1: 175-186.
By using a Pentium Core Duo with 2 GB of PMID: 9390290
memory can be mined collections of less than armbco Gouda, K. and M.J. Zaki, 2001. Efficiently mining
pathway to support the value of a relatively high maximum frequent itemsets. Proceeding of the
threshold to obtain meaningful results in the sehsé IEEE International Conference on Data Mining,
the size of the pathways repeatedly found. For towe  Nov. 29-Dec. 2, IEEE Computer Society,
values of support, many sub-sub-pathways that becam  Washington ~ DC., USA.,  pp:  163-170.
recurrent and size of the pathways increased hitp:/portal.acm.org/citation.cfm?id=658047
significantly. For this reason, need more time toHartwell, L.H., J.J. Hopfield, S. Leibler and A.W.
produce all the pathway are frequent. We conclbde t Murray, 1999. From molecular to modular cell
with the increasing of the pathways that will giae biology. ~ Nature, 402: C47-C51. DO
exponential effect with the time computation. The  10.1038/35011540
exponential effect with the time computation wilkg ~ HO. Y., A. Gruhler, A. Heilbut, G.D. Bader and L.

more challenging for finding the knowledge insitie t Moore et al., 2000. Systematic identification of
Biochemical Pathways www.kegg.com. protein complexes igaccharomyces cerevisae by
mass spectrometry. Nature, 415: 180-183. DOI:
CONCLUSION 10.1038/415180a

Inokuchi, A., T. Washio, T. Okada and H. Motoda,

With the increasing amount of data and 2001. Applying the a priori-based Graph mining
interactions of bio-molecular networks, that wiffesct method to mutagenesis data analysis. J. Comput.
the problem of mining patterns, motifs and modules  Aided Chem., 2: 87-92.
within the network biology become very interesting.lto, T., T. Chiba, R. Ozawa, M. Yoshida and M.
This study provides a framework for mining is the Hattori et al., 2001. A comprehensive two-hybrid
process of biological networks using graph modet th analysis to explore the yeast protein interactome.
emphasizes the efficiency of computation time by  Proc. Natl. Acad. Sci., 98: 4569-4574.PMID:
using the method (Gaol and Widjaja, 2008) which has 11283351
a highly efficient computing time to the presentrF Karp, P.D. and M.L. Mavrovouniotis, 1994.
further research will be reviewed preprocessing Representing, analyzing and synthesizing
techniques to data from www.kegg.com and empirical  biochemical pathways. IEEE Expert, 9: 11-21.
testing uses a model algorithm. DOI: 10.1109/64.294129
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