
Journal of Computer Science 5 (11): 849-856, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Abbas Y. Al Bayati, Department of Numerical Optimization, University of Mosul, Mosul, Iraq
849

A Modified Conjugate Gradient Formula for Back Propagation

Neural Network Algorithm

1Abbas Y. Al Bayati, 2Najmaddin A. Sulaiman and 3Gulnar W. Sadiq
1Department of Numerical Optimization, University of Mosul, Mosul, Iraq

2Department of Numerical Analysis, Salahaddin University, Erbil, Iraq
3Department of Operational Research, University of Sulaimani, Sulaimani, Iraq

Abstract: Problem statement: The Conjugate Gradient (CG) algorithm which usually used for
solving nonlinear functions is presented and is combined with the modified Back Propagation (BP)
algorithm yielding a new fast training multilayer algorithm. Approach: This study consisted of
determination of new search directions by exploiting the information calculated by gradient descent as
well as the previous search direction. The proposed algorithm improved the training efficiency of BP
algorithm by adaptively modifying the initial search direction. Results: Performance of the proposed
algorithm was demonstrated by comparing it with the Neural Network (NN) algorithm for the chosen
test functions. Conclusion: The numerical results showed that number of iterations required by the
proposed algorithm to converge was less than the both standard CG and NN algorithms. The proposed
algorithm improved the training efficiency of BP-NN algorithms by adaptively modifying the initial
search direction.

Key words: Back-propagation algorithm, conjugate gradient algorithm, search directions, neural

network algorithm

INTRODUCTION

 Gradient based methods are one of the most widely
used error minimization methods used to train back
propagation networks. The BP training algorithm is a
supervised learning method for multi-layered feed-
forward neural networks[1]. It is essentially a gradient
descent local optimization technique which involves
backward error correction of the network weights.
Despite the general success of BP in learning the neural
networks, several major deficiencies are still needed to
be solved. First, the BP algorithm will get trapped in
local minima especially for non-linearly separable
problems[2]. Having trapped into local minima, BP may
lead to failure in finding a global optimal solution.
Second, the convergence rate of BP is still too slow
even if learning can be achieved. Furthermore, the
convergence behavior of the BP algorithm depends
very much on the choices of initial values of connection
weights and the parameters in the algorithm such as the
learning rate and the momentum.
 Improving the training efficiency of neural network
based algorithm is an active area of research and
numerous papers have been proposed in the literature.
Early days BP algorithm saw further improvements.
Later, as summarized by Bishop[3] various optimization

techniques were suggested for improving the efficiency
of error minimization process or in other words the
training efficiency. Among these are methods of
Fletcher and Powell[4] and the Fletcher-Reeves[5] that
improve the conjugate gradient method of Hestenes and
Stiefel[6] and the family of Quasi-Newton algorithms
proposed by Huang[7].
 It has been recently shown that a BP algorithm
using gain variation term in an activation function
converges faster than the standard BP algorithm[8-10].
However, it was not noticed that gain variation term can
modify the local gradient to give an improved gradient
search direction for each training iteration. This fact
allow us to develop and investigate several important
CG-formulas in order to improve the rate of
convergence of the proposed type of algorithms.
 This study suggests that a simple modification to
the search direction can also substantially improve the
training efficiency of almost all major (well Known and
developed) optimization methods. It was discovered
that if the search direction is locally modified by a gain
value used in the activation function of the
corresponding node, significant improvements in the
convergence rates can be achieved irrespective of the
optimization algorithm used. Furthermore the proposed
algorithm is robust, easy to compute and easy to

J. Computer Sci., 5 (11): 849-856, 2009

850

implement into several well known nonlinear test
problems as will be shown later.
 The remaining of the study is organized as follows:
Materials and methods are proposed first. The outlines
and the implementation of the proposed algorithm with
CG algorithm have been discussed second.
Experimental results are discussed after that and finally,
the concluding remarks with short discussion for further
research are listed later on.

MATERIALS AND METHODS

 First, a novel approach for improving the training
efficiency of gradient descent method (BP algorithm)
which was presented by Nawi et al.[12] are discussed.
Their method modified the initial search direction by
changing the gain value adaptively for each node.
Following their iterative method for changing the initial
search direction using a gain value:

Algorithm[12]: Initialize the weight vector with random
values and the vector of gain values with one. Repeat
the following steps 1, 2 and 3 on an epoch-by-epoch
basis until the given error minimization criteria are
satisfied.

Step 1: By introducing gain value into activation

function, calculate the gradient for weight
vector by using Eq. 6 and gradient for gain
value by using Eq. 9.

Step 2: Calculate the gradient descent on error with
respect to the weights and gains values.

Step 3: Use the gradient weight vector and gradient of
gain calculated in step 1 to calculate the new
weight vector and vector of new gain values for
use in the next epoch.

 In general, the objective of a learning process in
neural network is to find a weight vector w which
minimizes the difference between the actual output and
the desired output. Namely:

nw R
min E(w)

∈
 (1)

 Suppose for a particular input pattern o0 and let the
input layer is layer 0. The desired output is the teacher
pattern t = [t1…tn]

T and the actual output is Lio , where L

denotes the output layer. Define an error function on
that pattern as:

()2L
i ii

1
E t o

2
= −∑ (2)

 The overall error on the training set is simply the
sum, across patterns, of the pattern error E. Consider a
multilayer feed Forward Neural Network (FNN)[1] has
one output layer and one input layer with one or more
hidden layers. Each layer has a set of units, nodes, or
neurons. It is usually assumed that each layer is fully
connected with a previous layer without direct
connections between layers which are not consecutive.
Each connection has a weight. Let s

io be the activation

of the ith node of layer s and let
Ts s s

1 no o ...o =   be the

column vector of the activation values in the layer s and
the input layer as layer 0. Let sijw be the weight on the

connection from the ith node in layer s −1 to the jth node

in layer s and let
Ts s s

ij 1 j njw w ...w =   be the column vector

of weights from layer s −1 to the jth node of layer s. The
net input to the jth node of layer s is defined as

()s s s 1 s s 1
j j j,i ii

net w ,o w o− −= =∑ and let
Ts s s

1 nnet net ...net =  

be the column vector of the net input values in layers.
The activation of a node is given by a function of its net
input:

()s s s
j j jo f c net= (3)

Where:
f = Any function with bounded derivative

s
jc = A real value called the gain of the node

 Note that this activation function becomes the
usual logistic activation function if sjc 1= .

 By introducing “gain variation” term in this
activation function, then only updating formulas for s

1δ

are changed while others are the same as the standard
back propagation. To simplify the calculation, taken
from the Eq. 2 we then can perform gradient descent on
E with respect to s

ijw . The chain rule yields:

()

s 1 s s

s s s s s
ij j j ij

s 1
1j

s 1 s 1 ' s s s s 1
1 n j j j j

s 1
nj

E E net o net
. . .

w net o net w

w

... .f c net c .o

w

+

+

+ + −

+

∂ ∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ ∂

 
 

 = −δ − δ   
 
 

⋮

 (4)

where, s
j s

j

E

net

∂δ = −
∂

. In particular, the first three factors

of (4) indicate that:

J. Computer Sci., 5 (11): 849-856, 2009

851

()s s 1 s 1 ' s s s
1 i i, j j j j

i

w f c net c+ + δ = δ 
 
∑ (5)

 As we noted that the iterative formula (5) for s

jδ is

the same as standard BP[11] except for the appearance of
the value gain. By combining (4) and (5) yields the
learning rule for weights:

s s s 1
ij j js

ij

E
w o

w
−∂∆ = η = ηδ

∂
 (6)

where, η is a small positive constant called ‘step length’
or ‘learning rate’ and the search direction or gradient
vector is s

ijd w g= ∆ = . In this approach, at step n is the

calculation for gradient of error g(n) is modified by
including the variation of gain value to yield:

() () ()() () ()()n n s n n s n
ij j jd w c g c= ∆ = (7)

 The gradient descent on error with respect to the
gain can also be calculated by using the chain rule as
previously described; it is easy to compute as:

()s 1 s 1 ' s s s
i i, j j j js

ij

E
w f c net net

c
+ +∂  = δ ∂  

∑ (8)

 Then the gradient descent rule for the gain value
becomes:

s
js s

j j s
j

net
c

c
∆ = ηδ (9)

 At the end of each iteration the new gain value is
updated using a simple gradient based method as given
by the formula:

new old s
j j jc c c= + ∆ (10)

 For more details of this method and its
implementations[12].

CG-type method: In order to overcome the difficulties
of the standard delta rule learning technique, where this
turning through the steepest descent direction. Which
causes the zigzag problematic, where it increases the
turning time. To improve the global rate of convergence
of the standard delta rule learning technique, we have
suggested the new delta rule based on CG type method.
The CG method is an iterative optimization approach,

the gradient is n-components vector and the gradient
direction is called the steepest ascent or descent (the
Fletcher-Reeves method tries to exploit the fact that for
a quadratic function of n variables, n linear searches
along the mutually conjugate directions will locate the
minimum). But this direction has a local property and
not a global one. Thus any method which makes use of
the gradient vector, can be expected to give the
minimum point. The steps of CG algorithm are:

Algorithm (CG-based NN-algorithm):

• Select the initial weights randomly with small

values and set p = 1
• Select the next training pair from the training set

[Tp] apply the input vector [xp] to the network input
and specify the desired output vector. Then
calculate the actual outputs of the network by using
these two formulae:

ns

s 1 s s s 1
pj ij i j

i 1

net W out bias+ +

=

= +∑

 () L 1
pj

s 1 s 1
pj pj net

1
out f net

1 e
+

+ +
−β

= =
+

Where:

s 1
pjnet + = Summation of multiple weight with

inputs for j
s 1
pjout + = The actual output of the network j by

using function
 xj = pjoutφ = It represents input patterns, p number

of pattern and j is number of net

n

j 1 1j 2 2 n nj i ij
i 1

net x w x w j ... x w x w
=

= + + + =∑

 And:

 netj = The result of summation of j node
 xi = Input pattern
 wij = Weight between node j and i

• Calculate the errors between the actual output of

the network and the desired output by using these
steps

 Start with xi. If (i = 1) then d1 = -g1. Obtain (µi)
using line search and update the object (x) using the
formula: i 1 i i ix x d+ = + µ . Increment i by 1 and calculate

J. Computer Sci., 5 (11): 849-856, 2009

852

the gradient vector gn to obtain βi. Update the direction
di using the formula i 1 i 1 i id g d+ +=− +β and find the

corresponding step size (µi) by updating the object (x)
to minimize the value of object (x) and adjust the
weights of the network in a way that minimizes the
error.
 When (xi+1) is minimum terminate the iterations; if
not, continue to repeat step (3) for each vector in the
training set until the total error for the entire set is
acceptable low, where di is the update direction of the
object at the iteration and di, the initial direction, is
chosen to be the steepest descent direction, µi is the
step size along the direction di; βi is chosen to insure
that the direction vector is conjugate to all previous
directions and gi is the gradient of the activation
function of the iteration. There is a number of different
choices for βi.
 In this study, Fletcher and Reeves has been used. It
is one of the most commonly used and its formula is:

i 1 i 1

i

T

T
i

g g
i

g g
+ +β = (Fletcher and Reeves) (11)

 The other type of βi is Al Assady and Al Bayati
and Polak and Ribere. The formula of βi of these two
types are:

i 1 i

i

T

T
i

g y
i

d g
+β = (Al Assady and Al Bayati) (12)

T
i i 1
T
i i

y g
i

g g
+β = (Polak and Ribere) (13)

 Following we are going to investigate and develop
a new formula for the extended FR formula which is
based on the non-quadratic models, this will increase
the rate of convergence of the In fact, these quantities
are well-known and derived with respect of quadratic
models, certainly the FR formula has a standard FRCG-
method. Now most of the currently used optimization
methods use a local quadratic representation of the
objective function. But the use of quadratic model may
be inadequate to incorporate all the information so that
more general models than quadratic are proposed as a
basis for CG algorithms.
 It is shown that CG methods with Ti 1 i 1g g+ + in the

numerator of βi has strong global convergence theorems
with exact and inexact line searches but has poor
performance in practice. On the other hand the CG
methods with T

i 1 ig y+ in the numerator of βi has uncertain

global convergence for general non-linear functions,
but has good performance in practice. Therefore CG
methods has been frequently modified and improved by
many authors, for example[14-16] have proposed further
modifications of the conjugate gradient methods which
are based on some non-quadratic models.
 Here we generalize the FRCG by considering more
general function than quadratic which we call it as
quasi-sigmoid function, our goal is to preserve and
increase the convergence properties of FR algorithm
and to force its performance in practice.

A generalized FRCG algorithm (based on non-
quadratic model): If q(x) is a quadratic function
defined by:

T T1
q(x) x Gx b c

2
= + + (14)

Where:
G = n×n symmetric and positive definite matrix
b = Constant vector in Rn and c is constant

 Then we say that f is Defined as a nonlinear scaling
of q(x) if the following conditions hold:

f(x) F(q(x)), q 0 = > (15)

And:

dF

0
dq

> (16)

 The following proportions are immediately derived
from the above conditions:

• Every contour line of q(x) is a contour line of f
• If x• is minimize of q(x) then it's also a minimize of

f

 In this area there are various published works. The
special polynomial case:

2
1 2

1
F(q(x)) ε q(x) ε q (x)

2
= + (17)

where, ε1, ε2 scalars are has been investigated by[16]. A
rational model has been developed by[15] where:

1
1

2

q(x) 1
F(q(x)) , q(x) 0

q(x)

ε += ε <
ε

 (18)

J. Computer Sci., 5 (11): 849-856, 2009

853

 Another rational model was considered by[14]
where:

1
1 2

2

ε q(x)
F(q(x)) , ε 0, ε 0

1 ε q(x)
= > <

−
 (19)

A new extended CG-formula: Here we consider the
new model function defined by:

q(x)

q(x)
f(x) F(q(x))

1 e−= =
+

 (20)

 We call it as quasi sigmoid function where q>0
with further assumption that:

dF

0
dq

> (21)

 From Eq. 20 we have:

()
()

q q

2q

1 e qedF 1 f
F f * (1)

dq q q1 e

− −

−

+ +
′= = = + −

+

1 q f
F f * ()

q

+ −′∴ = (22)

 Return to Eq. 20 and solve it for q assuming that

q 21
e 1 q q r

2
− = − + + where the remainder

n
n

n 3

(1) 1
r q (1 q)

n! n 1

∞

=

−= −
+∑ . It is clear that r 0< and set

r 1σ = + .

Then:

2

q
f

1
q q

2

=
− + σ

And:

21 1
q (1) (1) 2

f f
= + + + − σ (23)

 Use (21) and (23) to compute Ft using only
function values:

1
2 f a

fF f * ()
1

1 a
f

− + +
′ =

+ +
 (24)

where, 21
a (1) 1

f
= + − assuming

1

2
σ =

Now define ρi as follows:

i
i

i 1

F

F+

′
ρ = ′ (25)

 Then we can compute the value of ρi using
function value at two points xk+1 and xk from Eq. 24:

i i 1 2
i i 1

i

1 i 1 i 1 2
i i 1

1 1
f (2 f a) 1 a

f f
 *

1 1
(1 a) f (2 f a)

f f

+

+ +
+

− + + + +
ρ =

+ + − + +
 (26)

Where:

2
1

i

2
2

i 1

1
a (1) 1

f

1
a (1) 1

f +

= + −

= + −

 Our objective is to investigate an extended FRCG
method applied to function F(q(x)) obtained by non-
linear scaling of q(x). The extended FRCG method can
be done by modifying the search directions as follows:

1 1d g=ɶ ɶ (27)

And for i≥0:

i 1 i 1 i i id g d+ += − + ρ βɶ ɶɶɶ (28)

Where:

T T
i 1 i 1 i i 1 i 1

i T T
i i i i

g g g g

g g g g
+ + + +ρβ = =
ɶ ɶ ɶ

ɶ

ɶ ɶ
 (29)

Where:

f dF q
g F(q(x)) F g

x dq x

∂ ∂ ′= ∇ = = =
∂ ∂

ɶ

id is the search direction applied to F(q(x)) and
~ ~ ~

i i 1 iy g g+= − .

 We can show that the original FRCG method and
extended FRCG algorithm defined in (27-29) generates

J. Computer Sci., 5 (11): 849-856, 2009

854

the same set of directions and same sequence of points
{x i}by using the following theorem:

Theorem 1: Given an identical starting point x0∈Rn.
 The method of FRCG applied to f(x) = q(x) and the
extended (ERFCG) method defined by (27-29) and
applied to f(x) = F(q(x)) with ρi defined by (26)
generate identical set of directions and identical
sequence of points {xi}.

Proof: The prove is by induction for k = 0 we have:

1 1 1 1 1 1

dF q
d g Fg Fd

dq x

∂ ′ ′= − = − = − =
∂

ɶ ɶ

Suppose: ii i id Fd′=ɶ , to prove for i+1

i 1 i 1 i i 1

T
i 1 i 1

i 1 i 1 iT
i i

i 1 i 1

d g d

g g
 F [- g d]

g g

 F d

+ + −

+ +
+ +

+ +

= − + ρ β

′= +

′=

ɶ ɶɶɶ

 Hence the two methods generates the same set of
directions.
 Our proposed algorithm known as (NEW) begins
the minimization process with an initial estimate w0 and
an initial search direction as:

()0 0 0d E w g= −∇ = − (30)

 Then, for every epoch by using our proposed
method in Eq. 7 the search direction at (n+1)th iteration
is calculated as:

() () ()n 1 i,n 1 n n i,n n i,n
n 1

E
d c c d c

w+ +
+

δ= − + ρ β
δ

 (31)

 where the scalar βn is to be determined by the
requirement that dn and dn+1 must fulfill the conjugacy
property[3] and (ρn) is defined by Eq. 26.

Outlines of the new algorithm:

Step 1: Initializing the weight vector randomly, the

gradient vector g0 = 0 and gain value as one.
Let the first search direction d0 = g0. Set β0 = 0,
epoch = 1 and n = 1. Let Nt is the number of
weight parameters Select a Convergence
Tolerance CT.

Step 2: At step n, evaluate gradient vector gn(cn) with
respect to gain vector cn and calculate gain
vector.

Step 3: Evaluate E(wn). If E(wn)<CT then STOP
training ELSE go to step 4.

Step 4: Calculate a new search direction:

()n n n n 1 n 1 n 1d g c d− − −= − + ρ β , where (n 1−ρ) is

defined in Eq. 25 for I = n-1.
Step 5: For the first iteration, check if n>1 THEN

with the function of gain, update:

() ()

() ()
T
n 1 n 1 n 1 n 1

n 1 n 1 T
n n n n

g c g c

g c g c

+ + + +
+ +β = ρ ELSE go to step 6

Step 6: If [(epoch +1)/Nt] = 0 THEN ‘restart’ the

gradient vector with dn = gn-1(cn-1) ELSE go to
step 7.

Step 7: Calculate the optimal value for learning rate
η* by using line search technique such as:

 () ()*

n n n n n n0
E w d min E w d

λ≥
+ η = + η

Step 8: Update *

n 1 n n nw w d+ = − η , where dn is a descent

direction.
Step 9: Evaluate new gradient vector gn+1(cn+1) with

respect to gain value (cn+1).
Step 10: Calculate new search direction:

() ()n 1 n 1 n 1 n 1 n 1 n nd g c c d+ + + − −= − + ρ β

Step 11: Set n = n+1 and go to step 2.

RESULTS

 The performance criterion used in this research
focuses on the speed of convergence, measured in
number of iterations and CPU time. The test problems
used to verify our new proposed algorithm are taken
from the open literature by Prechelt[11]. The numerical
results have been carried out on a Pentium IV using
MATLAB version 7.0. On our test problems, four
algorithms have been computed. The first algorithm is
the standard CG with Fletcher-Reeves update (traincgf).
The other algorithm is a standard CG algorithm
computed from the NAG library (CGFR). The third one
is the Nawi et al.[12] NN-algorithm computed by using
their algorithm with their computer program listed
in[12]. Finally, the new proposed ECG based NN
algorithm (NEW) which is implanted by modifying
NN-algorithm. This algorithm uses a major change in

J. Computer Sci., 5 (11): 849-856, 2009

855

calculating the gradient step by in forcing the value of
the new parameter ρi which is given in Eq. 25 of this
study. We have noticed that if the value of this
parameter is one, then, this new algorithm will coincide
with Nawi et al.[12] algorithm but for positive values the
new algorithm produces better numerical results because
of the use of the non-quadratic model in the derivation of
the CG-formula To compare the performance of the
proposed algorithm with respect to others: standard
optimization algorithms from the (MATLAB NN-
toolbox) network parameters such as network size and
architecture (number of nodes, hidden layers etc), values
for the initial weights and gain parameters were kept
same. For our test problem the neural network had one
hidden layer with five hidden nodes and sigmoid
activation function was used for all nodes. All algorithms
were tested using the same initial weights that were
initialized randomly from range [0, 1] and received the
input patterns for training in the same sequence.
 Default values were used for the heuristic
parameters, of the above algorithms, unless stated
otherwise. For the purpose of comparison, all tested
algorithms were fixed with the values of learning
rate = 0.3 and momentum term = 0.4. The initial value
used for the gain parameter was one. The results of all
these four algorithms will be presented as Table 1 and 2
which summarize the performance of the algorithms for
simulations that have reached solution. All algorithms
were trained with 100 trials, if an algorithm fails to
converge, it is considered that it fails to train the FNN,
but its epochs, CPU time and generalization accuracy are
not included in the statistical analysis of the algorithms.

Test problem (1) Fisher[13]:
Iris classification problem: This is a classical
classification dataset made famous by Fisher[13], who
used it to illustrate principles of discriminate analysis.

Table 1: Comparisons of four different algorithms for test problem (1)

Algorithms NOE CPU CT

traincgf 69 5.54×10−2 3.8071
CGFR 39 4.90×10−2 1.9146
Nawi et al.[12] 29 4.94×10−2 1.4232
NEW 25 4.19×10−2 1.2097
Note: NOE: Number Of Epochs; CPU: Time in seconds per epochs
CT: Time of Convergence

Table 2: Comparisons of four different algorithms for test problem (2)
Algorithms NOE CPU CT
Traincgf 71 5.34×10−2 3.7883
CGFR 65 5.11×10−2 3.3060
Nawi et al.[12] 39 4.00×10−2 1.5503
NEW 33 3.40×10−2 2.8101

This is perhaps the best-known database to be found in
the pattern recognition literature. Fisher's study is a
classic in the field and is referenced frequently to this
day. The selected architecture of the FNN is (4-5-3-3)
with target error was set as (0.01) and the maximum
epochs to (2000).
 Table 1 shows that the proposed algorithm reached
the target error after only about (25) epochs as opposed
to the standard CGFR at about (39) epochs and clearly
we see that there is an improvement ratio, nearly (3.6),
for the number of epochs compare to NN-toolbox and
almost (3.681) for the convergence time. The following
main computer program used with Nawi et al.[12]
routine is:

% main learning program
P = [0 1 2 3 4 5 6 7 8 9 10];
 T = [0 1 2 3 4 3 2 1 2 3 4];
 net = Newff(minmax(P),[5 1],{'tansig' 'purelin'});
 Y = Sim(net,P); plot(P,T,P,Y,'o')
 net.trainParam.epochs = 50;
 net = Train(net,P,T);
 Y = Sim(net,P);

Test problem (2) Fisher[13]:
Winconsin breast cancer problem: This dataset was
created based on the ‘breast cancer Wisconsin’ problem
dataset from[12]. This problem tries to diagnosis of
breast cancer by trying to classify a tumor as either
benign or malignant based on cell descriptions gathered
by microscopic examination. The selected architecture
of the FNN is (9-5-2-2). The target error is set as to
(0.015) and the maximum epochs to (2000).
 In Table 2, it is worth noticing that the
performance of the new algorithm since it take only
(33) epochs to reach the target error compare to
Nawi et al.[12] (39) epochs and to CGFR at about (65)
epochs and worst for traincgf that need about (71)
epochs to converge. Still the proposed algorithm
outperforms others three algorithms with a considerable
improvements.

DISCUSSION

 In this study, we have introduced neural network
algorithm based on several optimization update. The
new algorithm is compared with three well known
standard CG and NN algorithms using the Iris
Classification Problem and Winconsin Breast Cancer
Problem. Our numerical results indicate that the new
technique has an improvements of about (10-15%)
NOE; CPU and CT tools.

J. Computer Sci., 5 (11): 849-856, 2009

856

CONCLUSION

 In this research, new fast learning algorithm for
neural networks which are based on CG updates with
adaptive gain training algorithm (NEW) is introduced.
The proposed algorithm improved the training
efficiency of BP-NN algorithms by adaptively
modifying the search direction. The initial search
direction is modified by introducing the gain value. The
proposed algorithm is generic and easy to implement in
all commonly used gradient based optimization
processes. The simulation results showed that the
proposed algorithm is robust and has a potential to
significantly enhance the computational efficiency of
the training process.

REFERENCES

1. Rumelhart, D.E., G.E. Hinton and R.J. Williams,

1986. Learning Internal Representations by Error
Propagation. In: Parallel Distributed Processing,
Rumelhart, D.E. and J.L. McClelland (Eds.). MIT
Press, ISBN: 0-262-68053-X, pp: 318-362.

2. Gori, M. and A. Tesi, 1992. On the problem of
local minima in back-propagation. IEEE Trans.
Patt. Anal. Mach. Intel., 14: 76-86.
http://doi.ieeecomputersociety.org/10.1109/34.107
014

3. Bishop, C.M., 1995. Neural Network for Pattern
Recognition. Oxford University Press, ISBN: 10:
0198538642, pp: 504.

4. Fletcher, R. and M.J.D. Powell, 1963. A rapidly
convergent descent method for minimization.
Comput. J., 6: 163-168.
http://comjnl.oxfordjournals.org/cgi/content/abstra
ct/6/2/163

5. Fletcher, R. and C.M. Reeves, 1964. Function
minimization by conjugate gradients. Comput. J.,
7: 149-160. DOI: 10.1093/comjnl/7.2.149

6. Hestenes, M.R. and E. Stiefel, 1952. Methods of
conjugate gradients for solving linear systems. J.
Res. Natl. Bureau Stand., 49: 409-435.
http://nvl.nist.gov/pub/nistpubs/jres/049/6/V49.N0
6.A08.pdf

7. Huang, H.Y., 1970. A unified approach to
quadratically convergent algorithms for function
minimization. J. Optim. Theor. Appli., 5: 405-423.
DOI: 10.1007/BF00927440

8. Thimm, G., P. Moerland and E. Fiesler, 1996. The
Interchangeability of learning rate and gain in back
propagation neural networks. Neural Comput.,
8: 451-460. DOI: 10.1162/neco.1996.8.2.451

9. Maier, H.R. and G.C. Dandy, 1998. The effect of
internal parameters and geometry on the
performance of back-propagation neural networks.
Environ. Model. Software, 13: 193-209. DOI:
10.1016/S1364-8152(98)00020-6

10. Eom, K., K. Jung and H. Sirisena, 2003.
Performance Improvement of Back propagation
algorithm by automatic activation function gain
tuning using fuzzy logic. Neurocomputing,
50: 439-460. DOI: 10.1016/S0925-
2312(02)00576-3

11. Prechelt, L., 1994. A set of neural network
bencmark problems and benchmarking rules.
Technical Report 2194. http://page.mi.fu-
berlin.de/prechelt/Biblio/1994-21.pdf

12. Nawi, N.M., M.R. Ransing and R.S. Ransing,
2006. An improved learning algorithm based on
conjugate gradient methods for back propagation
neural network. Proc. Word Acad. Sci. Eng.
Technol., 4: 46-54.
http://www.waset.org/ijci/v4/v4-1-6.pdf

13. Fisher, R.A., 1936. The use of multiple
measurements in taxonomic problems. Ann.
Eugen., 7: 179-188.
http://www.mendeley.com/c/85931226/Fisher-
1936-The-use-of-multiple-measurements-in-
taxonomic-problems/

14. Al Bayati, A., 1993. A new non-quadratic model
for unconstrained nonlinear optimization. Mutah. J.
Res. Stud., 8: 131-155.

15. Tassopoulus, A. and C. Story, 1984. A variable-
metric method using a nonquadratic model. J.
Optim. Theor. Appli., 43: 383-393. DOI:
10.1007/BF00934462

16. Boland, W.R., E.R. Kamgnia and J.S. Kowallik,
1979. A conjugate gradient optimization method
invariant to non-linear scaling. J. Optim. Theor.
Appli., 27: 221-230.
http://www.springerlink.com/index/T514NN45788
701V4.pdf

