
Journal of Computer Science 6 (2): 117-125, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Iman Attarzadeh, Department of Software Engineering,
 Faculty of Computer Science and Information Technology, University of Malaya,
 50603 Kuala Lumpur, Malaysia

117

A Novel Algorithmic Cost Estimation Model Based on Soft Computing Technique

Iman Attarzadeh and Siew Hock Ow

Department of Software Engineering, Faculty of Computer Science and Information Technology,
University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract: Problem statement: Software development effort estimation is the process of predicting the
most realistic use of effort required for developing software based on some parameters. It has always
characterized one of the biggest challenges in Computer Science for the last decades. Because time and
cost estimate at the early stages of the software development are the most difficult to obtain and they
are often the least accurate. Traditional algorithmic techniques such as regression models, Software
Life Cycle Management (SLIM), COCOMO II model and function points, require an estimation
process in a long term. But, nowadays that is not acceptable for software developers and companies.
Newer soft computing techniques to effort estimation based on non-algorithmic techniques such as
Fuzzy Logic (FL) may offer an alternative for solving the problem. This work aims to propose a new
fuzzy logic realistic model to achieve more accuracy in software effort estimation. The main objective
of this research was to investigate the role of fuzzy logic technique in improving the effort estimation
accuracy by characterizing inputs parameters using two-side Gaussian function which gave superior
transition from one interval to another. Approach: The methodology adopted in this study was use of
fuzzy logic approach rather than classical intervals in the COCOMO II. Using advantages of fuzzy logic
such as fuzzy sets, inputs parameters can be specified by distribution of its possible values and these
fuzzy sets were represented by membership functions. In this study to get a smoother transition in the
membership function for input parameters, its associated linguistic values were represented by two-
side Gaussian Membership Functions (2-D GMF) and rules. Results: After analyzing the results
attained by means of applying COCOMO II and proposed model based on fuzzy logic to the NASA
dataset and created an artificial dataset, it had been found that proposed model was performing better
than ordinal COCOMO II and the achieved results were closer to the actual effort. The relative error for
proposed model using two-side Gaussian membership functions is lower than that of the error obtained
using ordinal COCOMO II. Conclusion: Based on the achieved results, it was concluded that, using
soft computation approaches such as fuzzy logic and their advantages, good predication; adaption;
understandability and the accuracy of software effort estimation can be improved and the estimation
can be very close to the actual effort. This novelty model will lead researchers to focus on benefits of
non-algorithmic models to overcome the estimation problems.

Key words: Software project management, software cost estimation models, COCOMO II, soft

computation model, fuzzy logic

INTRODUCTION

 Software development effort estimation deals with
the prediction of the probable amount of time and cost
required to complete the specific development task.
Generally, software development effort estimations are
based on the prediction of size of software, which is a
very difficult task in the sense that estimates obtained at
the early stages of development life cycle are inaccurate
because not much information of the system is available

at that time. These estimations are essential for software
developers and their companies, because it can provide
cost control, delivery accuracy, among many other
benefits for them. To the present time, many
quantitative models of software cost estimation have
been developed. Most of these models are based on the
size measure, such as Line of Code (LOC) and Function
Point (FP), obtained from size estimation. It is obvious
that the accuracy of size estimation directly impacts the
accuracy of cost estimation. Based on this context, new

J. Computer Sci., 6 (2): 117-125, 2010

118

alternative such as fuzzy logic can be a good choice to
estimate task effort in software development.

Software Development Effort Estimation: Software
developers always interest to know the time estimation
of software tasks. It could be done by comparing
similar tasks that have already been developed.
Although, estimating task has an uncertain nature, as it
depends on several and usually not clear factors and it
is hard to be modeled mathematically. Software
schedule and cost estimation supports the planning and
tracking of software projects. Effectively controlling the
expensive investment of software development is of high
importance (MacDonell and Gray, 1997; Jingzhou and
Guenther, 2008; Kastro and Bener, 2008; Strike et al.,
2001). The reliable and accurate cost estimation in
software engineering is an ongoing challenge (Kastro
and Bener, 2008) due to it allows for considerable
financial and strategic planning. Software cost
estimation techniques can be classified as algorithmic
and non-algorithmic models. Algorithmic models are
based on the statistical analysis of historical data (past
projects) (Strike et al., 2001; Hodgkinson and Garratt,
1999), for example, Software Life Cycle Management
(SLIM) (Schofield, 1998) and Constructive Cost Model
(COCOMO) (Putnam, 1978; Boehm, 1981).
 Non-algorithmic techniques are based on new
approaches such as, Parkinson (Boehm, 1981), Expert
Judgment, Price-to-Win and machine learning
approaches (Schofield, 1998). Machine learning is used
to group together a set of techniques that represent
some of the facets of human mind (Schofield, 1998;
Huang and Chiu, 2009), for example regression trees,
rule induction, fuzzy systems, genetic algorithms,
artificial neural networks, Bayesian networks and
evolutionary computation. The last five of these
approaches are classified as soft computing group. The
importance of algorithmic and non-algorithmic
estimation techniques will briefly discuss in the
Algorithmic models.

Algorithmic models: Some of the famous algorithmic
models are: Boehm’s COCOMO’81, II (Boehm et al.,
2000), Albrecht’s Function Point (Boehm et al., 2000;
Boehm, 1995) and Putnam’s (1978) SLIM. All of them
require inputs, accurate estimate of specific attributes,
such as Line Of Code (LOC), number of user screen,
interfaces and complexity, which are not easy to
acquire during the early stage of software development.
Models based on historical data have limitations.
Understanding and calculation of these models are
difficult due to inherent complex relationships between
the related attributes, are unable to handle categorical

data as well as lack of reasoning capabilities
(Boetticher, 2001).
Besides, attributes and relationships used to predict
software development effort could change over time
and/or differ for software development environments
(Srinivasan and Fisher, 1995). The limitations of the
algorithmic models led to the exploration of the non-
algorithmic techniques which are soft computing based.

Non-algorithmic models: In 1990’s non-algorithmic
models was born and have been proposed to project
cost estimation. Software researchers have turned their
attention to new approaches that are based on soft
computing such as artificial neural networks, fuzzy
logic models and genetic algorithms. Neural networks
are able to generalize from trained data set. A set of
training data, a specific learning algorithm makes a set
of rules that fit the data and fits previously unseen data
in a rational manner (Srinivasan and Fisher, 1995;
Idri et al., 2006; Liu and Yu, 2005). Some of early
works show that neural networks are highly applicable
to cost estimation include those of Venkatachalam
(1993) and Krishna and Satsangi (1994). Fuzzy logic
offers a powerful linguistic representation that able to
represent imprecision in inputs and outputs, while
providing a more knowledge based approach to model
building. Research shows that fuzzy logic model
achieved good performance, being outperformed in
terms of accuracy only by neural network model with
considerably more input variables.
 Hodgkinson and Garratt represented that estimation
by expert judgment was better than all regression based
models (Hodgkinson and Garratt, 1999). A marriage
between neural networks and fuzzy logic, is named
Nero-fuzzy, was introduced into cost estimation in
(Hodgkinson and Garratt, 1999). Nero-fuzzy systems
can take the linguistic attributes of a fuzzy system and
combine them with the learning and modeling attributes
of a neural network to produce transparent, adaptive
systems. As it mentioned above, Fuzzy Logic has been
proposed to some models to overcome the uncertainly
problem. However, there is still much uncertainty as to
what prediction technique appropriate to which type of
prediction problem (Burgess and Lefley, 2001).
Choosing a suitable technique is a difficult decision that
requires the support of a well-defined evaluation
scheme to rank each prediction technique as it applies
to any prediction problem.
 This study proposed an effective model based on
fuzzy logic and COCOMO II model to overcome the
uncertainly problem and acquiring the better results.
Because of the importance of COCOMO Model and
fuzzy logic system in our research we provide a brief
overview on them in this study.

J. Computer Sci., 6 (2): 117-125, 2010

119

Related work: MacDonell and Gray (1997) compared
popular techniques in software effort estimation as
regression techniques, Function Point Analysis (FPA),
fuzzy logic and neural network. Their results showed
that fuzzy logic model achieved good performance.
They introduced an application of fuzzy logic to effort
estimation. They developed a tool, FUzzy Logic
SOftware MEasuring (FULSOME) (MacDonell and
Gray, 1997), to assist software managers in making
estimation. In FULSOME model, the two most
important variables were selected: complexity
adjustment factor and unadjusted function point. Then a
triangular membership functions were defined for the
small, medium, large intervals of size, complexity and
effort.
 Fei et al., have tried to fuzzify some of the existing
algorithmic models in order to handle uncertainties and
imprecision problems in such models (Fei and Liu,
1992). They have done the first realization of the
fuzziness on COCOMO model. They found it is
unreasonable to assign a determinate number for it,
because an accurate estimate of Delivered Source
Instruction (KDSI) cannot be made before starting the
project. Ryder (1998) applied fuzzy modeling technique
to COCOMO and the
Function-Points models. Idri et al. (2006); Huang et al.
(2006) investigated the application of fuzzy logic to the
cost drivers of intermediate COCOMO model.
 Musflek et al. worked on fuzzifying basic
COCOMO model without considering the adjustment
factor. They introduced f-COCOMO model, the size
input into the COCOMO model also the coefficients
related to the development mode are assigned by a
fuzzy set. In another research, Kumar et al. (Krishna
Kumar and Satsangi, 1994) applied fuzzy logic in
Manpower Buildup Index (MBI) of Putnam estimation
model. MBI was based upon 64 different rules. The
results showed it can be effectively applied to software
project management. Fuzzy logic also had been applied
to the non- algorithmic models to overcome the
uncertainly of the models.
 Molokken et al. (2003); Idir et al, proposed a
combination of fuzzy logic and estimation by analogy.
Estimation by analogy is one of the classified
techniques of expert-based estimation method. It is a
type of Case-based Reasoning (CBR) method. The
fuzzy analogy for software cost estimation had also
been applied to web base software. Venkatachalam
(1993) applied artificial neural network to cost
estimation. Neural network is able to generalize from
trained data set. Over a set of training data, neural
network learning algorithm constructs mappings that fit
the data and fits previously unseen data in a reasonable
way.

 Research had also been done to combine fuzzy
logic with neural network. A new system based on
fuzzy logic, neural network and COCOMO II proposed
(Huang and Chiu, 2009). This system Based on
COCOMO II post architecture model, the input of
neuro-fuzzy COCOMO consists of size and 22 cost
drivers (5 scale factors plus 17 effort multipliers). In
summary, fuzzy logic has been proposed to algorithmic
and non-algorithmic models in the pursuit of achieving
better estimation results. Nevertheless, there is still
much uncertainty as to what estimation technique suits
which type of estimation problem Huang and Chiu,
2009. Choosing between the different techniques is a
difficult decision that requires the support of a well-
defined evaluation method to show each estimation
technique as it applies to any estimation problem.

MATERIALS AND METHODS

Problem Statement: Understanding and calculation of
models based on historical data are difficult due to
inherent complex relationships between the related
attributes, are unable to handle categorical data as well
as lack of reasoning capabilities. Besides, attributes and
relationships used to estimate software development
effort could change over time and differ for software
development environments. In order to address and
overcome to these problems, a new model with accurate
estimation will be considerable.

The COCOMO II model: The COCOMO model is a
regression based software cost estimation model. It was
developed by Bohem (1995; 2000) in 1981 and thought
to be the most cited, best known and the most plausible
(Fei and Liu, 1992) of all traditional cost prediction
models. COCOMO model can be used to calculate the
amount of effort and the time schedule for software
projects. COCOMO 81 was a stable model on that time.
One of the problems with using COCOMO 81 today is
that it does not match the development environment of
the late 1990’s. Therefore, in 1997 COCOMO II was
published and was supposed to solve most of those
problems. COCOMO II has three models also, but they
are different from those of COCOMO 81. They are
(Ryder, 1998; Huang et al., 2006):

• Application composition model-suitable for

projects built with modern GUI-builder tools.
Based on new Object Points

• Early Design Model-To get rough estimates of a
project's cost and duration before have determined
its entire architecture. It uses a small set of new
Cost Drivers and new estimating equations. Based
on Unadjusted Function Points or KSLOC

J. Computer Sci., 6 (2): 117-125, 2010

120

• Post-Architecture Model-The most detailed on the
three, used after the overall architecture for the
project has been designed. One could use function
points or LOC as size estimates with this model. It
involves the actual development and maintenance
of a software product

COCOMO II describes 17 cost drivers that are

used in the Post-Architecture model (Ryder, 1998). The
cost drivers for COCOMO II are rated on a scale from
Very Low to Extra High in the same way as in
COCOMO 81. COCOMO II post architecture model is
given as:

17
B

i
i 1

Effort A [size] Effort multiplier
=

= × ×∏ (1)

Where:

5

j
j 1

B 1.01 0.01 Scalefactor
=

= + ×∑

In Eq. 1:
A = Multiplicative constant
Size = Size of the software project measured in terms

of KSLOC (thousands of source lines of code,
function points or object points)

 The selection of Scale Factors (SF) is based on the
rationale that they are a significant source of
exponential variation on a project’s effort or
productivity variation. The standard numeric values of
the cost drivers are given in Table 1.

Fuzzy Logic: In 1965, Zadeh formally developed
multi-valued set theory and introduced the term
fuzzy into the technical literature (Zadeh, 1994).

Table 1: COCOMO II cost drivers
Cost driver Range
Required software reliability (RELY) 0.82-1.26
Database size (DATA) 0.90-1.28
Product complexity (CPLX) 0.73-1.74
Developed for reusability (RUSE) 0.95-1.24
Documentation match to life-cycle needs (DOCU) 0.81-1.23
Execution time constraint (TIME) 1.00-1.63
Main storage constraint (STOR) 1.00-1.46
Platform volatility (PVOL) 0.87-1.30
Analyst capability (ACAP) 1.42-0.71
Programmer capability (PCAP) 1.34-0.76
Personnel continuity (PCON) 1.29-0.81
Applications experience (APEX) 1.22-0.81
Platform experience (PLEX) 1.19-0.85
Language and tool experience (LTEX) 1.20-0.84
Use of software tools (TOOL) 1.17-0.78
Multi site development (SITE) 1.22-0.80
Required development schedule (SCED) 1.43-1.00

Fuzzy Logic starts with the concept of fuzzy set theory.
It is a theory of classes with un-sharp boundaries and
considered as an extension of the classical set theory
(Zadeh, 2001). The membership µA(x) of an element x
of a classical set A, as subset of the universe X, is
defined by Eq. 2 in below:

A
1 if x Aµ (x)

x A0 if

 ∈= 
∉

 (2)

 A system based on Fuzzy Logic has a direct
relationship with fuzzy concepts (such as fuzzy sets,
linguistic variables) and fuzzy logic. The popular fuzzy
logic systems can be categorized into three types: pure
fuzzy logic systems, Takagi and Sugeno’s fuzzy system
and fuzzy logic system with fuzzifier and defuzzifier
(Zadeh, 1994). Since most of the engineering
applications produce crisp data as input and expects
crisp data as output, the last type is the most widely
used one fuzzy logic system with fuzzifier and
defuzzifier was first proposed by Mamdani It has been
successfully applied to a variety of industrial processes
and consumer products (Zadeh, 1994). The main fours
components’ functions are as follows:

Step #1:
• Fuzzification: It converts a crisp input to a fuzzy

set

Step #2:
• Fuzzy Rule Base: Fuzzy logic systems use fuzzy

IF-THEN rules
• Fuzzy Inference Engine: Once all crisp input

values are fuzzified into their respective linguistic
values, the inference engine accesses the fuzzy rule
base to derive linguistic values for the intermediate
and the output linguistic variables

Step #3:
• Defuzzification: It converts fuzzy output into crisp

output

Experimental design: The new proposed model base
on COCOMO II has two input’s group from COCOMO
II cost drivers and scale factors and one output, effort
estimation. This model covers those three fuzzy steps. It
shows in Fig. 1.
 In COCOMO effort is expressed as Person Months
(PM). It determines the efforts required for a project
based on software project's size in Kilo Source Line of
Code (KSLOC) as well as other cost drivers known as
scale factors and effort multipliers. It contains 17 effort
multipliers and 5 scale factors.

J. Computer Sci., 6 (2): 117-125, 2010

121

Fig. 1: The proposed model: Inputs (COCOMO II cost

drivers, scale factors, Size) and Output: (effort
estimation)

 Traditionally, the problem of software effort
estimation relies on a single (numeric) value of size and
scale factors values of given software project to predict
the effort. However, the size of the project is, based on
some previously completed projects that resemble the
current one (especially at the beginning of the project).
Obviously, correctness and precision of such estimates
are limited. It is of principal importance to recognise
this situation and come up with a technology using
which we can evaluate the associated imprecision
residing within the final results of cost estimation. The
technology endorsed here deals with fuzzy sets. Using
fuzzy sets, size of a software project can be specified by
distribution of its possible values. Commonly, this form
of distribution is represented in the form of a fuzzy set.
It is important that uncertainty at the input level of the
COCOMO model yields uncertainty at the output
(Boehm et al., 2000). This becomes obvious and, more
importantly, bears a substantial significance in any
practical endeavor. By changing input parameters using
fuzzy set, we can model the effort that impacts the
estimation accuracy. Obviously, a certain monotonicity
property holds, which is less precise estimates of inputs
give rise to less detailed effort estimates. Overlapped
symmetrical two-sided Gaussian function reduces fuzzy
systems to precise linear systems.
 Furthermore there is a possibility when using a
Two-sided Gaussian function that some attributes are
assigned the maximum degree of compatibility when
they should be assigned lower degrees. In order to
avoid this linearity it is proposed to use more superior

Table 2: The artificial dataset generated for system validation consists
of 100 data samples

No. Mode Size Effort
1 1.1200 51.2500 246.5900
2 1.2000 12.5500 58.2800
3 1.0500 81.5200 550.4000
… ... … …
97 1.2000 56.5300 354.7300
98 1.0500 16.0400 67.1400
100 1.1200 54.1700 262.3800

Fig. 2: Representation of RELY cost driver using

Gaussian function (Input)

function i.e., Two-sided Gaussian membership function
for representing inputs of the project. The Gaussian
Function is represented by Eq. 3 in below:

2
i

2
i

i

(x c)

2
i iA

µ (x) Gaussian(x,c ,) e
− −

σ= σ = (3)

Where:
ci = The center of the ith fuzzy set
σi = The width of the ith fuzzy set

 The processes involved in software effort
estimation using FL are shown in Fig. 1. The main
processes of this system include four activities:
fuzzification, fuzzy rule base, fuzzy inference engine
and defuzzification.
 All the input variables in COCOMO II model
changed to the fuzzy variables based on the
fuzzification process. The terms Very Low (VL), Low
(L), Nominal (N), High (H) and Very High(VH) were
defined for the 22 variables, cost drivers and scale
factors, in COCOMO II. For example, in the case of
RELY cost driver, we define a fuzzy set for each
linguistic value with a Two-sided Gaussian shaped
membership function µ is shown in Fig. 2. We have
defined the fuzzy sets corresponding to the various
associated linguistic values for each cost driver.
 In this research, a new fuzzy effort estimation
model is proposed by using Two-sided Gaussian
function to deal with linguistic data and to generate
fuzzy membership functions and rules for cost drivers
obtained from Table 2. In the next step, we evaluate the

J. Computer Sci., 6 (2): 117-125, 2010

122

COCOMO model using the equation 3 and cost drivers
obtained from fuzzy sets (F_EMij) rather than from the
classical EMij. F_EMij is calculated from Eq. 5 the
classical EMij and the membership functions µ defined
for the various fuzzy sets associated with the cost
drivers:

1 i

ij

V V
A1 Ai i1 ijEM

Fuzzy F(µ ,...µ ,EM ...EM)= (4)

 For ease, F is taken as a linear function, where the
µV i Aj is the membership function of the fuzzy set Aj
associated with the cost driver Vi is shown in Eq. 4:

i i

ij i

k v
ijEM Aj 1

Fuzzy µ * EM
=

=∑ (5)

 The new fuzzy model rules contain the linguistic
variables related to the project. It is important to note
that those rules were adjusted or calibrated, as well as
all pertinence level functions, in accordance with the
tests and the characteristics of the project. In rules use
the connective "and" and "or" or combination of them
between input variables, as indicated in the example
below. The number of rules that have used in proposed
model is more than 193 rules for all input variables.

Fuzzy rules:
IF TOOL is Low TEHN effort is Low
IF PCAP is Very_Low THEN effort is Very_High
IF RESUE is Nominal THEN effort is Nominal
IF DATA is Very_High THEN effort is Very_High
…

 The MATLAB Fuzzy Inference System (FIS) was
used in the fuzzy calculations, in addition to the Max-
Min composition operator, the Mandani implication
operator and the Maximum operator for aggregation.
The defuzzification of the output "effort" used the
Mean Of Maximum (MOM) technique in this work
because the resulting values were more appropriate
when compared to the other evaluated techniques
(Center Of Area (COA) and First Of Maximum
(FOM)).

RESULTS AND DICUSSION

 Experiments were done by taking two datasets,
first one was original data from NASA dataset and
second one was artificial dataset.

Datasets description: Boehm (1981) is the first
researcher to look at software engineering from an
economic point of view and he came up with cost

estimation models from two datasets, COCOMO and
COCOMO II. The COCOMO (Boehm, 1995) dataset
includes 63 historical projects with 17 effort drivers and
one dependent variable of the software development
effort. So, the first used dataset for evaluating the
proposed model is based on COCOMO model. The
second attempt was to create an artificial dataset,
Table 2, based on COCOMO model. The algorithm for
fuzzy set learning in a Mamdani-type fuzzy system is
following this four-step procedure:

• Choose a training sample and propagate the input

vector across the network to get the output
• Determine the error in output and the error gradient

in all the other layers
• Determine the parameter changes for the fuzzy

weights and update the fuzzy weights
• Repeat until the fuzzy error is sufficiently small

after an epoch is complete

 Therefore, this work has used two datasets for
evaluation of the proposed model. Finally, by aggregate
the accuracy across all testing datasets as the mean
result.

Evaluation Method: For evaluating the different
software effort estimation models, the most widely
accepted evaluation criteria are the Mean Magnitude of
Relative Error (MMRE) and probability of a project
having a relative error of less than or equal to 0.25
(Pred(l)). The Magnitude of Relative Error (MRE) is
defined as follows:

i i
i

i

| ActualEffort Predicted Effort |
MRE

ActualEffort

−= (6)

 The MRE value is calculated for each observation i
whose effort is predicted. The aggregation of MRE over
multiple observations (N) can be achieved through the
Mean MRE (MMRE) as follows:

N

ii

1
MMRE MRE

N
= ∑ (7)

 Another measure similar to MRE, the Magnitude
of error Relative to the Estimate (MER), has been
proposed. Intuitively, it seems preferable to MRE since
it measures the error relative to the estimate. MER uses
Predicted Efforti as denominator in Eq. 6. The notation
MMER is used to the mean MER in Eq. 7. However,
the MMRE and MMER are sensitive to individual
predictions with excessively large MREs or MERs.

J. Computer Sci., 6 (2): 117-125, 2010

123

Therefore, an aggregate measure less sensitive to
extreme values is also considered, namely the median
of MRE and MER values for the N observations
(MdMRE and MdMER respectively). A complementary
criterion is the prediction at level l, Pred(l) = k/N,
where k is the number of observations where MRE (or
MER) is less than or equal to l and N is the total
number of observations. Thus, Pred(25) gives the
percentage of projects which were predicted with a
MRE (or MER) less or equal than 0.25.
 The proposed fuzzy model was validated by two
approaches. In the first approach, has used the NASA
dataset that consists of 93 projects (Dataset #1). In the
second approach, has used the artificial dataset that
consists of 100 sample projects (Dataset #2). Then both
datasets are applied to the new fuzzy model and
COCOMO II model. The validation of the new fuzzy
model to building trained fuzzy model for effort
estimation has been done using artificial dataset and
NASA dataset. The comparison between the results of
NASA dataset and artificial dataset that applied on the
new fuzzy model and COCOMO II model shows more
accuracy in case of effort estimation by the new fuzzy
model. The comparisons between results are shown in
Table 3 and 4.
 In this research, each dataset separately applied to
the COCOMO II model and proposed model. Then for
each model, the MMRE and Pred were calculated.
Finally mean of those calculations are used to compare
both models. The result for 193 applied projects shows
the MMRE for COOCMO II model is 0.406713037 and
for proposed model the value equals to 0.369637508. It
shows the proposed model has MMRE less than
COCOMO II model, so it means the accuracy of
proposed model is better than COCOMO II. In case of
Pred, the final result shows the proposed model value is
47.5% in Pred(25%) and COCOMO II value is 35% in
same Pred. As it mentioned above, Pred shows the
number of projects that they have MMRE lass than
25%. According to this definition, the proposed model
shows better accuracy. Table 4 shows how much the
proposed model is accurate than COCOMO II model.
 For comparing proposed model with COCOMO
model, the improvement is 12.63% based on the
MMRE 0.40 and 0.36. The experimental results show
that the proposed software effort estimation model
shows better estimation accuracy than the other two
models, i.e., COCOMO. In summary, an output with
more terms or fuzzy sets provided a better performance
due to the high granularity demanded from the results.
Most of the sample data in the dataset with the
proposed fuzzy model resulted in a more accurate
estimation when compared to the COCOMO II model.

Table 3: Comparison between performance of new model and
COCOMO II

 Evaluation

Data set Model MMRE Pred (25%)
Data set #1 COCOMO II 0.413812453 30%
 Proposed model 0.366545456 50%
Data set #2 COCOMO II 0.39961362 40%
 Proposed model 0.37272956 45%
Mean COCOMO II 0.406713037 35%
 Proposed model 0.369637508 47.5%

Table 4: Accuracy of the proposed model
Model Evaluation MMRE
Proposed model Vs COCOMO II 0.406713037
COCOMOII Proposed model 0.369637508
 Improvement (%) 12.630000000

CONCLUSION

 An essential issue for project managers is the
accurate and reliable estimates of the required software
development effort, especially in the early stages of the
software development life cycle. Software effort drivers
usually have properties of uncertainty and vagueness
when they are measured by human judgment. A
software effort estimation model utilizing fuzzy
inference system can overcome these characteristics of
uncertainty and vagueness exist in software effort
drivers. However, the determination of the suitable
fuzzy rule sets for fuzzy inference plays an important
role in coming up with accurate and reliable effort
estimates. Software effort estimation using fuzzy logic
is an attempt in the area of software project estimation.
The objective of this work is to provide a technique for
software cost estimation that performs better than other
techniques on a given set of test cases. This paper
presented a new model for handling imprecision and
uncertainty by using the fuzzy logic systems. The
objective of this work is to provide a technique for
software cost estimation that performs better than other
techniques on the accuracy of effort estimation. This
work has shown by applying fuzzy logic on the
algorithmic and non-algorithmic software effort
estimation models accurate estimation is achievable.
The proposed fuzzy logic model showed better software
effort estimates in view of the MMRE, Pred(0.25)
evaluation criteria as compared to the traditional
COCOMO. The above-mentioned results demonstrate
that applying fuzzy logic method to the software effort
estimation is a feasible approach to addressing the
problem of uncertainty and vagueness existed in
software effort drivers. Furthermore, the fuzzy logic
model presents better estimation accuracy as compared
to the NASA dataset. The utilization of fuzzy logic for

J. Computer Sci., 6 (2): 117-125, 2010

124

other applications in the software engineering field can
also be explored in the future.

REFERENCES

Boehm B. W., 1981. Software engineering economics.

Englewood Cliffs, Prentice-Hall, NJ., ISBN: 10:
0138221227, pp: 768.

Boehm, B., 1995. Cost models for future software life
cycle processes: COCOMO 2.0. Ann. Software
Eng. 1: 45-60.

Boehm B., C. Abts and S. Chulani, 2000. Software
development cost estimation approaches-A survey.
Ann. Software Eng., 10: 177-205. DOI:
10.1023/A:1018991717352

Boetticher, G.D., 2001. An assessment of metric
contribution in the construction of a neural
network-based effort estimator.
http://sce.uhcl.edu/boetticher/SCASE01.pdf

Burgess, C.J. and M. Lefley, 2001. Can genetic
programming improve software effort estimation?
A comparative evaluation. Inform. Software
Technol., 43: 863-873. DOI: 10.1016/S0950-
5849(01)00192-6

Fei, Z. and X. Liu, 1992. f-COCOMO: Fuzzy
constructive cost model in software engineering.
Proceedings of the IEEE International Conference
on Fuzzy Systems, Mar. 8-12, IEEE Xplore Press,
San Diego, CA., USA., pp: 331-337. DOI:
10.1109/FUZZY.1992.258637

Hodgkinson, A.C. and P.W. Garratt, 1999. A
neurofuzzy cost estimator. Proceedings of the 3rd
International Conference on Software Engineering
and Applications, (SEA’99), ePrint, pp: 401-406.
http://eprints.ecs.soton.ac.uk/2659/

Huang, X., D. Ho, J. Ren and F. Capretz, 2006. A soft
computing framework for software effort
estimation. Soft Comput., Fusion Foundat.,
Methodol. Appli. J., 10: 170-177. DOI:
10.1007/s00500-004-0442-z

Huang, S. and N. Chiu, 2009. Applying fuzzy neural
network to estimate software development effort.
Proc. Applied Intel. J., 30: 73-83.

Jingzhou, L. and R. Guenther, 2008. Analysis of
attribute weighting heuristics for analogy-based
software effort estimation method AQUA+.
Empiric. Software Eng. J., 13: 63-96. DOI:
10.1007/s10664-007-9054-4

Idri, A., A. Zahi and A. Abran, 2006. Software cost
estimation by fuzzy analogy for web hypermedia
applications. Proceedings of the International
Conference on Software Process and Product
Measurement, (SPPM’06), Cadiz, Spain, pp: 53-62.

Kastro, Y. and A.B. Bener, 2008. A defect prediction
method for software versioning. Proc. Software
Qual. J., 16: 543-562. DOI: 10.1007/s11219-008-
9053-8

Kumar, S. A. Krishna and P. Satsangi, 1994. Fuzzy
systems and neural networks in software
engineering project management. J. Applied Intel.,
4: 31-52. DOI: 10.1007/BF00872054

Liu. H. and L. Yu, 2005. Toward integrating feature
selection algorithms for classification and
clustering. IEEE Trans. Knowl. Data Eng.,
17: 491-502. DOI: 10.1109/TKDE.2005.66

MacDonell, S.G. and A.R. Gray, 1997. A comparison
of modeling techniques for software development
effort prediction. Proceedings of the 1997
International Conference on Neural Information
Processing and Intelligent Information Systems,
Dunedin, (NIPIISD’97), Springer-Verlag, New
Zealand, pp: 869-872.

Molokken, K. and M. Jorgensen, 2003. A review of
software surveys on software effort estimation.
Proceedings of IEEE International Symposium on
Empirical Software Engineering, Sept. 30-Oct. 01,
IEEE Computer Society, Washington DC., USA.,
pp: 223-230.

 http://portal.acm.org/citation.cfm?id=943636
Putnam, L.H., 1978. A general empirical solution to the

macro software sizing and estimating problem.
IEEE Trans. Software Eng., 4: 345-361.

http://portal.acm.org/citation.cfm?id=1313641
Ryder, J., 1998. Fuzzy modeling of software effort

prediction. Proceedings of IEEE Information
Technology Conference, Sept. 1-3, IEEE Xplore
Press, Syracuse, NY., pp: 53-56. DOI:
10.1109/IT.1998.713380

Schofield C., 1998. Non-Algorithmic effort estimation
techniques. Technical Reports, Department of
Computing, Bournemouth University, England.

http://decgradschool.bournemouth.ac.uk/ESERG/T
echnical_Reports/TR98-01/TR98-01.ps

Srinivasan, K. and Fisher D., 1995. Machine learning
approaches to estimating software development
effort. IEEE Trans. Software Eng., 21: 126-137.
DOI: 10.1109/32.345828

Strike, K., K. El-Emam and N. Madhavji, 2001.
Software cost estimation with incomplete Data.
IEEE Trans. Software Eng., 27: 890-908. DOI:
10.1109/32.962560

J. Computer Sci., 6 (2): 117-125, 2010

125

Venkatachalam, A.R., 1993. Software cost estimation
using artificial neural networks. Proceedings of the
1993 International Joint Conference on Neural
Networks, Oct. 25-29, IEEE Xplore Press, USA.,
pp: 987-990. DOI: 10.1109/IJCNN.1993.714077

Zadeh, L.A., 1994. Fuzzy logic, neural networks and
soft computing. Mag. Commun. ACM, 37: 77-84.
DOI: 10.1145/175247.175255

Zadeh, L.A., 2001. The future of soft computing.
Proceeding of the Joint 9th IFSA World Congress
and 20th NAFIPS International Conference,
(NAFIPS’01) Vancouver, Canada.

