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Abstract: Problem statement: The objective of this study is to develop efficient exact algorithms for 
a single source capacitated multi-facility location problem with rectilinear distance. This problem is 
concerned with locating m capacitated facilities in the two dimensional plane to satisfy the demand of 
n customers with minimum total transportation cost which is proportional to the rectilinear distance 
between the facilities and their customers. Approach: Two exact algorithms are proposed and 
compared. The first algorithm, decomposition algorithm, uses explicit branching on the allocation 
variables and then solve for location variable corresponding to each branch as the original Mixed 
Integer Programming (MIP) formulation with nonlinear objective function of the problem. For the 
other algorithm, the new formulation of the problem is first created by making use of a well-known 
condition for the optimal facility locations. The problem is considered as a p-median problem and the 
original formulation is transformed to a binary integer programming problem. The classical exact 
algorithm based on this formulation which is branch-and-bound algorithm (implicit branching) is then 
used. Results: Computational results show that decomposition algorithm can provide the optimum 
solution for larger size of the studied problem with much less processing time than the implicit 
branching on the discrete reformulated problem. Conclusion: The decomposition algorithm has a 
higher efficiency to deal with the studied NP-hard problems but is required to have efficient MIP 
software to support.  
 
Key words: Location-allocation problem, decomposition algorithms, mixed integer programming 

 
INTRODUCTION 

 
 The Location-Allocation Problem (LAP) is to 
select the locations of a set of facilities and 
simultaneously allocate to these facilities demand for 
service of a set of customers in order to minimize the 
transportation cost. Facilities may be considered as 
plants, warehouses, supply centers and hospitals while 
dealers, working stations and retailers may be 
considered as customers. LAP has been shown to be 
NP-hard by (Francis et al., 1974).  
 When facility locations are selected from a set of 
pre-designed locations, the corresponding LAP is called 
a discrete LAP or a Capacitated Multi-facility Location 
Problem (CMLP). In this problem, distance between 
each customer and facility is the real or estimated 
distances between two corresponding nodes, which is a 
known constant value. If the demand of a customer can 
be serviced by many facilities separately, the 
mathematical model formulation of the problems is a 
mixed integer programming problem. Most of the 

algorithms for such problems deal with finding the 
efficient technique to tighten bound or to relax the 
constraints in branch-and-bound algorithm such as the 
algorithm proposed by (Akino and Khumawala, 1977; 
Nauss, 1978; Sa, 1969). When a customer should 
receive the whole service quantities from a facility, the 
problem is known as p-median problem. The 
mathematical model is a binary integer problem with 
two set of 0-1 variables to allocate the node for the 
facilities and customers. Since the efficient exact 
algorithm for such problem is branch-and-bound 
algorithm, most of the studies emphasize on improving 
the quality of initial solution such as the algorithm 
proposed in (Koskosidis and Powell, 1992; Mulvey and 
Beck, 1984).  
 When the facilities can be located anywhere in a 
continuous plane, the corresponding LAP is known as 
the Capacitated Multi-facility Weber Problem 
(CMWP). The transportation distances between 
customers and facilities are considered in different 
distance functions. These functions can be a rectilinear 
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distance, squared-Euclidean distance, Euclidean 
distance or the general distance function called lp. If the 
demand of customer can be satisfied from different 
facilities, the CMWP is a Multi-source problem 
(MCMWP). On contrary, if every customer should be 
served by a single facility, the problem is formulated as 
a Single-source CMWP (SCMWP), which requires the 
use of additional binary variables. To solve CMWP, the 
original formulation of the problem is usually 
reformulated using the special condition for optimal 
solution of considered distance function. The 
reformulated equation will then be solved by the 
specific methods for such kind of formulation such as 
sub-gradient method, Extreme point raking method, 
cutting plane method etc. that are shown in (Sherali and 
Tuncbilek, 1992; Singhtaun and Charnsethikul, 2007; 
Singhtaun and Charnsethikul, 2008).  
 In this study, two exact algorithms under two 
different approaches are proposed to solve two different 
formulations of Rectilinear distance SCMWP 
(RSCMWP). The next two sections show methodology 
of the two algorithms. The result section compares the 
computational time of the two algorithms on the test 
problems with various sizes. The conclusion is then 
summarized in the last section.  
 

MATERIALS AND METHODS 
 
 There are two algorithms proposed in this study 
which are a decomposition algorithm and enumeration 
algorithm. Their methodology can be shown as 
follows: 
 
A decomposition algorithm: 
Mathematical model: The CMLCP is described as 
follows. There are m>1 new facilities with a certain 
capacity to be located on the continuous plane. They 
have to serve n customers in their responsibilities 
whose locations and inseparable products or demands 
are known and deterministic. The objective is to find 
the good locations of these new facilities and 
allocations of customers to them so as to minimize total 
distances measured in squared-Euclidean metric with 
respect to facility capacity. It can be mathematically 
formulated as follows: 
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Where:  
si = Capacity of facility i; i = 1,…,m 
wj = Demand of customer j; j = 1,..,n 

zij = 
1,if  customer j is assigned to facility i

0,otherwise





 

(aj, bj) = Known co-ordinate of customer j on plane 
(xi, yi)  = Unkown co-ordinate of facility i on plane 
 
 The objective function above gives the total 
transportation distance, while the first constraint set 
ensures that all customer demands are satisfied and the 
second constraint set ensures that each facility capacity 
is controlled respectively. 
 
Algorithm development: Even though the LAP is NP-
hard in nature, it composes of two sub-problems, which 
can be solved in polynomial time. They are location 
problem (finding the location variables (xi,yi)) and 
allocation problem (finding the allocation variables zij). 
Observe from Eq. 1 that if the allocation variables zij  
are known, the optimum location is readily obtained by 
solving m single facility location problems with 
rectilinear distance independently. On contrary, if the 
location variables (xi,yi) are known, the best allocation 
can be found by solving binary integer programming 
problem with mxn variables. The decomposition 
algorithm uses this fact to solve Eq. 1 by decomposing 
the RSCMWP into two sub-problems. For location sub-
problem, all feasible facility locations are listed as 
candidate nodes using the special property for LAP 
with rectilinear distance. All nodes in the list are then 
selected with m nodes to be m facility locations. At 
each set of m facility locations the allocation variables 
corresponding to the known m location variables are 
solved. The optimum solutions are the set of location 
and allocation variables that give minimum objective 
function value. It can be elaborately explained as 
follows. 
 
Step 1: Find all  feasible  location  solutions: 
Francis et al. (1974) shows that the rectilinear distance 
multi-facility location problem always has a minimum-
cost solution where the x coordinate of each facility is 
equal to the x coordinate of some customers and the y 
coordinate of each facility is equal to the y coordinate 
of some customers. The feasible locations are listed 
from all possible pairs of coordinate (aj, bj) of n 
customers. Therefore, there are n2 possible coordinates 
or nodes to be the candidate facility locations and a set 
of m nodes out of these n2 nodes is an optimum set of 
locations for m facilities. All possible set of selecting m 
nodes from n2 nodes are considered.  
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Step 2: Solve the allocation solutions: At each set of 
m nodes selecting from n2 nodes, the allocation sub-
problem corresponding to the set of locations is solved. 
Plugging in the set of m coordinates to location 
variables (xi, yi), an Eq. 1 becomes as follows: 
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Where: 
dij = ij i j i jd  = x - a y - b+    

xi = x co-ordinate of a candidate location 
yi = y co-ordinate of a candidate location 
 
 This problem is then solved by branch-and-bound 
algorithm combining with logic based method (Hooker, 
2000). The logic based method is using the logic of 
integer according to the problem conditions to construct 
the constraints so as to tighten bounds of the variables. 
Since the problem contains binary integer variables, 
tightening bounds of the variables is equivalent to 
determining the value of theses variables and then can 
reduce the problem size to be considered. For this 
problem, the logic based constraints are constructed 
from the fact that every facility cannot serve its 
customers over their capacity. This condition can be 
transformed to the logic condition as follows. If wj > si,, 
then zij = 0. Obviously, the more logic based constraints 
are created, the more number of variables are cut. 
Moreover, if mn−1 logic based constraints are 
constructed, all m×n allocation variables zij will be 
fixed. 
 
Step 3: Update and select the optimum solutions: To 
update the solution at each loop of solving Eq. 2, the 
solution with less objective function is kept while the 
worse is discarded. After passing through all possible 
set of m nodes, the latest updated solution is the 
optimum solution. 
 
Algorithm complexity: The complexity of 
decomposition algorithm is shown as follows. The 
algorithm requires complexity O(n2m) for selecting m 
locations from n2 the candidate locations. At each set of 
m selected locations needs 2mn nodes to be searched in 
the worst case. Hence, the complexity of the 
decomposition algorithm is O(n2m2mn).  

An enumeration algorithm: The idea of this algorithm 
is to transform Eq. 1 to the standard formulation, which 
is an integer programming and then solve it with the 
specific method of such problem. Under this approach, 
the location and allocation variables are solved 
simultaneously. It can be elaborated as follows. 
 
Discrete mathematical formulation of RSCMWP 
and the algorithm: The RSCMWP is reformulated as a 
discrete LAP using the optimal solution property for 
location variables described in step 1 of a 
decomposition method. Since the optimal locations are 
a set of m nodes selecting from n2 feasible nodes 
created from a set of customer coordinates, the distance 
between the candidate nodes and customers are known. 
The RCMWP can be reformulated as follows: 
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Where: 
si = Capacity of facility i; i = 1,…,m 
wj = Demand of customer j; j = 1,..,n 
dkj = Rectilinear distance from node k to customer 

k j k jj a - a b - b ;        k  1,...,v = + =   

ykj = 
1,if  facility i is located at node k

0,otherwise





 

ykj = 
1,if  customer j is assigned to facility at node k

0,otherwise





 

(aj, bj) = Known co-ordinate of customer j on plane 
(xi, yi)  = Known co-ordinate of candidate location 
 
 The objective function above gives the total 
transportation distance from selected candidate nodes 
(facility locations) and customers, while the first and 
second constraint set ensures that a facility and a 
customer select only one candidate nodes to be a 
location and a service node respectively. The last 
constraint shows that each facility capacity is 
controlled.  
 The classical exact algorithm for Eq. 3 which is an 
integer programming problem is a branch-and-bound 
algorithm.  
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Algorithm complexity: Since number of variables in 
Eq. 3 equals n2(m+n) for zkj and yki, then the 
complexity of enumeration algorithm in the worst case 

is 
3nO(2 ) . 

 To evaluate the efficiency of both algorithms 
proposed above, they are tested on benchmark 
instances. The numerical experiments are constructed 
with various problem sizes of which the number of 
facility (m) varies from 2-6 and mxn is less than 60. For 
each problem size, 5-10 sets of data are generated and 
then solved by two algorithms: decomposition 
algorithm and enumeration algorithm. Both algorithms 
are coded with MATLAB and use command “bintprog” 
to do branch-and-bound algorithm. These experiments 
process on a personal computer with 2.4 GHz, 2.00 GB 
of RAM, Pentium IV Core 2 Duo.  
 

RESULTS  
 
 Since the solutions of both algorithms are optimal 
solutions, the comparison of the quality of the solutions 
is ignored. Therefore, only average processing time of 
all instances or algorithm efficiency is considered. They 
are shown in Table 1. 
 The underlined values in Table 1 mean that there 
are some cases in these problem sizes that are 
premature terminated by time limitation. The limitation 
of processing time for decomposition algorithm is set at 
36,000 sec or 10 h while for enumeration algorithm is 
set at 7,200 sec. At the premature time, decomposition 
algorithm can provide good or optimal solution while 
the other cannot give any solution because of too small 
premature time to solve the problem. The letter “N/A” 
means the algorithm cannot provide the solution 
because of inadequate computer memory.  
 
Table 1: Processing time of decomposition and enumeration 

algorithms 
 Problem Decomposition algorithm Enumeration algorithm 
    size ------------------------------ ------------------------------- 
Problem ---------  Processing  Processing 
No. m n Complexity time (sec) Complexity time (sec) 
1 2 5 6.40E+05 2.5922 4.25E+37 18.1781 
2 2 10 1.05E+10 125.1969 1.07E+301 7.20E+03 
3 2 15 5.44E+13 1.32E+03 >1.07E+301 N/A 
4 2 30 9.34E+23 3.42E+04 >1.07E+301 N/A 
5 3 5 5.12E+08 19.2547 4.25E+37 35.8 
6 3 10 1.07E+15 2.43E+04 1.07E+301 7.20E+03 
7 3 15 4.01E+20 3.60E+04 >1.07E+301 N/A 
8 3 20 7.38E+25 3.60E+04 >1.07E+301 N/A 
9 4 8 7.21E+16 1.13E+04 1.34E+154 N/A 
10 4 10 1.10E+20 3.60E+04 1.07E+301 N/A 
11 4 15 2.95E+27 3.60E+04 >1.07E+301 N/A 
12 5 8 1.18E+21 3.60E+04 1.34E+154 N/A 
13 5 10 1.13E+25 3.60E+04 1.07E+301 N/A 
14 6 8 1.93E+25 3.60E+04 1.34E+154 N/A 
15 6 10 1.15E+30 3.60E+04 1.07E+301 N/A 

DISCUSSION 
 
 From Table 1, the decomposition algorithm has 
much less complexity than enumeration algorithm for 
all instances. Therefore, it can provide the optimal 
solution or good solution (in case of no premature 
termination occur) for much more number of test 
instances than enumeration algorithm. The enumeration 
algorithm struck at only the small-scale problem with 
(m,n) = (2,5) and (3,5) whose complexity are not over 
4.25 E+37 while the decomposition algorithm can give 
optimal solution to the problem size from  (m,n) = (2,5)-
(5,8). Its efficiency appears obviously when the 
problem sizes grow and the number of customer (n) is 
much more than the number of facility (m).  
 Increasing in both m and n requires more 
computational time. However, the number of facility 
has a higher impact on computational time than the 
number of customers. Increasing of m makes the 
computational time increase numerously even if number 
of customers is small. For example, both algorithms take 
less time to solve problem number 3 with (m,n) = (2,15) 
than problem number 6 with (m,n) = (3,10). However, 
there are some cases given the contradicted results. To 
explain this special condition easier, a graph that 
illustrates the relationship between the number of 
variables and computational time corresponding to each 
m is illustrated as shown in Fig. 1. 
 From Fig. 1, the beginning of graph m−1 lies below 
the beginning of graph m. After passing a certain point 
the graph of m is steeper rapidly and lies above graph 
of m−1. The reason behind this condition is that when n 
is closed to m, the average number of customers in each 
facility (n m−1) will be small and the probability to 
occur logical based constraints is high. Therefore, the 
number of variables to be considered is reduced. 
Moreover, the smaller n m−1 is, the higher number of 
variables should be reduced. 
 

 
 
Fig. 1: The relationship between number of variables 

and computational time separated by m 
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CONCLUSION 
 
 In this study, the RSCMWP is studied, analyzed 
and solved. Two exact algorithms to solve the different 
formulations of the problem is developed and 
compared. The first algorithm, decomposition 
algorithm, formulates the RSCMWP as an original 
mathematical model which is a mixed integer 
programming formulation with nonlinear objective 
function. Using the special property of the optimal 
solution to rectilinear distance single facility location, 
all possible candidate locations are determined. At each 
location, the optimal allocation is provided using 
branch and bound algorithm. The other algorithm, 
enumeration algorithm, reformulates the problem as a 
discrete LAP which requires much more additional 
variables and solves this reformulated equation using 
branch-and-bound algorithm. The location and 
allocation variables are found simultaneously. The 
result shows that the decomposition algorithm has 
higher efficiency to solve RSCMWP than the 
enumeration algorithm because of less complexity than 
the other. Using the logic based technique; allocation 
sub-problem can be solved faster because of reduction 
on the number of variables to be considered. Owing to 
the logic based constraints the two-phase algorithm can 
solve the problem with m is up to 4 without premature 
terminated. 
 As a future direction, the method to expedite the 
computational time of solving the two independent sub-
problems for decomposition algorithm or of solving the 
independent branches in branch-and-bound algorithm 
such as grid computing technique may be considered. 
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