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Abstract: Problem statement: Software development effort estimation is the process of predicting the 
most realistic use of effort required for developing software based on some parameters. It has always 
characterized one of the biggest challenges in Computer Science for the last decades. Because time and 
cost estimate at the early stages of the software development are the most difficult to obtain and they 
are often the least accurate. Traditional algorithmic techniques such as regression models, Software 
Life Cycle Management (SLIM), COCOMO II model and function points, require an estimation 
process in a long term. But, nowadays that is not acceptable for software developers and companies. 
Newer soft computing techniques to effort estimation based on non-algorithmic techniques such as 
Fuzzy Logic (FL) may offer an alternative for solving the problem. This work aims to propose a new 
fuzzy logic realistic model to achieve more accuracy in software effort estimation. The main objective 
of this research was to investigate the role of fuzzy logic technique in improving the effort estimation 
accuracy by characterizing inputs parameters using two-side Gaussian function which gave superior 
transition from one interval to another. Approach: The methodology adopted in this study was use of 
fuzzy logic approach rather than classical intervals in the COCOMO II. Using advantages of fuzzy logic 
such as fuzzy sets, inputs parameters can be specified by distribution of its possible values and these 
fuzzy sets were represented by membership functions. In this study to get a smoother transition in the 
membership function for input parameters, its associated linguistic values were represented by two-
side Gaussian Membership Functions (2-D GMF) and rules. Results: After analyzing the results 
attained by means of applying COCOMO II and proposed model based on fuzzy logic to the NASA 
dataset and created an artificial dataset, it had been found that proposed model was performing better 
than ordinal COCOMO II and the achieved results were closer to the actual effort. The relative error for 
proposed model using two-side Gaussian membership functions is lower than that of the error obtained 
using ordinal COCOMO II. Conclusion: Based on the achieved results, it was concluded that, using 
soft computation approaches such as fuzzy logic and their advantages, good predication; adaption; 
understandability and the accuracy of software effort estimation can be improved and the estimation 
can be very close to the actual effort. This novelty model will lead researchers to focus on benefits of 
non-algorithmic models to overcome the estimation problems.  
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INTRODUCTION 
 
 Software development effort estimation deals with 
the prediction of the probable amount of time and cost 
required to complete the specific development task. 
Generally, software development effort estimations are 
based on the prediction of size of software, which is a 
very difficult task in the sense that estimates obtained at 
the early stages of development life cycle are inaccurate 
because not much information of the system is available 

at that time. These estimations are essential for software 
developers and their companies, because it can provide 
cost control, delivery accuracy, among many other 
benefits for them. To the present time, many 
quantitative models of software cost estimation have 
been developed. Most of these models are based on the 
size measure, such as Line of Code (LOC) and Function 
Point (FP), obtained from size estimation. It is obvious 
that the accuracy of size estimation directly impacts the 
accuracy of cost estimation. Based on this context, new 
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alternative such as fuzzy logic can be a good choice to 
estimate task effort in software development. 
 
Software Development Effort Estimation: Software 
developers always interest to know the time estimation 
of software tasks. It could be done by comparing 
similar tasks that have already been developed. 
Although, estimating task has an uncertain nature, as it 
depends on several and usually not clear factors and it 
is hard to be modeled mathematically. Software 
schedule and cost estimation supports the planning and 
tracking of software projects. Effectively controlling the 
expensive investment of software development is of high 
importance (MacDonell and Gray, 1997; Jingzhou and 
Guenther, 2008; Kastro and Bener, 2008; Strike et al., 
2001). The reliable and accurate cost estimation in 
software engineering is an ongoing challenge (Kastro 
and Bener, 2008) due to it allows for considerable 
financial and strategic planning. Software cost 
estimation techniques can be classified as algorithmic 
and non-algorithmic models. Algorithmic models are 
based on the statistical analysis of historical data (past 
projects) (Strike et al., 2001; Hodgkinson and Garratt, 
1999), for example, Software Life Cycle Management 
(SLIM) (Schofield, 1998) and Constructive Cost Model 
(COCOMO) (Putnam, 1978; Boehm, 1981).  
 Non-algorithmic techniques are based on new 
approaches such as, Parkinson (Boehm, 1981), Expert 
Judgment, Price-to-Win and machine learning 
approaches (Schofield, 1998). Machine learning is used 
to group together a set of techniques that represent 
some of the facets of human mind (Schofield, 1998; 
Huang and Chiu, 2009), for example regression trees, 
rule induction, fuzzy systems, genetic algorithms, 
artificial neural networks, Bayesian networks and 
evolutionary computation. The last five of these 
approaches are classified as soft computing group. The 
importance of algorithmic and non-algorithmic 
estimation techniques will briefly discuss in the 
Algorithmic models. 
 
Algorithmic models: Some of the famous algorithmic 
models are: Boehm’s COCOMO’81, II (Boehm et al., 
2000), Albrecht’s Function Point (Boehm et al., 2000; 
Boehm, 1995) and Putnam’s (1978) SLIM. All of them 
require inputs, accurate estimate of specific attributes, 
such as Line Of Code (LOC), number of user screen, 
interfaces and complexity, which are not easy to 
acquire during the early stage of software development. 
Models based on historical data have limitations. 
Understanding and calculation of these models are 
difficult due to inherent complex relationships between 
the related attributes, are unable to handle categorical 

data as well as lack of reasoning capabilities 
(Boetticher, 2001).  
Besides, attributes and relationships used to predict 
software development effort could change over time 
and/or differ for software development environments 
(Srinivasan and Fisher, 1995). The limitations of the 
algorithmic models led to the exploration of the non-
algorithmic techniques which are soft computing based. 
 
Non-algorithmic models: In 1990’s non-algorithmic 
models was born and have been proposed to project 
cost estimation. Software researchers have turned their 
attention to new approaches that are based on soft 
computing such as artificial neural networks, fuzzy 
logic models and genetic algorithms. Neural networks 
are able to generalize from trained data set. A set of 
training data, a specific learning algorithm makes a set 
of rules that fit the data and fits previously unseen data 
in  a  rational  manner  (Srinivasan and Fisher, 1995; 
Idri et al., 2006; Liu and Yu, 2005). Some of early 
works show that neural networks are highly applicable 
to cost estimation include those of Venkatachalam 
(1993) and Krishna and Satsangi (1994). Fuzzy logic 
offers a powerful linguistic representation that able to 
represent imprecision in inputs and outputs, while 
providing a more knowledge based approach to model 
building. Research shows that fuzzy logic model 
achieved good performance, being outperformed in 
terms of accuracy only by neural network model with 
considerably more input variables.  
 Hodgkinson and Garratt represented that estimation 
by expert judgment was better than all regression based 
models (Hodgkinson and Garratt, 1999). A marriage 
between neural networks and fuzzy logic, is named 
Nero-fuzzy, was introduced into cost estimation in 
(Hodgkinson and Garratt, 1999). Nero-fuzzy systems 
can take the linguistic attributes of a fuzzy system and 
combine them with the learning and modeling attributes 
of a neural network to produce transparent, adaptive 
systems. As it mentioned above, Fuzzy Logic has been 
proposed to some models to overcome the uncertainly 
problem. However, there is still much uncertainty as to 
what prediction technique appropriate to which type of 
prediction problem (Burgess and Lefley, 2001). 
Choosing a suitable technique is a difficult decision that 
requires the support of a well-defined evaluation 
scheme to rank each prediction technique as it applies 
to any prediction problem.  
 This study proposed an effective model based on 
fuzzy logic and COCOMO II model to overcome the 
uncertainly problem and acquiring the better results. 
Because of the importance of COCOMO Model and 
fuzzy logic system in our research we provide a brief 
overview on them in this study. 
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Related work: MacDonell and Gray (1997) compared 
popular techniques in software effort estimation as 
regression techniques, Function Point Analysis (FPA), 
fuzzy logic and neural network. Their results showed 
that fuzzy logic model achieved good performance. 
They introduced an application of fuzzy logic to effort 
estimation. They developed a tool, FUzzy Logic 
SOftware MEasuring (FULSOME) (MacDonell and 
Gray, 1997), to assist software managers in making 
estimation. In FULSOME model, the two most 
important variables were selected: complexity 
adjustment factor and unadjusted function point. Then a 
triangular membership functions were defined for the 
small, medium, large intervals of size, complexity and 
effort.  
 Fei et al., have tried to fuzzify some of the existing 
algorithmic models in order to handle uncertainties and 
imprecision problems in such models (Fei and Liu, 
1992). They have done the first realization of the 
fuzziness on COCOMO model. They found it is 
unreasonable to assign a determinate number for it, 
because an accurate estimate of Delivered Source 
Instruction (KDSI) cannot be made before starting the 
project. Ryder (1998) applied fuzzy modeling technique 
to COCOMO and the  
Function-Points models. Idri et al. (2006); Huang et al. 
(2006) investigated the application of fuzzy logic to the 
cost drivers of intermediate COCOMO model.  
 Musflek et al. worked on fuzzifying basic 
COCOMO model without considering the adjustment 
factor. They introduced f-COCOMO model, the size 
input into the COCOMO model also the coefficients 
related to the development mode are assigned by a 
fuzzy set. In another research, Kumar et al. (Krishna 
Kumar and Satsangi, 1994) applied fuzzy logic in 
Manpower Buildup Index (MBI) of Putnam estimation 
model. MBI was based upon 64 different rules. The 
results showed it can be effectively applied to software 
project management. Fuzzy logic also had been applied 
to the non- algorithmic models to overcome the 
uncertainly of the models.  
 Molokken et al. (2003); Idir et al, proposed a 
combination of fuzzy logic and estimation by analogy. 
Estimation by analogy is one of the classified 
techniques of expert-based estimation method. It is a 
type of Case-based Reasoning (CBR) method. The 
fuzzy analogy for software cost estimation had also 
been applied to web base software. Venkatachalam 
(1993) applied artificial neural network to cost 
estimation. Neural network is able to generalize from 
trained data set. Over a set of training data, neural 
network learning algorithm constructs mappings that fit 
the data and fits previously unseen data in a reasonable 
way.  

 Research had also been done to combine fuzzy 
logic with neural network. A new system based on 
fuzzy logic, neural network and COCOMO II proposed 
(Huang and Chiu, 2009). This system Based on 
COCOMO II post architecture model, the input of 
neuro-fuzzy COCOMO consists of size and 22 cost 
drivers (5 scale factors plus 17 effort multipliers). In 
summary, fuzzy logic has been proposed to algorithmic 
and non-algorithmic models in the pursuit of achieving 
better estimation results. Nevertheless, there is still 
much uncertainty as to what estimation technique suits 
which type of estimation problem Huang and Chiu, 
2009. Choosing between the different techniques is a 
difficult decision that requires the support of a well-
defined evaluation method to show each estimation 
technique as it applies to any estimation problem. 
 

MATERIALS AND METHODS 
 
Problem Statement: Understanding and calculation of 
models based on historical data are difficult due to 
inherent complex relationships between the related 
attributes, are unable to handle categorical data as well 
as lack of reasoning capabilities. Besides, attributes and 
relationships used to estimate software development 
effort could change over time and differ for software 
development environments. In order to address and 
overcome to these problems, a new model with accurate 
estimation will be considerable. 
 
The COCOMO II model: The COCOMO model is a 
regression based software cost estimation model. It was 
developed by Bohem (1995; 2000) in 1981 and thought 
to be the most cited, best known and the most plausible 
(Fei and Liu, 1992) of all traditional cost prediction 
models. COCOMO model can be used to calculate the 
amount of effort and the time schedule for software 
projects. COCOMO 81 was a stable model on that time. 
One of the problems with using COCOMO 81 today is 
that it does not match the development environment of 
the late 1990’s. Therefore, in 1997 COCOMO II was 
published and was supposed to solve most of those 
problems. COCOMO II has three models also, but they 
are different from those of COCOMO 81. They are 
(Ryder, 1998; Huang et al., 2006): 
 
• Application composition model-suitable for 

projects built with modern GUI-builder tools. 
Based on new Object Points 

• Early Design Model-To get rough estimates of a 
project's cost and duration before have determined 
its entire architecture. It uses a small set of new 
Cost Drivers and new estimating equations. Based 
on Unadjusted Function Points or KSLOC 
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• Post-Architecture Model-The most detailed on the 
three, used after the overall architecture for the 
project has been designed. One could use function 
points or LOC as size estimates with this model. It 
involves the actual development and maintenance 
of a software product 

 
COCOMO II describes 17 cost drivers that are 

used in the Post-Architecture model (Ryder, 1998). The 
cost drivers for COCOMO II are rated on a scale from 
Very Low to Extra High in the same way as in 
COCOMO 81. COCOMO II post architecture model is 
given as: 
 

17
B

i
i 1

Effort A [size] Effort multiplier
=

= × ×∏  (1) 

  
Where: 
 

5

j
j 1

B 1.01 0.01 Scalefactor
=

= + ×∑  

 
In Eq. 1: 
A = Multiplicative constant 
Size = Size of the software project measured in terms 

of KSLOC (thousands of source lines of code, 
function points or object points) 

 
 The selection of Scale Factors (SF) is based on the 
rationale that they are a significant source of 
exponential variation on a project’s effort or 
productivity variation. The standard numeric values of 
the cost drivers are given in Table 1. 
 
Fuzzy Logic: In 1965, Zadeh formally developed 
multi-valued  set  theory and introduced the term 
fuzzy  into  the   technical   literature    (Zadeh,  1994). 
 
Table 1: COCOMO II cost drivers 
Cost driver Range 
Required software reliability (RELY) 0.82-1.26 
Database size (DATA) 0.90-1.28 
Product complexity (CPLX) 0.73-1.74 
Developed for reusability (RUSE) 0.95-1.24 
Documentation match to life-cycle needs (DOCU) 0.81-1.23 
Execution time constraint (TIME) 1.00-1.63 
Main storage constraint (STOR) 1.00-1.46 
Platform volatility (PVOL) 0.87-1.30 
Analyst capability (ACAP) 1.42-0.71 
Programmer capability (PCAP) 1.34-0.76 
Personnel continuity (PCON) 1.29-0.81 
Applications experience (APEX) 1.22-0.81 
Platform experience (PLEX) 1.19-0.85 
Language and tool experience (LTEX) 1.20-0.84 
Use of software tools (TOOL) 1.17-0.78 
Multi site development (SITE) 1.22-0.80 
Required development schedule (SCED) 1.43-1.00 

Fuzzy Logic starts with the concept of fuzzy set theory. 
It is a theory of classes with un-sharp boundaries and 
considered as an extension of the classical set theory 
(Zadeh, 2001). The membership µA(x) of an element x 
of a classical set A, as subset of the universe X, is 
defined by Eq. 2 in below: 
 

A
1 if x Aµ (x)

x A0 if

 ∈= 
∉

 (2) 

 
 A system based on Fuzzy Logic has a direct 
relationship with fuzzy concepts (such as fuzzy sets, 
linguistic variables) and fuzzy logic. The popular fuzzy 
logic systems can be categorized into three types: pure 
fuzzy logic systems, Takagi and Sugeno’s fuzzy system 
and fuzzy logic system with fuzzifier and defuzzifier 
(Zadeh, 1994). Since most of the engineering 
applications produce crisp data as input and expects 
crisp data as output, the last type is the most widely 
used one fuzzy logic system with fuzzifier and 
defuzzifier was first proposed by Mamdani It has been 
successfully applied to a variety of industrial processes 
and consumer products (Zadeh, 1994). The main fours 
components’ functions are as follows: 
 
Step #1: 
• Fuzzification: It converts a crisp input to a fuzzy 

set 
 

Step #2: 
• Fuzzy Rule Base: Fuzzy logic systems use fuzzy 

IF-THEN rules 
• Fuzzy Inference Engine: Once all crisp input 

values are fuzzified into their respective linguistic 
values, the inference engine accesses the fuzzy rule 
base to derive linguistic values for the intermediate 
and the output linguistic variables 

 
Step #3: 
• Defuzzification: It converts fuzzy output into crisp 

output 
 
Experimental design: The new proposed model base 
on COCOMO II has two input’s group from COCOMO 
II cost drivers and scale factors and one output, effort 
estimation. This model covers those three fuzzy steps. It 
shows in Fig. 1. 
 In COCOMO effort is expressed as Person Months 
(PM). It determines the efforts required for a project 
based on software project's size in Kilo Source Line of 
Code (KSLOC) as well as other cost drivers known as 
scale factors and effort multipliers. It contains 17 effort 
multipliers and 5 scale factors. 
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Fig. 1: The proposed model: Inputs (COCOMO II cost 

drivers, scale factors, Size) and Output: (effort 
estimation) 

 
 Traditionally, the problem of software effort 
estimation relies on a single (numeric) value of size and 
scale factors values of given software project to predict 
the effort. However, the size of the project is, based on 
some previously completed projects that resemble the 
current one (especially at the beginning of the project). 
Obviously, correctness and precision of such estimates 
are limited. It is of principal importance to recognise 
this situation and come up with a technology using 
which we can evaluate the associated imprecision 
residing within the final results of cost estimation. The 
technology endorsed here deals with fuzzy sets. Using 
fuzzy sets, size of a software project can be specified by 
distribution of its possible values. Commonly, this form 
of distribution is represented in the form of a fuzzy set. 
It is important that uncertainty at the input level of the 
COCOMO model yields uncertainty at the output 
(Boehm et al., 2000). This becomes obvious and, more 
importantly, bears a substantial significance in any 
practical endeavor. By changing input parameters using 
fuzzy set, we can model the effort that impacts the 
estimation accuracy. Obviously, a certain monotonicity 
property holds, which is less precise estimates of inputs 
give rise to less detailed effort estimates. Overlapped 
symmetrical two-sided Gaussian function reduces fuzzy 
systems to precise linear systems.  
 Furthermore there is a possibility when using a 
Two-sided Gaussian function that some attributes are 
assigned the maximum degree of compatibility when 
they should be assigned lower degrees. In order to 
avoid  this  linearity  it is proposed to use more superior  

Table 2: The artificial dataset generated for system validation consists 
of 100 data samples 

No. Mode Size Effort 
1 1.1200 51.2500 246.5900 
2 1.2000 12.5500 58.2800 
3 1.0500 81.5200 550.4000 
… ... … … 
97 1.2000 56.5300 354.7300 
98 1.0500 16.0400 67.1400 
100 1.1200 54.1700 262.3800 

 

 
 
Fig. 2: Representation of RELY cost driver using 

Gaussian function (Input) 
 
function i.e., Two-sided Gaussian membership function 
for representing inputs of the project. The Gaussian 
Function is represented by Eq. 3 in below: 
 

2
i

2
i

i

(x c )

2
i iA

µ (x) Gaussian(x,c , ) e
− −

σ= σ =  (3) 

 
Where: 
ci = The center of the ith fuzzy set 
σi = The width of the ith fuzzy set 
 
 The processes involved in software effort 
estimation using FL are shown in Fig. 1. The main 
processes of this system include four activities: 
fuzzification, fuzzy rule base, fuzzy inference engine 
and defuzzification. 
 All the input variables in COCOMO II model 
changed to the fuzzy variables based on the 
fuzzification process. The terms Very Low (VL), Low 
(L), Nominal (N), High (H) and Very High(VH) were 
defined for the 22 variables, cost drivers and scale 
factors, in COCOMO II. For example, in the case of 
RELY cost driver, we define a fuzzy set for each 
linguistic value with a Two-sided Gaussian shaped 
membership function µ is shown in Fig. 2. We have 
defined the fuzzy sets corresponding to the various 
associated linguistic values for each cost driver. 
 In this research, a new fuzzy effort estimation 
model is proposed by using Two-sided Gaussian 
function to deal with linguistic data and to generate 
fuzzy membership functions and rules for cost drivers 
obtained from Table 2. In the next step, we evaluate the 



J. Computer Sci., 6 (2): 117-125, 2010 
 

122 

COCOMO model using the equation 3 and cost drivers 
obtained from fuzzy sets (F_EMij) rather than from the 
classical EMij. F_EMij is calculated from Eq. 5 the 
classical EMij and the membership functions µ defined 
for the various fuzzy sets associated with the cost 
drivers: 
 

1 i

ij

V V
A1 Ai i1 ijEM

Fuzzy F(µ ,...µ ,EM ...EM )=  (4) 

 
 For ease, F is taken as a linear function, where the 
µV i Aj is the membership function of the fuzzy set Aj 
associated with the cost driver Vi is shown in Eq. 4: 
 

i i

ij i

k v
ijEM Aj 1

Fuzzy µ * EM
=

=∑  (5)  

 
 The new fuzzy model rules contain the linguistic 
variables related to the project. It is important to note 
that those rules were adjusted or calibrated, as well as 
all pertinence level functions, in accordance with the 
tests and the characteristics of the project. In rules use 
the connective "and" and "or" or combination of them 
between input variables, as indicated in the example 
below. The number of rules that have used in proposed 
model is more than 193 rules for all input variables. 
 
Fuzzy rules: 
IF TOOL is Low TEHN effort is Low 
IF PCAP is Very_Low THEN effort is Very_High 
IF RESUE is Nominal THEN effort is Nominal 
IF DATA is Very_High THEN effort is Very_High 
… 
 
 The MATLAB Fuzzy Inference System (FIS) was 
used in the fuzzy calculations, in addition to the Max-
Min composition operator, the Mandani implication 
operator and the Maximum operator for aggregation. 
The defuzzification of the output "effort" used the 
Mean Of Maximum (MOM) technique in this work 
because the resulting values were more appropriate 
when compared to the other evaluated techniques 
(Center Of Area (COA) and First Of Maximum 
(FOM)). 
 

RESULTS AND DICUSSION 
 
 Experiments were done by taking two datasets, 
first one was original data from NASA dataset and 
second one was artificial dataset. 
 
Datasets description: Boehm (1981) is the first 
researcher to look at software engineering from an 
economic point of view and he came up with cost 

estimation models from two datasets, COCOMO and 
COCOMO II. The COCOMO (Boehm, 1995) dataset 
includes 63 historical projects with 17 effort drivers and 
one dependent variable of the software development 
effort. So, the first used dataset for evaluating the 
proposed model is based on COCOMO model. The 
second attempt was to create an artificial dataset, 
Table 2, based on COCOMO model. The algorithm for 
fuzzy set learning in a Mamdani-type fuzzy system is 
following this four-step procedure: 
 
• Choose a training sample and propagate the input 

vector across the network to get the output 
• Determine the error in output and the error gradient 

in all the other layers 
• Determine the parameter changes for the fuzzy 

weights and update the fuzzy weights 
• Repeat until the fuzzy error is sufficiently small 

after an epoch is complete 
 

 Therefore, this work has used two datasets for 
evaluation of the proposed model. Finally, by aggregate 
the accuracy across all testing datasets as the mean 
result. 
 
Evaluation Method: For evaluating the different 
software effort estimation models, the most widely 
accepted evaluation criteria are the Mean Magnitude of 
Relative Error (MMRE) and probability of a project 
having a relative error of less than or equal to 0.25 
(Pred(l)). The Magnitude of Relative Error (MRE) is 
defined as follows: 
 

i i
i

i

| ActualEffort Predicted Effort |
MRE

ActualEffort

−=  (6) 

 
 The MRE value is calculated for each observation i 
whose effort is predicted. The aggregation of MRE over 
multiple observations (N) can be achieved through the 
Mean MRE (MMRE) as follows: 
 

N

ii

1
MMRE MRE

N
= ∑  (7) 

 
 Another measure similar to MRE, the Magnitude 
of error Relative to the Estimate (MER), has been 
proposed. Intuitively, it seems preferable to MRE since 
it measures the error relative to the estimate. MER uses 
Predicted Efforti as denominator in Eq. 6. The notation 
MMER is used to the mean MER in Eq. 7. However, 
the MMRE and MMER are sensitive to individual 
predictions with excessively large MREs or MERs. 
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Therefore, an aggregate measure less sensitive to 
extreme values is also considered, namely the median 
of MRE and MER values for the N observations 
(MdMRE and MdMER respectively). A complementary 
criterion is the prediction at level l, Pred(l) = k/N, 
where k is the number of observations where MRE (or 
MER) is less than or equal to l and N is the total 
number of observations. Thus, Pred(25) gives the 
percentage of projects which were predicted with a 
MRE (or MER) less or equal than 0.25. 
 The proposed fuzzy model was validated by two 
approaches. In the first approach, has used the NASA 
dataset that consists of 93 projects (Dataset #1). In the 
second approach, has used the artificial dataset that 
consists of 100 sample projects (Dataset #2). Then both 
datasets are applied to the new fuzzy model and 
COCOMO II model. The validation of the new fuzzy 
model to building trained fuzzy model for effort 
estimation has been done using artificial dataset and 
NASA dataset. The comparison between the results of 
NASA dataset and artificial dataset that applied on the 
new fuzzy model and COCOMO II model shows more 
accuracy in case of effort estimation by the new fuzzy 
model. The comparisons between results are shown in 
Table 3 and 4. 
 In this research, each dataset separately applied to 
the COCOMO II model and proposed model. Then for 
each model, the MMRE and Pred were calculated. 
Finally mean of those calculations are used to compare 
both models. The result for 193 applied projects shows 
the MMRE for COOCMO II model is 0.406713037 and 
for proposed model the value equals to 0.369637508. It 
shows the proposed model has MMRE less than 
COCOMO II model, so it means the accuracy of 
proposed model is better than COCOMO II. In case of 
Pred, the final result shows the proposed model value is 
47.5% in Pred(25%) and COCOMO II value is 35% in 
same Pred. As it mentioned above, Pred shows the 
number of projects that they have MMRE lass than 
25%. According to this definition, the proposed model 
shows better accuracy. Table 4 shows how much the 
proposed model is accurate than COCOMO II model. 
 For comparing proposed model with COCOMO 
model, the improvement is 12.63% based on the 
MMRE 0.40 and 0.36. The experimental results show 
that the proposed software effort estimation model 
shows better estimation accuracy than the other two 
models, i.e., COCOMO. In summary, an output with 
more terms or fuzzy sets provided a better performance 
due to the high granularity demanded from the results. 
Most of the sample data in the dataset with the 
proposed fuzzy model resulted in a more accurate 
estimation when compared to the COCOMO II model. 

Table 3: Comparison between performance of new model and 
COCOMO II 

  Evaluation 
  ------------------------------------ 
Data set Model MMRE Pred (25%) 
Data set #1 COCOMO II 0.413812453 30% 
 Proposed model 0.366545456 50% 
Data set #2 COCOMO II 0.39961362 40% 
 Proposed model 0.37272956 45% 
Mean COCOMO II 0.406713037 35% 
 Proposed model 0.369637508 47.5% 

 
Table 4: Accuracy of the proposed model 
Model Evaluation MMRE 
Proposed model Vs COCOMO II 0.406713037 
COCOMOII Proposed model 0.369637508 
 Improvement (%) 12.630000000 

 
CONCLUSION 

 
 An essential issue for project managers is the 
accurate and reliable estimates of the required software 
development effort, especially in the early stages of the 
software development life cycle. Software effort drivers 
usually have properties of uncertainty and vagueness 
when they are measured by human judgment. A 
software effort estimation model utilizing fuzzy 
inference system can overcome these characteristics of 
uncertainty and vagueness exist in software effort 
drivers. However, the determination of the suitable 
fuzzy rule sets for fuzzy inference plays an important 
role in coming up with accurate and reliable effort 
estimates. Software effort estimation using fuzzy logic 
is an attempt in the area of software project estimation. 
The objective of this work is to provide a technique for 
software cost estimation that performs better than other 
techniques on a given set of test cases. This paper 
presented a new model for handling imprecision and 
uncertainty by using the fuzzy logic systems. The 
objective of this work is to provide a technique for 
software cost estimation that performs better than other 
techniques on the accuracy of effort estimation. This 
work has shown by applying fuzzy logic on the 
algorithmic and non-algorithmic software effort 
estimation models accurate estimation is achievable. 
The proposed fuzzy logic model showed better software 
effort estimates in view of the MMRE, Pred(0.25) 
evaluation criteria as compared to the traditional 
COCOMO. The above-mentioned results demonstrate 
that applying fuzzy logic method to the software effort 
estimation is a feasible approach to addressing the 
problem of uncertainty and vagueness existed in 
software effort drivers. Furthermore, the fuzzy logic 
model presents better estimation accuracy as compared 
to the NASA dataset. The utilization of fuzzy logic for 
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other applications in the software engineering field can 
also be explored in the future. 
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