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Abstract: Problem statement: The Conjugate Gradient (CG) algorithm which usualked for
solving nonlinear functions is presented and is lwoed with the modified Back Propagation (BP)
algorithm yielding a new fast training multilayetgarithm. Approach: This study consisted of
determination of new search directions by explgitihe information calculated by gradient descent as
well as the previous search direction. The propadgdrithm improved the training efficiency of BP
algorithm by adaptively modifying the initial sebrdirection.Results. Performance of the proposed
algorithm was demonstrated by comparing it with lfeural Network (NN) algorithm for the chosen
test functionsConclusion: The numerical results showed that number of i@natrequired by the
proposed algorithm to converge was less than thie standard CG and NN algorithms. The proposed
algorithm improved the training efficiency of BP-N&gorithms by adaptively modifying the initial
search direction.
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INTRODUCTION techniques were suggested for improving the efiicye
of error minimization process or in other words the
Gradient based methods are one of the most wideliraining efficiency. Among these are methods of
used error minimization methods used to train backletcher and Powéll and the Fletcher-ReeV&sthat
propagation networks. The BP training algorithmais improve the conjugate gradient method of Hestends a
supervised learning method for multi-layered feed-Stiefef and the family of Quasi-Newton algorithms
forward neural networkd. It is essentially a gradient proposed by Huakg
descent local optimization technique which involves It has been recently shown that a BP algorithm
backward error correction of the network weights.using gain variation term in an activation function
Despite the general success of BP in learning ¢ueah  converges faster than the standard BP algofitin
networks, several major deficiencies are still meetb  However, it was not noticed that gain variationrteran
be solved. First, the BP algorithm will get trapped modify the local gradient to give an improved geadi
local minima especially for non-linearly separablesearch direction for each training iteration. TFast
problem&. Having trapped into local minima, BP may allow us to develop and investigate several imprta
lead to failure in finding a global optimal solutio CG-formulas in order to improve the rate of
Second, the convergence rate of BP is still toavslo convergence of the proposed type of algorithms.
even if learning can be achieved. Furthermore, the This study suggests that a simple modification to
convergence behavior of the BP algorithm dependshe search direction can also substantially imprinee
very much on the choices of initial values of castitn ~ training efficiency of almost all major (well Knowand
weights and the parameters in the algorithm sudheas developed) optimization methods. It was discovered
learning rate and the momentum. that if the search direction is locally modified &ygain
Improving the training efficiency of neural networ value used in the activation function of the
based algorithm is an active area of research andorresponding node, significant improvements in the
numerous papers have been proposed in the literaturconvergence rates can be achieved irrespectivéeof t
Early days BP algorithm saw further improvements.optimization algorithm used. Furthermore the preubs
Later, as summarized by BisH8pvarious optimization ~algorithm is robust, easy to compute and easy to
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implement into several well known nonlinear test The overall error on the training set is simplg th
problems as will be shown later. sum, across patterns, of the pattern error E. densi
The remaining of the study is organized as foltows multilayer feed Forward Neural Network (FNN)has
Materials and methods are proposed first. Thermgli one output layer and one input layer with one orano
and the implementation of the proposed algorithithwi hidden layers. Each layer has a set of units, noates
CG algorithm have been discussed secondneurons. It is usually assumed that each layeulig f
Experimental results are discussed after that iadiyf, connected with a previous layer without direct
the concluding remarks with short discussion fottfer ~ connections between layers which are not consexutiv
research are listed later on. Each connection has a weight. L&t be the activation

of the " node of layer s and let® :[of...qf]T be the

column vector of the activation values in the layemd
First, a novel approach for improving the trainingthe input layer as layer 0. Let; be the weight on the

efficiency of gradient descent method (BP algorithm . h : _ :
which was presented by Nawi al.'? are discussed. connection from thé"inode in layer s -1 to th& hode

1 S s s T
Their method modified the initial search directibp  in layer s and let; =[w;..w; | be the column vector
changing the gain value adaptively for each nodeof weights from layer s -1 to th® hode of layer s. The
Following their iterative method for changing tmétial net input to the “] node of layer s is defined as
search direction using a gain value: et :(st’og 1) :zi wo* " and let nef :[nef mnqﬂT

Algorithm™: Initialize the weight vector with random be the column vector of the net input values iretay
values and the vector of gain values with one. Repe The activation of a node is given by a functioritefnet
the following steps 1, 2 and 3 on an epoch-by-epoclknput:

basis until the given error minimization criterizaea

satisfied. o’ =f(cnet) ©)

MATERIALSAND METHODS

Step 1: By introducing gain value into activation
function, calculate the gradient for weight Where:
vector by using Eq. 6 and gradient for gainf = Any function with bounded derivative
value by using Eq. 9. ¢; = Areal value called the gain of the node

Step 2: Calculate the gradient descent on erroh wit
respect to the weights and gains values.

Step 3: Use the gradient weight vector and gradiént
gain calculated in step 1 to calculate the ne
weight vector and vector of new gain values for By introducing “gain variation” term in this
use in the next epoch. activation function, then only updating formulas %}

o ) _are changed while others are the same as the stlanda
In general, the objective of a learning process imyack propagation. To simplify the calculation, take
neural network is to find a weight vector w which fom the Eq. 2 we then can perform gradient desoent
minimizes the difference between the actual ou ; s ; ; .
) i ot e itk respect tov; . The chain rule yields:
the desired output. Namely:

Note that this activation function becomes the
wHsual logistic activation function if; = 1.

min E(w) 1) OE _ OE odnef™ 97 0 net
R ow; onet’ 9g° ‘danef 0w
Suppose for a particular input pattefhand let the wit 4
input layer is layer 0. The desired output is thacher :[_5?1____5?1] Colf '(c.snegs) ¢’.0°
pattern t = [t...t,]" and the actual output is- , where L Wt :

denotes the output layer. Define an error functon !
that pattern as:

where, &} = - oE . In particular, the first three factors
E:EZ (t _OL)z (2) aneﬁ
24\t o of (4) indicate that:
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the gradient is n-components vector and the gradien
direction is called the steepest ascent or desghat
Fletcher-Reeves method tries to exploit the faat for
As we noted that the iterative formula (5) @ris Zloqnuadratlc function Of. ; varla\_bles_, n Im_ear shasc

g the mutually conjugate directions will locéle
the same as standard BPexcept for the appearance of minimum). But this direction has a local propertyda
the value gain. By combining (4) and (5) yields thenot a global one. Thus any method which makes fise o
learning rule for weights: the gradient vector, can be expected to give the

5 =(25f”w:; 1}* (cihet (5)

minimum point. The steps of CG algorithm are:

o =n 2= =050 6)
ow;

I

where,n is a small positive constant called ‘step length’®
or ‘learning rate’ and the search direction or ¢gad
vector isd=Aw; =g. In this approach, at step n is the *

calculation for gradient of error™yis modified by
including the variation of gain value to yield:

d(n):AWi(jn)(qﬁ(rﬁ)zdr)(qM) @)

The gradient descent on error with respect to the
gain can also be calculated by using the chain asle
previously described; it is easy to compute as:

OE S+1, ,, St ' €
= :[Zéi W 1]f (cﬁweﬁ net (8)
§ 1

Then the gradient descent rule for the gain value
becomes:

net
= (©)

]

Ac; =nd;

At the end of each iteration the new gain value is
updated using a simple gradient based method a# giv
by the formula:

new — ~old s
c=¢ " +Ag

(10)
this method and its

For more details of
implementationé?.

CG-type method: In order to overcome the difficulties
of the standard delta rule learning technique, witleis
turning through the steepest descent direction.ctWhi
causes the zigzag problematic, where it increaises t
turning time. To improve the global rate of convarge
of the standard delta rule learning technique, a&eeh

Algorithm (CG-based NN-algorithm):

Select the initial weights randomly with small
valuesand setp=1

Select the next training pair from the training set
[T,] apply the input vector [} to the network input
and specify the desired output vector. Then
calculate the actual outputs of the network by gisin
these two formulae:

nelf)j”:i; W ouf'+ bia$ *

v a1
out;, —f(neljj‘ )_héw
Where:
net;* = Summation of multiple weight with
inputs for j
out* = The actual output of the network j by

using function
X = out!, = It represents input patterns, p number

of pattern and j is number of net

n
Net =X Wy + X W, J+..+ Xanj:; % Wy
=

And:

nej = The result of summation of j node
X; = Input pattern
w; = Weight between node j and i

Calculate the errors between the actual output of
the network and the desired output by using these
steps

Start with x If (i = 1) then d = -g;. Obtain (1)

suggested the new delta rule based on CG type mhethousing line search and update the object (x) usiey t
The CG method is an iterative optimization appreachformula: x;,, =x; +p,d . Increment i by 1 and calculate
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the gradient vector,go obtainB;. Update the direction global convergence for general non-linear functions
d. using the formulad,=-g,+Bd and find the but has good performance in practice. Therefore CG
corresponding step size,) by updating the object (x) methods has been frequenFIlyé] modified and improwed b
to minimize the value of object (x) and adjust theMany au;hors, for exam_ﬂﬂé have_proposed furthe_r
weights of the network in a way that minimizes themodifications of the conjugate gradient methodscivhi
error. are based on some non-quadratic models.

When (x.1) is minimum terminate the iterations; if Here we generalize the FRCG by considering more
not, continue to repeat step (3) for each vectothn ~9eneral function than quadratic which we call it as
training set until the total error for the entiret s quaS"S'ngId function, our goal IS to preserve _and
acceptable low, where & the update direction of the increase the convergence properties of FR algorithm
object at the iteration and;, dhe initial direction, is and to force its performance in practice.
chosen to be the steepest descent direcfions the ] ]
step size along the direction; @ is chosen to insure A generalized FRCG algorithm (based on non-
that the direction vector is conjugate to all pee duadratic model): If q(x) is a quadratic function
directions and gis the gradient of the activation defined by:
function of the iteration. There is a number ofetiént
choices foff3;. a(x) =EXTGX+ b +c (14)

In this study, Fletcher and Reeves has been lsed. 2
is one of the most commonly used and its formula is

Where:
g g G = mxn symmetric and positive definite matrix
BFﬁ (Fletcher and Reeves) (11) p = Constant vector in"Rand c is constant

) . Then we say that f is Defined as a nonlinear sgali
The other type of; is Al Assady and Al Bayati of g(x) if the following conditions hold:
and Polak and Ribere. The formula ®fof these two

types are: f(x) =F(q(x)), g> 0 (15)
T .
Bi=gd‘*;—;‘ (Al Assady and Al Bayati) (12) And:
o (16)
. ylg, . dq
Blzﬁ (Polak and Ribere) (13)

The following proportions are immediately derived

Following we are going to investigate and developT®™ the above conditions:

a new formula for the extended FR formula which is ) . )

based on the non-quadratic models, this will insgea ® EVery contour line of g(x) is a contour line of f

the rate of convergence of the In fact, these diiesit * If x* is minimize of q(x) then it's also a minimize of
are well-known and derived with respect of quadrati f

models, certainly the FR formula has a standard GRC ) . )

method. Now most of the currently used optimization I this area there are various published worke Th
methods use a local quadratic representation of thépecial polynomial case:

objective function. But the use of quadratic mochaly

be inadequate to incorporate all the informatiorthed
more general models than quadratic are proposed as
basis for CG algorithms.

It is shown that CG methods with,,g,, in the  where,g,, €, scalars are has been investigated®hyA

numerator of; has strong global convergence theoremdational model has been developeétbyvhere:
with exact and inexact line searches but has poor

performance in practice. On the other hand the CGF(q(X)):Slq(X)ﬂ
methods withg],,y, in the numerator d8; has uncertain £,0(x)
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Another rational model was considered “By
where:

£,9(x)

, Now definep; as follows:
1-¢,q(x)

F(a())= 19)

g >0,e,<0

1

A new extended CG-formula; Here we consider the £, =—-
new model function defined by: R

i+l

where,a= /(1+f1)2 -1 assumingo :%

(25)

_ g Then we can compute the value pf using
f() =F@() = 1te®@ (20)  function value at two pointsax and x from Eq. 24:
We call it as quasi sigmoid function where g>0 (5 _¢ +i+a1) 141 +a
with further assumption that: o = ' - * i (26)
i 1 1
dF (1+?+ai) fi(2- fi+l+f +3a)
— >0 (21) : e
dq
Where:

From Eq. 20 we have:

a1=1/(1+f3)2—1

dF 1+e?)+qge’ 1 f

*:F:%zf*(l’f*—*) a,= |1+ 1y q

dq (1+e7) q d f.
1+q-f

OF =f*(— ) 22
. (22)

Our objective is to investigate an extended FRCG

method applied to function F(q(x)) obtained by non-

Return to Eqg. 20 and solve it for g assuming tha{')

inear scaling of q(x). The extended FRCG methad ca
e done by modifying the search directions as fadto

el=1- q+1 f+r where the remainder
2 ~
o (_l)n 1 dl = gl (27)
r:Zﬂ”(l—?q). It is clear thatr<0 and set
= n! n .
e And for i=0:
o=r+1
Then ai+1 G + P ~| a (28)
‘o q Where
¢ -g+ T = ~
2q q o B - giT+1gi+1 = pl gT+1 g+1 (29)
© 59 g9
And:
Where
q=(1+%)+ /(1+f})2—25 (23)
N of _dFaq
=0F =— =—"2=F
g (a(x)) ox ~ dqox

Use (21) and (23) to compute' Esing only
function values:

dis the search direction applied t&(q(x)) and

2—f+1+a
— )
1+f1+a

Yi=6.~G -

F=fx( (24)

853

We can show that the original FRCG method and
extended FRCG algorithm defined in (27-29) generate



J. Computer <ci., 5 (11): 849-856, 2009

the same set of directions and same sequence mpoi Step 2: At step n, evaluate gradient vectdc.y with

{Xi}by using the following theorem:

Theorem 1: Given an identical starting poingXR".

The method of FRCG applied to f(x) = q(x) and the
extended (ERFCG) method defined by (27-29) andStep 4:

applied to f(x) = F(q(x)) withp;, defined by (26)
generate identical set of directions and
sequence of points {

Proof: The prove is by induction for k = 0 we have:

Supposed, = Fd , to prove for i+1
ai+1 =Gt piBa—l
.
= B, [-g,+2a%1 g

= ri_'+1 cl|+1

Hence the two methods generates the same set g{

directions.

Our proposed algorithm known as (NEW) begins

the minimization process with an initial estimatgand
an initial search direction as:

dy =-0E(w,) =g, (30)

Then, for every epoch by using our proposedS

method in Eq. 7 the search direction at (f{4fdration
is calculated as:

__¢oE
n+l 6W

n+l

(Coner) *PBA( 1) d €.) (31)

where the scalaP, is to be determined by the
requirement that dand d** must fulfill the conjugacy
property”! and b, ) is defined by Eq. 26.

Outlines of the new algorithm:

Step 1: Initializing the weight vector randomly,eth
gradient vector g= 0 and gain value as one.
Let the first search direction, & g. Setf3o =0,
epoch =1 and n = 1. Let;& the number of
weight parameters Select
Tolerance CT.

identical

respect to gain vector,@and calculate gain
vector.

Evaluate E(@ If E(w,)<CT then STOP
training ELSE go to step 4.

Calculate a new search direction:

d,=-g,(c,)+p, B, d,, Where @, ) is

defined in Eq. 25 for | = n-1.
For the first iteration, check if n>1 THEN
with the function of gain, update:

Gs(00) 30 00
S CY PR EY

If [(epoch +1)/Nt] = 0 THEN ‘restart’ the
gradient vector with ¢d= ¢"%(c,..) ELSE go to
step 7.

Calculate the optimal value for learnintera
n* by using line search technique such as:

Step 3:

Step 5:

ELSE go to step 6
Step 6:

Step 7:

E(w, +n,d,) = minE{ w,+n,d,)

ep 8: Updatew,,,=w, -n'd,, where ¢ is a descent
direction.

Step 9: Evaluate new gradient vectQgi@n.1) with
respect to gain value {g).

Step 10: Calculate new search direction:
dn+1 :_gn+1(cm1)+pn—5 ﬁ(cr) dr
tep 11: Set n = n+1 and go to step 2.

RESULTS

The performance criterion used in this research
focuses on the speed of convergence, measured in
number of iterations and CPU time. The test proklem
used to verify our new proposed algorithm are taken
from the open literature by Prectglt The numerical
results have been carried out on a Pentium IV using
MATLAB version 7.0. On our test problems, four
algorithms have been computed. The first algoritem
the standard CG with Fletcher-Reeves update (igdinc
The other algorithm is a standard CG algorithm
computed from the NAG library (CGFR). The third one
is the Nawiet al.*¥ NN-algorithm computed by using
their algorithm with their computer program listed
in®?. Finally, the new proposed ECG based NN

a Convergencalgorithm (NEW) which is implanted by modifying

NN-algorithm. This algorithm uses a major change in

854



J. Computer <ci., 5 (11): 849-856, 2009

calculating the gradient step by in forcing theueabf
the new parametgs; which is given in Eqg. 25 of this
study. We have noticed that if the value of this
parameter is one, then, this new algorithm wilhcide
with Nawi et al.*? algorithm but for positive values the
new algorithm produces better numerical resultsaibse
of the use of the non-quadratic model in the dédweof

This is perhaps the best-known database to be found
the pattern recognition literature. Fisher's stuslya
classic in the field and is referenced frequendlythis
day. The selected architecture of the FNN is (438-3
with target error was set as (0.01) and the maximum
epochs to (2000).

Table 1 shows that the proposed algorithm reached

the CG-formula To compare the performance of thghe target error after only about (25) epochs gmsed
proposed algorithm with respect to others: standardo the standard CGFR at about (39) epochs andlglear

optimization algorithms from the (MATLAB NN-
toolbox) network parameters such as network sizk an
architecture (number of nodes, hidden layers etdlies
for the initial weights and gain parameters wergtke
same. For our test problem the neural network hed o
hidden layer with five hidden nodes and sigmoid
activation function was used for all nodes. All@ithms
were tested using the same initial weights thatewer
initialized randomly from range [0, 1] and receive
input patterns for training in the same sequence.
Default values were used for the heuristic

parameters, of the above algorithms, unless stated

otherwise. For the purpose of comparison, all teste
algorithms were fixed with the values of léam
rate = 0.3 and momentum term = 0.4. The initialigal
used for the gain parameter was one. The resuldl of
these four algorithms will be presented as Talkdmd 2
which summarize the performance of the algorithars f
simulations that have reached solution. All aldrnis
were trained with 100 trials, if an algorithm faile
converge, it is considered that it fails to traie tFNN,
but its epochs, CPU time and generalization acguaee
not included in the statistical analysis of theoallpms.

Test problem (1) Fisher

Iris classification problem: This is a classical
classification dataset made famous by Fiéflemwho
used it to illustrate principles of discriminateadysis.

Table 1: Comparisons of four different algorithrostiest problem (1)

Algorithms NOE CPU CT

traincgf 69 554107 3.8071
CGFR 39 4.981072 1.9146
Nawi et al.*? 29 494107 1.4232
NEW 25 4.1%107? 1.2097

Note: NOE: Number Of Epochs; CPU: Time in seconds peckpo
CT: Time of Convergence

Table 2: Comparisons of four different algorithros tiest problem (2)

Algorithms NOE CPU CT

Traincgf 71 5.34107° 3.7883
CGFR 65 5.1%102 3.3060
Nawi et al . 39 4.06x10°2 1.5503
NEW 33 3.461072 2.8101
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we see that there is an improvement ratio, ne&§)(

for the number of epochs compare to NN-toolbox and
almost (3.681) for the convergence time. The follay
main computer program used with Nawi al.*?
routine is:

% main learning program

P=[012345678910];

T =[01234321234];

net = Newff(minmax(P),[5 1],{'tansig' 'purelin});

Y = Sim(net,P); plot(P,T,P,Y,'0)
net.trainParam.epochs = 50;

net = Train(net,P,T);

Y = Sim(net,P);

Test problem (2) Fisher!*¥:

Winconsin breast cancer problem: This dataset was
created based on the ‘breast cancer Wisconsinlgmob
dataset froM?. This problem tries to diagnosis of
breast cancer by trying to classify a tumor asegith
benign or malignant based on cell descriptionseayath
by microscopic examination. The selected architectu
of the FNN is (9-5-2-2). The target error is settas
(0.015) and the maximum epochs to (2000).

In Table 2, it is worth noticing that the
performance of the new algorithm since it take only
(33) epochs to reach the target error compare to
Nawi et al.'? (39) epochs and to CGFR at about (65)
epochs and worst for traincghat need about (71)
epochs to converge. Still the proposed algorithm
outperforms others three algorithms with a consildier
improvements.

DISCUSSION

In this study, we have introduced neural network
algorithm based on several optimization update. The
new algorithm is compared with three well known
standard CG and NN algorithms wusing the Iris
Classification Problem and Winconsin Breast Cancer
Problem Our numerical results indicate that the new
technique has an improvements of about (10-15%)
NOE; CPU and CT tools.



J. Computer <ci., 5 (11): 849-856, 2009

CONCLUSION 9.

In this research, new fast learning algorithm for
neural networks which are based on CG updates with
adaptive gain training algorithm (NEW) is introddce

The proposed algorithm improved the training 10.

efficiency of BP-NN algorithms by adaptively
modifying the search direction. The initial search
direction is modified by introducing the gain valUde

proposed algorithm is generic and easy to implerment
all commonly used gradient based optimization

processes. The simulation results showed that th#l.

proposed algorithm is robust and has a potential to
significantly enhance the computational efficienafy
the training process.

12.
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