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Abstract: Problem statement: The Conjugate Gradient (CG) algorithm which usually used for 
solving nonlinear functions is presented and is combined with the modified Back Propagation (BP) 
algorithm yielding a new fast training multilayer algorithm. Approach: This study consisted of 
determination of new search directions by exploiting the information calculated by gradient descent as 
well as the previous search direction. The proposed algorithm improved the training efficiency of BP 
algorithm by adaptively modifying the initial search direction. Results: Performance of the proposed 
algorithm was demonstrated by comparing it with the Neural Network (NN) algorithm for the chosen 
test functions. Conclusion: The numerical results showed that number of iterations required by the 
proposed algorithm to converge was less than the both standard CG and NN algorithms. The proposed 
algorithm improved the training efficiency of BP-NN algorithms by adaptively modifying the initial 
search direction. 
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INTRODUCTION 
 
 Gradient based methods are one of the most widely 
used error minimization methods used to train back 
propagation networks. The BP training algorithm is a 
supervised learning method for multi-layered feed-
forward neural networks[1]. It is essentially a gradient 
descent local optimization technique which involves 
backward error correction of the network weights. 
Despite the general success of BP in learning the neural 
networks, several major deficiencies are still needed to 
be solved. First, the BP algorithm will get trapped in 
local minima especially for non-linearly separable 
problems[2]. Having trapped into local minima, BP may 
lead to failure in finding a global optimal solution. 
Second, the convergence rate of BP is still too slow 
even if learning can be achieved. Furthermore, the 
convergence behavior of the BP algorithm depends 
very much on the choices of initial values of connection 
weights and the parameters in the algorithm such as the 
learning rate and the momentum. 
 Improving the training efficiency of neural network 
based algorithm is an active area of research and 
numerous papers have been proposed in the literature. 
Early days BP algorithm saw further improvements. 
Later, as summarized by Bishop[3] various optimization 

techniques were suggested for improving the efficiency 
of error minimization process or in other words the 
training efficiency. Among these are methods of 
Fletcher and Powell[4] and the Fletcher-Reeves[5] that 
improve the conjugate gradient method of Hestenes and 
Stiefel[6] and the family of Quasi-Newton algorithms 
proposed by Huang[7]. 
  It has been recently shown that a BP algorithm 
using gain variation term in an activation function 
converges faster than the standard BP algorithm[8-10]. 
However, it was not noticed that gain variation term can 
modify the local gradient to give an improved gradient 
search direction for each training iteration. This fact 
allow us to develop and investigate several important 
CG-formulas in order to improve the rate of 
convergence of the proposed type of algorithms.  
 This study suggests that a simple modification to 
the search direction can also substantially improve the 
training efficiency of almost all major (well Known and 
developed) optimization methods. It was discovered 
that if the search direction is locally modified by a gain 
value used in the activation function of the 
corresponding node, significant improvements in the 
convergence rates can be achieved irrespective of the 
optimization algorithm used. Furthermore the proposed 
algorithm is robust, easy to compute and easy to 
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implement into several well known nonlinear test 
problems as will be shown later. 
 The remaining of the study is organized as follows: 
Materials and methods are proposed first. The outlines 
and the implementation of the proposed algorithm with 
CG algorithm have been discussed second. 
Experimental results are discussed after that and finally, 
the concluding remarks with short discussion for further 
research are listed later on. 
 

MATERIALS AND METHODS 
 
 First, a novel approach for improving the training 
efficiency of gradient descent method (BP algorithm) 
which was presented by Nawi et al.[12] are discussed. 
Their method modified the initial search direction by 
changing the gain value adaptively for each node. 
Following their iterative method for changing the initial 
search direction using a gain value: 
 
Algorithm[12]: Initialize the weight vector with random 
values and the vector of gain values with one. Repeat 
the following steps 1, 2 and 3 on an epoch-by-epoch 
basis until the given error minimization criteria are 
satisfied. 
 
Step 1: By introducing gain value into activation 

function, calculate the gradient for weight 
vector by using Eq. 6 and gradient for gain 
value by using Eq. 9. 

Step 2: Calculate the gradient descent on error with 
respect to the weights and gains values. 

Step 3: Use the gradient weight vector and gradient of 
gain calculated in step 1 to calculate the new 
weight vector and vector of new gain values for 
use in the next epoch. 

  
 In general, the objective of a learning process in 
neural network is to find a weight vector w which 
minimizes the difference between the actual output and 
the desired output. Namely: 
 

nw R
min E(w)

∈
  (1) 

 
 Suppose for a particular input pattern o0 and let the 
input layer is layer 0. The desired output is the teacher 
pattern t = [t1…tn]

T and the actual output is Lio , where L 

denotes the output layer. Define an error function on 
that pattern as: 
 

( )2L
i ii

1
E t o

2
= −∑   (2) 

 The overall error on the training set is simply the 
sum, across patterns, of the pattern error E. Consider a 
multilayer feed Forward Neural Network (FNN)[1] has 
one output layer and one input layer with one or more 
hidden layers. Each layer has a set of units, nodes, or 
neurons. It is usually assumed that each layer is fully 
connected with a previous layer without direct 
connections between layers which are not consecutive. 
Each connection has a weight. Let s

io  be the activation 

of the ith node of layer s and let 
Ts s s

1 no o ...o =    be the 

column vector of the activation values in the layer s and 
the input layer as layer 0. Let sijw  be the weight on the 

connection from the ith node in layer s −1 to the jth node 

in layer s and let 
Ts s s

ij 1 j njw w ...w =    be the column vector 

of weights from layer s −1 to the jth node of layer s. The 
net input to the jth node of layer s is defined as 

( )s s s 1 s s 1
j j j,i ii

net w ,o w o− −= =∑  and let 
Ts s s

1 nnet net ...net =    

be the column vector of the net input values in layers. 
The activation of a node is given by a function of its net 
input: 
 

( )s s s
j j jo f c net=   (3) 

 
Where: 
f  = Any function with bounded derivative  

s
jc  = A real value called the gain of the node 

 
 Note that this activation function becomes the 
usual logistic activation function if sjc 1= . 

  By introducing “gain variation” term in this 
activation function, then only updating formulas for s

1δ  

are changed while others are the same as the standard 
back propagation. To simplify the calculation, taken 
from the Eq. 2 we then can perform gradient descent on 
E with respect to s

ijw . The chain rule yields: 

 

( )

s 1 s s

s s s s s
ij j j ij

s 1
1j

s 1 s 1 ' s s s s 1
1 n j j j j

s 1
nj

E E net o net
. . .

w net o net w

w

... .f c net c .o

w

+

+

+ + −

+

∂ ∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ ∂

 
 

 = −δ − δ   
 
 

⋮

 (4) 

 

where, s
j s

j

E

net

∂δ = −
∂

. In particular, the first three factors 

of (4) indicate that: 



J. Computer Sci., 5 (11): 849-856, 2009 
 

851 

( )s s 1 s 1 ' s s s
1 i i, j j j j

i

w f c net c+ + δ = δ 
 
∑   (5) 

 
  As we noted that the iterative formula (5) for s

jδ  is 

the same as standard BP[11] except for the appearance of 
the value gain. By combining (4) and (5) yields the 
learning rule for weights: 
 

s s s 1
ij j js

ij

E
w o

w
−∂∆ = η = ηδ

∂
  (6) 

 
where, η is a small positive constant called ‘step length’ 
or ‘learning rate’ and the search direction or gradient 
vector is s

ijd w g= ∆ = . In this approach, at step n is the 

calculation for gradient of error g(n) is modified by 
including the variation of gain value to yield: 
 

( ) ( ) ( )( ) ( ) ( )( )n n s n n s n
ij j jd w c g c= ∆ =   (7) 

 
 The gradient descent on error with respect to the 
gain can also be calculated by using the chain rule as 
previously described; it is easy to compute as: 
 

( )s 1 s 1 ' s s s
i i, j j j js

ij

E
w f c net net

c
+ +∂  = δ ∂  

∑   (8) 

 
 Then the gradient descent rule for the gain value 
becomes: 
 

 
s
js s

j j s
j

net
c

c
∆ = ηδ   (9) 

 
 At the end of each iteration the new gain value is 
updated using a simple gradient based method as given 
by the formula: 
 

new old s
j j jc c c= + ∆   (10) 

 
 For more details of this method and its 
implementations[12]. 
 
CG-type method: In order to overcome the difficulties 
of the standard delta rule learning technique, where this 
turning through the steepest descent direction. Which 
causes the zigzag problematic, where it increases the 
turning time. To improve the global rate of convergence 
of the standard delta rule learning technique, we have 
suggested the new delta rule based on CG type method. 
The CG method is an iterative optimization approach, 

the gradient is n-components vector and the gradient 
direction is called the steepest ascent or descent (the 
Fletcher-Reeves method tries to exploit the fact that for 
a quadratic function of n variables, n linear searches 
along the mutually conjugate directions will locate the 
minimum). But this direction has a local property and 
not a global one. Thus any method which makes use of 
the gradient vector, can be expected to give the 
minimum point. The steps of CG algorithm are:  
 
Algorithm (CG-based NN-algorithm):  
 
• Select the initial weights randomly with small 

values and set p = 1 
• Select the next training pair from the training set 

[Tp] apply the input vector [xp] to the network input 
and specify the desired output vector. Then 
calculate the actual outputs of the network by using 
these two formulae:  

 

  
ns

s 1 s s s 1
pj ij i j

i 1

net W out bias+ +

=

= +∑  

 

 ( ) L 1
pj

s 1 s 1
pj pj net

1
out f net

1 e
+

+ +
−β

= =
+

 

 
Where: 

s 1
pjnet +  = Summation of multiple weight with 

inputs for j 
s 1
pjout +  = The actual output of the network j by 

using function 
 xj = pjoutφ  = It represents input patterns, p number 

of pattern and j is number of net 
 

 
n

j 1 1j 2 2 n nj i ij
i 1

net x w x w j ... x w x w
=

= + + + =∑   

 
 And:  
 
 netj  = The result of summation of j node  
 xi = Input pattern 
 wij = Weight between node j and i  
 
• Calculate the errors between the actual output of 

the network and the desired output by using these 
steps 

 
 Start with xi. If (i = 1) then d1 = -g1. Obtain (µi) 
using line search and update the object (x) using the 
formula: i 1 i i ix x d+ = + µ . Increment i by 1 and calculate 
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the gradient vector gn to obtain βi. Update the direction 
di using the formula i 1 i 1 i id g d+ +=− +β  and find the 

corresponding step size (µi) by updating the object (x) 
to minimize the value of object (x) and adjust the 
weights of the network in a way that minimizes the 
error.  
 When (xi+1) is minimum terminate the iterations; if 
not, continue to repeat step (3) for each vector in the 
training set until the total error for the entire set is 
acceptable low, where di is the update direction of the 
object at the iteration and di, the initial direction, is 
chosen to be the steepest descent direction, µi is the 
step size along the direction di; βi is chosen to insure 
that the direction vector is conjugate to all previous 
directions and gi is the gradient of the activation 
function of the iteration. There is a number of different 
choices for βi.  
 In this study, Fletcher and Reeves has been used. It 
is one of the most commonly used and its formula is:  
 

i 1 i 1

i

T

T
i

g g
i

g g
+ +β =  (Fletcher and Reeves)  (11)  

 
 The other type of βi is Al Assady and Al Bayati 
and Polak and Ribere. The formula of βi of these two 
types are: 
 

i 1 i

i

T

T
i

g y
i

d g
+β =  (Al Assady and Al Bayati)  (12) 

 
T
i i 1
T
i i

y g
i

g g
+β =  (Polak and Ribere)  (13) 

 
  Following we are going to investigate and develop 
a new formula for the extended FR formula which is 
based on the non-quadratic models, this will increase 
the rate of convergence of the In fact, these quantities 
are well-known and derived with respect of quadratic 
models, certainly the FR formula has a standard FRCG-
method. Now most of the currently used optimization 
methods use a local quadratic representation of the 
objective function. But the use of quadratic model may 
be inadequate to incorporate all the information so that 
more general models than quadratic are proposed as a 
basis for CG algorithms. 
 It is shown that CG methods with Ti 1 i 1g g+ +  in the 

numerator of βi has strong global convergence theorems 
with exact and inexact line searches but has poor 
performance in practice. On the other hand the CG 
methods with T

i 1 ig y+  in the numerator of βi has uncertain 

global convergence for general non-linear functions, 
but has good performance in practice. Therefore CG 
methods has been frequently modified and improved by 
many authors, for example[14-16] have proposed further 
modifications of the conjugate gradient methods which 
are based on some non-quadratic models. 
 Here we generalize the FRCG by considering more 
general function than quadratic which we call it as 
quasi-sigmoid function, our goal is to preserve and 
increase the convergence properties of FR algorithm 
and to force its performance in practice. 
 
A generalized FRCG algorithm (based on non-
quadratic model): If q(x) is a quadratic function 
defined by: 
 

T T1
q(x) x Gx b c 

2
= + +   (14) 

 
Where: 
G = n×n symmetric and positive definite matrix  
b = Constant vector in Rn and c is constant 
 
 Then we say that f is Defined as a nonlinear scaling 
of q(x) if the following conditions hold: 
 
f(x) F(q(x)), q 0 = >  (15) 
 
And: 
 
dF

0 
dq

>  (16) 

 
 The following proportions are immediately derived 
from the above conditions: 
 
• Every contour line of q(x) is a contour line of f 
• If x• is minimize of q(x) then it's also a minimize of 

f 
 
 In this area there are various published works. The 
special polynomial case:  
 

2
1 2

1
F(q(x)) ε q(x) ε q (x)  

2
= +   (17) 

 
where, ε1, ε2 scalars are has been investigated by[16]. A 
rational model has been developed by[15] where: 
 

1
1

2

q(x) 1
F(q(x)) , q(x) 0 

q(x)

ε += ε <
ε

  (18) 
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 Another rational model was considered by[14] 
where: 
 

1
1 2

2

ε q(x)
F(q(x)) ,  ε 0, ε 0

1 ε q(x)
= > <

−
  (19) 

 
A new extended CG-formula: Here we consider the 
new model function defined by: 
 

q(x)

q(x)
f(x) F(q(x))  

1 e−= =
+

  (20) 

 
 We call it as quasi sigmoid function where q>0 
with further assumption that: 
 
dF

0
dq

>   (21) 

 
 From Eq. 20 we have: 
 

( )
( )

q q

2q

1 e qedF 1 f
F f * (1 )

dq q q1 e

− −

−

+ +
′= = = + −

+
 

1 q f
F f * ( )

q

+ −′∴ =   (22) 

 
 Return to Eq. 20 and solve it for q assuming that 

q 21
e 1 q q r

2
− = − + +  where the remainder 

n
n

n 3

( 1) 1
r q (1 q)

n! n 1

∞

=

−= −
+∑ . It is clear that r 0<  and set 

r 1σ = + . 
 
Then: 
 

2

q
f

1
q q

2

=
− + σ

 

 
And:  
 

21 1
q (1 ) (1 ) 2   

f f
= + + + − σ   (23) 

 
 Use (21) and (23) to compute Ft using only 
function values: 
 

1
2 f a

fF f * ( )
1

1 a
f

− + +
′ =

+ +
  (24) 

where, 21
a (1 ) 1

f
= + −  assuming 

1

2
σ =   

 
Now define ρi as follows:  
 

i
i

i 1

F
   

F+

′
ρ = ′   (25) 

 
 Then we can compute the value of ρi using 
function value at two points xk+1 and xk from Eq. 24: 
 

i i 1 2
i i 1

i

1 i 1 i 1 2
i i 1

1 1
f (2 f a ) 1 a

f f
 *    

1 1
(1 a ) f (2 f a )

f f

+

+ +
+

− + + + +
ρ =

+ + − + +
  (26) 

 
Where:  

2
1

i

2
2

i 1

1
a (1 ) 1 

f

1
a (1 ) 1

f +

= + −

= + −
 

 
 Our objective is to investigate an extended FRCG 
method applied to function F(q(x)) obtained by non-
linear scaling of q(x). The extended FRCG method can 
be done by modifying the search directions as follows: 
 

1 1d g=ɶ ɶ  (27) 

 
And for i≥0: 
 

i 1 i 1 i i id g d+ += − + ρ βɶ ɶɶɶ  (28) 

 
Where: 
 

T T
i 1 i 1 i i 1 i 1

i T T
i i i i

g g g g

g g g g
+ + + +ρβ = =
ɶ ɶ ɶ

ɶ

ɶ ɶ
 (29) 

 
Where:  
 

f dF q
g F(q(x)) F g

x dq x

∂ ∂ ′= ∇ = = =
∂ ∂

ɶ  

 

id is the search direction applied to F(q(x))  and 
~ ~ ~

i i 1 iy g g+= − . 

 We can show that the original FRCG method and 
extended FRCG algorithm defined in (27-29) generates 
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the same set of directions and same sequence of points 
{x i}by using the following theorem: 
 
Theorem 1: Given an identical starting point x0∈Rn. 
 The method of FRCG applied to f(x) = q(x) and the 
extended (ERFCG) method defined by (27-29) and 
applied to f(x) = F(q(x)) with ρi defined by (26) 
generate identical set of directions and identical 
sequence of points {xi}. 
 
Proof: The prove is by induction for k = 0 we have:  
 

1 1 1 1 1 1

dF q
d g Fg Fd

dq x

∂ ′ ′= − = − = − =
∂

ɶ ɶ  

 
Suppose: ii i id Fd′=ɶ  , to prove for i+1 

 

i 1 i 1 i i 1

T
i 1 i 1

i 1 i 1 iT
i i

i 1 i 1

d g d

g g
       F [- g  d ]

g g

      F d                     

+ + −

+ +
+ +

+ +

= − + ρ β

′= +

′=

ɶ ɶɶɶ

 

 
 Hence the two methods generates the same set of 
directions. 
 Our proposed algorithm known as (NEW) begins 
the minimization process with an initial estimate w0 and 
an initial search direction as: 
 

( )0 0 0d E w g= −∇ = −   (30) 

 
 Then, for every epoch by using our proposed 
method in Eq. 7 the search direction at (n+1)th iteration 
is calculated as: 
 

( ) ( ) ( )n 1 i,n 1 n n i,n n i,n
n 1

E
d c c d c

w+ +
+

δ= − + ρ β
δ

  (31) 

 
 where the scalar βn is to be determined by the 
requirement that dn and dn+1 must fulfill the conjugacy 
property[3] and (ρn ) is defined by Eq. 26. 
 
Outlines of the new algorithm: 
 
Step 1: Initializing the weight vector randomly, the 

gradient vector g0 = 0 and gain value as one. 
Let the first search direction d0 = g0. Set β0 = 0, 
epoch = 1 and n = 1. Let Nt is the number of 
weight parameters Select a Convergence 
Tolerance CT. 

Step 2: At step n, evaluate gradient vector gn(cn) with 
respect to gain vector cn and calculate gain 
vector. 

Step 3: Evaluate E(wn). If E(wn)<CT then STOP 
training ELSE go to step 4. 

Step 4: Calculate a new search direction: 

( )n n n n 1 n 1 n 1d g c d− − −= − + ρ β , where ( n 1−ρ  ) is 

defined in Eq. 25 for I = n-1. 
Step 5: For the first iteration, check if n>1 THEN 

with the function of gain, update: 
 

 
( ) ( )

( ) ( )
T
n 1 n 1 n 1 n 1

n 1 n 1 T
n n n n

g c g c

g c g c

+ + + +
+ +β = ρ  ELSE go to step 6 

 
Step 6: If [(epoch +1)/Nt] = 0 THEN ‘restart’ the 

gradient vector with dn = gn-1(cn-1) ELSE go to 
step 7. 

Step 7: Calculate the optimal value for learning rate 
η* by using line search technique such as: 

 
 ( ) ( )*

n n n n n n0
E w d min E w d

λ≥
+ η = + η  

 
Step 8: Update *

n 1 n n nw w d+ = − η , where dn is a descent 

direction. 
Step 9: Evaluate new gradient vector gn+1(cn+1) with 

respect to gain value (cn+1). 
Step 10: Calculate new search direction:  
 

( ) ( )n 1 n 1 n 1 n 1 n 1 n nd g c c d+ + + − −= − + ρ β  

 
Step 11: Set n = n+1 and go to step 2. 
 

RESULTS 
 
 The performance criterion used in this research 
focuses on the speed of convergence, measured in 
number of iterations and CPU time. The test problems 
used to verify our new proposed algorithm are taken 
from the open literature by Prechelt[11]. The numerical 
results have been carried out on a Pentium IV using 
MATLAB version 7.0. On our test problems, four 
algorithms have been computed. The first algorithm is 
the standard CG with Fletcher-Reeves update (traincgf). 
The other algorithm is a standard CG algorithm 
computed from the NAG library (CGFR). The third one 
is the Nawi et al.[12] NN-algorithm computed by using 
their algorithm with their computer program listed 
in[12]. Finally, the new proposed ECG based NN 
algorithm (NEW) which is implanted by modifying 
NN-algorithm. This algorithm uses a major change in 
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calculating the gradient step by in forcing the value of 
the new parameter ρi which is given in Eq. 25 of this 
study. We have noticed that if the value of this 
parameter is one, then, this new algorithm will coincide 
with Nawi et al.[12] algorithm but for positive values the 
new algorithm produces better numerical results because 
of the use of the non-quadratic model in the derivation of 
the CG-formula To compare the performance of the 
proposed algorithm with respect to others: standard 
optimization algorithms from the (MATLAB NN-
toolbox) network parameters such as network size and 
architecture (number of nodes, hidden layers etc), values 
for the initial weights and gain parameters were kept 
same. For our test problem the neural network had one 
hidden layer with five hidden nodes and sigmoid 
activation function was used for all nodes. All algorithms 
were tested using the same initial weights that were 
initialized randomly from range [0, 1] and received the 
input patterns for training in the same sequence. 
 Default values were used for the heuristic 
parameters, of the above algorithms, unless stated 
otherwise. For the purpose of comparison, all tested 
algorithms  were  fixed  with  the  values of learning 
rate = 0.3 and momentum term = 0.4. The initial value 
used for the gain parameter was one. The results of all 
these four algorithms will be presented as Table 1 and 2 
which summarize the performance of the algorithms for 
simulations that have reached solution. All algorithms 
were trained with 100 trials, if an algorithm fails to 
converge, it is considered that it fails to train the FNN, 
but its epochs, CPU time and generalization accuracy are 
not included in the statistical analysis of the algorithms.  
 
Test problem (1) Fisher[13]: 
Iris classification problem: This is a classical 
classification dataset made famous by Fisher[13], who 
used it to illustrate principles of discriminate analysis. 
 
Table 1: Comparisons of four different algorithms for test problem (1)
  
Algorithms NOE CPU CT 

traincgf 69 5.54×10−2 3.8071 
CGFR 39 4.90×10−2 1.9146 
Nawi et al.[12] 29 4.94×10−2 1.4232 
NEW 25 4.19×10−2 1.2097 
Note: NOE: Number Of Epochs; CPU: Time in seconds per epochs 
CT: Time of Convergence 
 
Table 2: Comparisons of four different algorithms for test problem (2) 
Algorithms NOE CPU CT 
Traincgf 71 5.34×10−2 3.7883 
CGFR 65 5.11×10−2 3.3060 
Nawi et al.[12] 39 4.00×10−2 1.5503 
NEW 33 3.40×10−2 2.8101 

This is perhaps the best-known database to be found in 
the pattern recognition literature. Fisher's study is a 
classic in the field and is referenced frequently to this 
day. The selected architecture of the FNN is (4-5-3-3) 
with target error was set as (0.01) and the maximum 
epochs to (2000). 
 Table 1 shows that the proposed algorithm reached 
the target error after only about (25) epochs as opposed 
to the standard CGFR at about (39) epochs and clearly 
we see that there is an improvement ratio, nearly (3.6), 
for the number of epochs compare to NN-toolbox and 
almost (3.681) for the convergence time. The following 
main computer program used with Nawi et al.[12] 
routine is: 
 
% main learning program 
P = [0 1 2 3 4 5 6 7 8 9 10]; 
 T = [0 1 2 3 4 3 2 1 2 3 4]; 
 net = Newff(minmax(P),[5 1],{'tansig' 'purelin'}); 
 Y = Sim(net,P); plot(P,T,P,Y,'o') 
    net.trainParam.epochs = 50; 
  net = Train(net,P,T); 
  Y = Sim(net,P); 
 
Test problem (2) Fisher[13]: 
Winconsin breast cancer problem: This dataset was 
created based on the ‘breast cancer Wisconsin’ problem 
dataset from[12]. This problem tries to diagnosis of 
breast cancer by trying to classify a tumor as either 
benign or malignant based on cell descriptions gathered 
by microscopic examination. The selected architecture 
of the FNN is (9-5-2-2). The target error is set as to 
(0.015) and the maximum epochs to (2000). 
 In Table 2, it is worth noticing that the 
performance of the new algorithm since it take only 
(33) epochs  to  reach  the target error compare to 
Nawi et al.[12] (39) epochs and to CGFR at about (65) 
epochs and worst for traincgf that need about (71) 
epochs to converge. Still the proposed algorithm 
outperforms others three algorithms with a considerable 
improvements. 
 

DISCUSSION 
 
 In this study, we have introduced neural network 
algorithm based on several optimization update. The 
new algorithm is compared with three well known 
standard CG and NN algorithms using the Iris 
Classification Problem and Winconsin Breast Cancer 
Problem. Our numerical results indicate that the new 
technique has an improvements of about (10-15%) 
NOE; CPU and CT tools.  
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CONCLUSION 
 
 In this research, new fast learning algorithm for 
neural networks which are based on CG updates with 
adaptive gain training algorithm (NEW) is introduced. 
The proposed algorithm improved the training 
efficiency of BP-NN algorithms by adaptively 
modifying the search direction. The initial search 
direction is modified by introducing the gain value. The 
proposed algorithm is generic and easy to implement in 
all commonly used gradient based optimization 
processes. The simulation results showed that the 
proposed algorithm is robust and has a potential to 
significantly enhance the computational efficiency of 
the training process. 
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