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Abstract: Problem statement:  Kernel discriminative common vector (KDCV) was one of the most 
effective non-linear techniques for feature extraction from high dimensional data including images and 
text data. Approach: This study presented a new algorithm called Boosting Kernel Discriminative 
Common Vector (BKDCV) to further improve the overall performance of KDCV by integrating the 
boosting and KDCV techniques. Results: In BKDCV, the feature selection and the classifier training 
were conducted by KDCV and AdaBoost.M2 respectively. To reduce the dependency between 
classifier outputs and to speed up the learning, each classifier was trained in the different feature space 
which was obtained by applying KDCV to a small set of hard-to-classify training samples. The 
proposed method BKDCV possessed several appealing properties. First, like all Kernel methods, it 
handled non-linearity in a disciplined manner. Second by introducing pair-wise class discriminant 
information into discriminant criterion, it further increased the classification accuracy. Third, by 
calculating significant discriminant information, within class scatter space, it also effectively 
contracted with the small sample size problem. Fourth, it constituted a strong ensemble based KDCV 
framework by taking advantage of boosting and KDCV techniques. Conclusion: This new method was 
applied on extended yale B face database and achieves better classification accuracy. Experimental 
results demonstrated the promising performance of the proposed method as compared to the other 
methods. 
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INTRODUCTION 
 
 Face recognition techniques can be used in a wide 
range of applications such as identity authentication, 
access control, military, commercial and surveillance. 
For these applications, the data are the captured images 
from a wide variety of sources i.e., sources generating 
relatively controlled format images and other sources of 
video images which require additional constraints in 
terms of speed and processing requirements[1]. The face 
recognition process includes different stages including 
localization of faces, feature extraction from the face 
image, recognition and verification[2]. 
 Research on Human face recognition is going on 
for a few decades and a number of contributions have 
already been made[1,3,17]. Among these methods, 
appearance based approach is one of the most 
successful and well studied approach for face 
recognition process[18,28]. This approach operates 
directly on images or appearance of face objects and 

processes the images as two dimensional holistic 
patterns. In these approaches, a two dimensional image 
of size p by q pixels is represented by a vector in a pq-
dimensional space. This space is also called as sample 
space since face images or samples are represented in 
this space. Therefore each facial image corresponds to a 
point in this space and its dimension is very high[4]. 
This vector point describes the features of a face image. 
When the number of face images is large, the 
processing of these images in pq dimensional space is 
complex and it is very difficult to find the appropriate 
hyper plane for classification. Thus the dimensionality 
reduction procedure is required to overcome the 
problems in high dimensional space. However, since 
face images have similar structure, the image vectors 
are correlated and any image in the sample space can be 
represented in a lower dimensional subspace without 
losing a significant amount of information.  
 The eigen face method has been proposed for 
finding such a lower dimensional subspace[18]. This 
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method uses Principal Component Analysis (PCA), is 
to find the best set of projection directions in the sample 
space that will maximize the total scatter across all 
images. The projection directions are also called the 
eigenfaces. Any face image in the sample space can be 
approximated by a linear combination of the significant 
eigen faces. The sum of the eigen values that 
correspond to the eigen faces are not used in 
reconstruction gives the mean square error of 
reconstruction. This method is an unsupervised 
technique since it does not consider the classes within 
the training set data. This approach tends to model 
unwanted within class variations such as those resulting 
from the differences in lighting, facial expressions and 
other factors[5,20]. The criterion used in this method does 
not attempt to minimize the within class variations, the 
resulting class tend to have more overlap than other 
approaches. 
 The Linear Discriminant Analysis (LDA) also 
known as Fisher’s Linear Discriminant Analysis 
(FLDA) is proposed in[20]. This method overcomes the 
limitations of the eigenface method by applying 
Fisher’s linear discriminant criterion[19]. This criterion 
is used for finding the best set of projection directions 
in the sample space that will maximize the ratio: 
 

( )
T

B

FLD opt T
W W

W S W
J W arg max

W S W
=  

 
Where: 
W = The matrix whose columns are the projection 

vectors used for feature extraction 
SW = The within class scatter matrix 
SB = The between-class scatter matrix 
 
 The above criterion is maximized when the eigen 
vectors of SW

−1SB are employed as column vectors in 
matrix W. Since SW

−1SB is non symmetric, its eigen 
decomposition may be unstable. Therefore the major 
drawback is that it cannot be applied directly since the 
dimension of the sample space is typically larger than 
the number of samples in the training set. As a 
consequence SW is singular in this case. This problem is 
known as the “Small Sample Size” (SSS) problem[7]. 
 Various methods have been proposed to solve the 
SSS problem. Tian et al.[29] proposed pseudo inverse 
method by replacing SW by its pseudo inverse. In[3,21] 
the perturbation method is used where a small 
perturbation matrix is added to SW in order to make it 
non singular. However the above methods are 
computationally expensive since the scatter matrices are 
very large. Swets and weng[5] proposed a two stage 

PCA + LDA methods also known as fisher face 
method, in which PCA is first used for dimension 
reduction so as to make SW non singular before the 
application of LDA. However in order to make SW 
nonsingular, some directions corresponding to the small 
eigen values of ST are thrown away in the PCA step. 
Thus there are chances for removing the dimensions 
that contain discriminative information[6,8,9,30].  
 A new LDA method was proposed by Chen et al.[23] 
also called null space method which is based on 
modified fisher’s linear discriminant criterion: 
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B
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W S W
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W S W
=  

  
 In this method, all image samples are first 
projected onto the null space of SW, resulting in a new 
within-class scatter matrix that is a zero matrix. Then 
PCA is applied to the projected samples to obtain 
optimal projection vectors. The drawback in this 
method is they have applied this algorithm only in new 
reduced space not in the original sample space. But this 
method performance depends on the null space of SW in 
turn which depends on the larger sample space. Thus any 
kind of preprocessing that reduces the original sample 
space should be avoided. Another novel method is 
PCA + Null space method was proposed by Hung et al.[8] 
for dealing with the Small Sample Size (SSS) problem. 
In this method, at first, PCA is applied to remove the 
null space of ST and then the optimal projection vectors 
are found in the remaining lower dimensional space by 
using the null space method. Although this method use 
the original sample space, applying PCA and using all 
eigen vectors corresponding to the non zero eigen 
values make these methods impractical for face 
recognition applications when the training set size is 
large. This is due to the fact that the computational 
expense of training becomes very large. 
 Another method, the Direct-LDA method is 
proposed in[6]. This method uses the simultaneous 
diagnolization method[7]. First the null space of SB is 
removed and then the projection vectors that minimize 
the within-class scatter in the transformed space are 
selected from the range space of SB. However removing 
the null space of SB will also remove part of the null 
space of SW. This may result in the loss of important 
discriminative information[8,9,22]. 
 Another novel method is Discriminative Common 
Vector (DCV) method is proposed in[10] which 
addresses the limitations of above methods for solving 
SSS problem and also for finding optimal orthonormal 
projection vectors in the optimal discriminant subspace. 
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Two efficient algorithms were given to compute the 
optimal projection vectors. One algorithm uses range 
space of SW, while the other uses subspace methods and 
the Gram-Schmidt orthogonalization procedure. 
However this method can be applied only in the small 
sample size case and the dimensionality of the null 
space of the within-class scatter matrix must be large in 
comparison with the training set size for good 
recognition rates. Another limitation is that this method 
extracts only linear features of the samples from the 
original sample space and it is failed to extract 
nonlinear features which describe the complexity of 
face image due to illumination, facial expressions and 
pose variations[15,17].  
 The kernel Discriminative Common Vector 
(KDCV) method is proposed in[24]. This method 
overcomes the limitations of the DCV method by non-
linearly map the original sample space to an implicit 
higher dimensional feature space. Then the optimal 
projection vectors are computed in this transformed 
space. The kernel trick[11] used in this method is an 
efficient way of nonlinear mapping. Thus the nonlinear 
features due to illumination, facial expressions and pose 
variations can be extracted. This method yields an 
optimal solution for maximizing a modified fisher’s 
linear discriminant criterion. However the performance 
of KDCV method degrades due to the following non 
balanced problems. The first problem is, in KDCV 
method the optimal criterion is based on the 
conventional between-class scatter matrix which is not 
directly related to classification accuracy. In 
particular, the followed dimensionality reduction 
procedure tends to overemphasize the between class 
scatter SB of well separated outlier classes in the 
sample space at the expense of classes that are close to 
each other, leading to significant overlap between 
them. The second problem is the expression of the 
average within-class scatter has an assumption that all 
classes have same weight for the covariance. In fact if 
the class with dominant covariance is an outlier class 
in the sample space, the within-class scatter SW will 
fail to estimate the correct value for improved 
classification due to this assumption.  
 In this study we propose a novel KDCV algorithm 
called Boosting Kernel Discriminative Common 
Vector algorithm (BKDCV) to overcome the 
limitations of KDCV. The proposed approach 
effectively integrates the boosting techniques with the 
KDCV algorithm based on the pair wise class 
discriminant information. This BKDCV approach 
employs the boosting technique to robustly adjust the 
information and calculate the pair wise class 
discriminant information that is integrated into the 
scatter matrices of KDCV in order to solve the non 
balanced problems in KDCV. 

MATERIALS AND METHODS 
 

A review of kernel   discriminative common vector 
method: Assuming that in a set 

{ } { } { }{ }1 1 1 2 2 2 c c c
1 2 N 1 2 N 1 2 NX x ,x ,...x , x ,x ,...x ,... x ,x ,...x=  there are 

C classes and each class contains N samples. Let  xi
m be 

the mth sample in ith class. There are a total of M = N*C 
samples in the training set X. 
 In kernel method[12,13,24] the training samples in X 
are transformed into an implicit higher dimensional 
feature space F through a non linear mapping function 
Φ. This mapping function map two vectors that are 
linearly dependent in the original sample space onto 
two vectors that are linearly independent in high 
dimensional feature space F[31]. The feature vector in F 
is to be computed by computing the inner product of 
two vectors in F with a kernel function k(x, y) = Φ(x)T 
Φ(y). 
 Let the sample matrix set 

{ } { } { }{ }1 1 1 2 2 2 c c c
1 2 N 1 2 N 1 2 NX x ,x ,...x , x ,x ,...x ,... x ,x ,...x=  which 

becomes [ ]1 2 MX (x ), (x ),........ (x )φ = φ φ φ  after samples are 

mapped into feature space F through a non-linear 
mapping function. In[15] researchers proved that the 
relation between the sample matrix Xφ and the 
orthonormal basis of the range space of Xφ in feature 
space F is based on the fact that the QR decomposition 
can be derived from the Gram-Schmidt 
orthogonalization procedure. Then performing the 
Gram-Schmidt orthogonalization in feature space is 
equivalent to performing a Cholesky decomposition of 
the kernel matrix K is also proved in[15]. By using the 
above concepts in[15] the transformed sample matrix Xφ 
can be expressed as: 
 
Xφ = QR (1) 
 
Where: 
Q = Contains all the basis vectors in feature space F 
R = an upper triangular matrix of Q 
 
 Formula (1) is the QR decomposition of Xφ in 
feature space. Because the columns of matrix Q are 
orthonormal, the kernel matrix: 
 

T T T TK X X R Q QR R Rφ φ= = =   (2) 

 
where, K is an n × n kernel matrix which can be 
computed using kernel function as ij i j(K) k(x ,x )=  and 

K is a symmetric positive semi definite matrix. From 
(2) the matrix R can be obtained by performing 
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Cholesky decomposition of K. Therefore in (1), the 
relation between the vectors φ(x1)…(xM) and the 
orthonormal basis vectors q1,q2,…,qM is built and it can 
be written as: 
 

1X R Q−
φ =  (3) 

 
 The above step shows that performing the Gram-
Schmidt orthogonalization in feature space is actually 
equivalent to performing a Cholesky decomposition of 
the kernel matrix K[15].  
 The within class scatter matrixwSφ , the between 

class scatter matrix bSφ  and the total scatter matrix tSφ  

are defined as: 
 

iNC
i i T

w m i m i
i 1 m 1

1
S (x ) ) (( (x ) )

N
φ φ φ

= =

= φ −µ φ −µ∑ ∑  (4) 

 
C

T
b i i i

i 1

1
S N ( )( )

N
φ φ φ φ φ

=

= µ −µ µ −µ∑  (5) 

 

t w bS S Sφ φ φ= +  (6) 

 
Where: 
µφ = The mean of all samples  

i
φµ  = The mean of samples of the ith class 

  
 The algorithm for KDCV based on subspace 
methods and cholesky decomposition of kernel matrix 
K is summarized as follows. 
 
• In transformed feature space F, construct a 

complete difference subspace is the range space of 
matrix Bφ 

 
1 1 2 2 c c
1 N 1 1 N 1 1 N 1B (b )... (b ), (b )... (b )... (b )... (b )ϕ − − −

 = φ φ φ φ φ φ    

 
 Where: 
 

i i i
k k 1 k(b ) (b ) (x ),k 1...N+φ = φ −φ =  

 
 Suppose that all orthonormal basis vectors of the 

sub space of Bφ form a matrix QB and RB is an 
upper triangular matrix of QB. 

 From (1) we have: 
 
 1

B B B BB Q R ,B R Q−
φ φ= =  (7) 

 
• The common vectors of each class in feature space 

F are obtained by projecting any sample from each 

class onto orthogonal complement of range space 
of Bφ as follows: 

 
 i i T i

com m B B m(x ) (x ) Q Q (x )φ =φ − φ  (8) 

 
 The common vector i

com(x )φ is independent of 

sample i
mx of class i. In the following we choose 

first sample i
1x  from class i 

 
• Find the difference vectors k

com(b )φ  to form matrix 

comBφ : 

 
1 2 c 1

com com com comB (b ),(b ),...(b )φ − = ϕ    

 
 Where 
 

k k 1 1
com com com(b ) (x ) (x ),k 1....c 1+φ =φ − = −  

 
• Apply Gram-Schmidt orthogonalization procedure 

to obtain an orthonormal basis Wφ1, Wφ1,…, Wφc−1 
for the range space of comBφ  which needs to 

compute kernel matrix kcom = T
comBφ  comBφ  as follows: 

 
 i j

com ij com com(K ) (b ), (b )= φ φ  (9) 

 
 The upper triangular matrix Rcom can be obtained 

by performing the Cholesky decomposition of kcom 
and kcom = Rcom

T Rcom 
• According to (3) the optimal projection matrix: 
 

1 2 c 1W (w ,w ,...w )φ φ φ −
 =     

 
 in feature space F is obtained as 
 
 1

1 2 c 1 com comW (w ,w ,...w ) B Rφ −
φ φ φ −

 = =    (10) 

 
 This optimal projection matrix Wφ maximize the 

fisher discriminant criteria in feature space F: 
 
 

T
v w

T
opt b

W S W 0

J(W ) arg max W S W
φ

φ

φ
φ φ φ

=

=  (11) 

 
 where, bSφ , wSφ  are between class and within class 

scatter matrix in feature space F 
• The discriminative common vector i

φΩ  of class i 

can be calculated as: 



J. Computer Sci., 5 (11): 801-810, 2009 
 

805 

 T i 1 i
i 1 com com 1W (x ) R B (x )φ − φ

φΩ = φ = φ  (12) 

 
 i

φΩ  is independent of sample of class i 

 
 Thus KDCV method classifies a new test image 

xtest to class C by finding the minimum Euclidean 
distance between test iand i.e. :φ φΩ Ω  

 

 i testi
C min ,i 1...c
∧

φ φ= Ω −Ω =  (13) 

 
Boosting technique: Boosting is a general machine 
learning meta-algorithm for improving the accuracy of 
any given learning algorithm. One of the most effective 
boosting algorithms, referred to as AdaBoost, can be 
used in conjunction with many learning algorithms to 
improve their performance[14,16]. The AdaBoost 
algorithm is based on the sample distribution, which 
measure the hardness of classification of samples. 
Moreover AdaBoost.M2 algorithm is more suitable for 
classification of samples in multiclass environment 
than AdaBoost.M1[16,27]. In this study we prefer using 
AdaBoost.M2 algorithm in order to effectively 
overcome the non-balanced problems of KDCV and 
form a strong connection between KDCV and 
AdaBoost.M2. The reason for the strong connection is 
the KDCV method achieves better results on face 
recognition tasks by means of extracting the non linear 
features of samples as described in section 2. On the 
other hand KDCV method suffers from the non 
balanced problems described in section 1. In our 
approach we combine the strength of the 
AdaBoost.M2 algorithm and KDCV method to solve 
the non balanced problems of KDCV and pair wise 
class discriminant distribution is introduced on the 
basis of mislabels distribution from AdaBoost.M2[25] 
and also it is used to compute the weighted scatter 
matrices of bSφ  and wSφ  which will overcome the 

problems of KDCV.  
 The parameters, the pair-wise class discriminant 
distribution di,j, the relevance based weight for class i, 
ri, the hardness of separating a sample of class from 
other classes are used to modify the between class 
scatter matrix bSφ  and within class scatter matrix wSφ  in 

order to solve the problems of KDCV. Thus these 
parameters are called boosting parameters and the 
modified scatter matrices are called weighted scatter 
matrices. In Adaboost.M2 algorithm, at the tth 
iteration, the pair-wise class discriminant distribution 

t
i, jd  between classes Ci and Cj can be calculated as: 

ji
NN

t t i t j
i, j m m

m 1 m 1

1
d ( (x , j) (x ,i)) ,if i j

2

0 otherwise

= =

= Γ + Γ ≠


∑ ∑  (14) 

 
 Here the mislabel distribution tΓ (*, ●) measures 
the extent of difficulty of discriminating the example * 
from the improper label ● on the basis of previous 
boosting results. A larger value of t

i, jd  indicates that the 

worse separability between class i and class j further 
embodying also that the class i and j are closer together 
in F. By using (14), the relevance based weight t

ir  for 

class i at tth iteration can be calculated which uses the 
parameter t

i, jd  i.e.:  

 
t t
i i, j

j i

r w(d )
≠

=∑  (15) 

 
 For simplicity, we let W (*) =* in this study. 
Larger value of t

ir  shows that the worse separability of 

class i from other classes at tth iteration. 
 The other parameter 

m

t
iiq  which represents the 

difficulty of separating an mth sample of class i from 
other classes at tth iteration can be calculated by using: 
 

m m

t t i
i i i

j i

q w (x , j)
≠

  = Γ   
∑  (16) 

 
where, im = 1,2,…..N and i, j = 1,2,….,C. larger value 
of 

m

t
iiq .   

 Shows the worse separability of mth sample of class 
i from other classes at tth iteration. The reason for the 
problems of KDCV is the procedure of calculating wSφ  

and bSφ  does not consider the differences in class 

variances. This can be modified in present research by 
using the above computed parameters

m

t
iiq ,  t

ir , t
i, jd  and 

generate the weighted scatter matrices BSφ  and WSφ . The 

problems of KDCV can be solved by replacing the 
scatter operators by means of its weight value. The 
between class scatter operator bSφ  is replaced by a 

weighted between class scatter operatorBSφ : 
 

c 1 c
i j t T

B i, j i j i j2
i 1 j i 1

N N
S w(d )( ) ( )

N

−
φ φ φ φ φ

= = +

= µ −µ µ −µ∑ ∑  (17) 

 
where, µ is mean of a class. The within class scatter 
operator WSφ  is replaced by a weighted within class 

scatter operatorWSφ : 
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i

m m m

m

NC
t t i i T

W i i i i i ii
i 1 i 1

1
S r q ( (x ) )( (x ) )

N
φ ϕ φ

= =

= φ −µ φ −µ∑ ∑  (18) 

 
 The problems of KDCV can be addressed by using 
Eq. 17 and 18. The first problem is addressed based on 
the pair wise class discriminant distribution and the 
classes that are not well separated in F is heavily 
weighted in F. The second problem can be addressed by 
the parameters relevance based weight t

ir  and the 

separability of a sample of class from other classes
m

t
iiq . 

By using the parameter tir  the estimated WSφ  is only 

influenced slightly if class Xi is an outlier class and by 
evaluating the parameter 

m

t
iiq  the analysis of 

classification of an example 
m

i
ix  can be done with 

respect to the previous boosting results. In this way the 
problems of KDCV can be solved by using the above 
boosting parameters. 
 
Proposed boosting kernel discriminative common 
vector algorithm: Based on Adaboost.M2 algorithm 
and the weighted scatter operatorsWSφ , BSφ  we propose 

the modified KDCV algorithm called Boosting Kernel 
Discriminative Common Vector (BKDCV) algorithm. 
In BKDCV algorithm, the KDCV technique with 
weighted scatter matrices is used to extract 
discriminative common vector of a class in feature 
space F. In addition, discriminative common vector 
method is a strong feature extraction technique for 
classification[10]. As a result, the boosting process 
cannot go forward due to the very small pseudo loss ε. 
In general, some sampling procedures are employed to 
artificially weaken the discriminant technique and in 
BKDCV, we choose some examples in each class based 
on 

m

t
iiq  to focus hardest examples in each class. For the 

features extraction, a simple nearest neighbor 
classification is generally employed for classification. 
In this study, we have applied KDCV technique for 
feature extraction and it generates discriminative 
common vector of each class in all the iterations. In 
order to be consistent with the Adaboost Algorithm in 
our method, the hypothesis ht (*, ●) between sample 
and class can be built easily based on KDCV method of 
classification. The hypothesis constructed ht is for 
different hardest sample set in the training set. Thus the 
discriminative common vector of each class can be 
generated in a refined manner in its iterations.  
  To recognize a given test image in BKDCV, the 
hypothesis ht built for all the classes in iterations t = 1 
to Tmax. The Tmax represents the maximum number of 
hardest samples in X. In this study we have considered 

the worst case of Tmax. Then the given test image is 
recognized by: 
 

{ }

maxT
t

f test t
i 1...c t 1

1
h (x ) arg max log h (y ,i)

t∈ =

      =    β   
∑  (19) 

 
where, hf(x) is the final hypothesis for a given test 
image. Equation 19 shows the method of assigning a 
test image to a class which scored maximum response 
in all the iterations. 
 
Algorithm: 
 
Input:- 
(i) A set of training examples X 

 { }
m m

i i n
i i m iX x x R ,i 1...c,i 1...N= ∈ = =   

 
(ii) A set of all mislabels M 
 M = {[(i, i m), j] | i, j ∈ {1, 2,…C}, im ∈ {1,… Ni}, i 

≠ j} 
 
(iii)  The initial Mislabel Distribution on M is: 
  

m

it
i

1
(x , j)

N(C 1)
Γ = =ε

−
 

 
 a small constant 
 
Procedure: 
 
Let Tmax = C (N-1): 
(i) For t = 1.... Tmax do 
 (i) Calculate the terms ti, jd  by: 

 
ji

m jm

m m

NN
jt t i t

ij i
i 1 j 1

1
d (x , j) (x ,i) ,if i j

2

0 otherwise

= =

   = Γ + Γ ≠      
∑ ∑  

 
 This step shows the separability between class i 

and j. 
(ii) Calculate the relevance based weight for class i, ri

t: 
 

t t
i i, j

j i

r w(d )
≠

=∑  

 
 This step shows the separation of class i from 

other classes. 
(iii) Calculate the separability of sample im of class i 

from other classes 
m

t
iiq : 
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m m

t t i
i i i

j i

q w (x , j)
≠

  = Γ   
∑  

 
(iv) Select S hardest examples per class based on 

m

t
iiq  

to form a training subset sT X.⊂  Larger value of 

m

t
iiq shows hardest samples of class i. 

(v) Compute the modified boosting between class 
scatter matrix BSφ : 

 
c 1 c

i j t T
B i, j i j i j2

i 1 j i 1

N N
S w(d )( ) ( )

N

−
φ φ φ φ φ

= = +

= µ −µ µ −µ∑ ∑  

 
 And the modified boosting within class scatter 

matrix WSφ : 

 
i

m m m

m

Nc
t t i i T

W i i i i i i i
i 1 i 1

1
S r q ( (x ) )( (x ) )

N
φ φ φ

= =

= φ −µ φ −µ∑ ∑  

 
(vi) apply KDCV in section2 on Ts and constitute the 

KDCV based feature extraction technique, 
denoted by KDCVt. 

(vi) Apply KDCV t on Xφ and form Yt: 
 

{ }
m

i, t r
t iY y R= ∈  

 
 where, Yt consists of common vector of all the 

classes at ith iteration.  
(vii) Built the hypotheses ht(Sample, class) ∈  [0,1] on 

the subset Yt corresponding to Ts 
(viii) Calculate the pseudo loss based on ht as: 
 

m mm

m

i i , t i , tt
i t t ii

[i,i ) j] M
t

(x , j)(1 h (y , j) h (y ,i))

2
∈

Γ + −

ε =

∑
 

 
(ix) Set  t t t(1 )β = ε −ε  and 

 If βt≤ ε ie., 
1

N(C 1)−
 then Tmax = t -1 and break. 

(x) Update the mislabel distribution tΓ : 
 

i ,t i ,t
t ti im m

m m

(1 h (y i) h (y j)) / 2i it 1 t
i i t(x , j) (x , j) )

+ −+Γ =Γ β  

 
(xi) Normalize t 1+Γ : 
 

m m m

m

it 1 t 1 i t 1 l
i i l

[(l.l ),g] M

(x , j) (x , j) / ( (x ,g))+ + +

∈

Γ =Γ Γ∑  

 end for 
 
Output: The final hypothesis hf(x) is: 
 

{ }

maxT
t

f t
i 1...c t 1

1
h (x ) arg max log h (y ,i)

t∈ =

      =    β   
∑  

 
 For a given sample x i.e. test sample, t rY R∈ in all 

the iterations is the corresponding non linear feature 
vector extracted by kernel Discriminative common 
vector method and the maximum response of class is 
the class label for a given test sample x. 
 

RESULTS 
 
 The Yale B face databases[32] were used to test our 
proposed method In this, portion of the Yale B face 
database were retrieved for our testing. Figure 1 shows 
the three sample sets of Yale B database. The retrieved 
Yale B face database consists of images from C = 100 
different people, using 10 images from each person, for 
a total of 1000 images. The image contains variations 
with the following facial expression as center-light, left-
light, normal, right-light, happy, sad, sleepy and 
surprised. First these images were converted to 
grayscale images. Second we preprocessed these images 
by aligning and scaling them so that the distance 
between the eyes was the same for all images and also 
ensuring that the eyes occurred in the same coordinates 
of the image. The resulting images were then cropped. 
The final size of the images was 92×112. The training 
set consisted of seven images that were randomly 
selected from each subject and the rest of the images 
were used for constructing test set. Thus a training set 
of 700 images and a test set of 300 images were 
created. This process was repeated 5 times and 5 
different training and test sets were created. These five 
training set and testing set were created by randomly 
selecting samples from classes at each trial. These sets 
are used by all the three methods for training and for 
testing. On each trial DCV, KDCV and our proposed 
method BKDCV is applied and found its recognition rate. 
 

 
 
Fig. 1: Three sample sets from the Yale B face database 
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Table 1: Comparison of average recognition rates (%) 
No. of training 
samples in each class DCV KDCV BKDCV 
N = 3 90.1 91.5 92.5 
N = 5 93.7 95.3 96.1 
N = 7 96.4 97.6 99.3 

 

 
 
Fig. 2: Comparative performance of BKDCV under 

different Tmax values on varying number of 
samples in a class 

 
The final recognition rate of each method is the average 
recognition rate of 5 trials in each method. As a result the 
observed recognition rate of each method on different 
number of samples in a class is shown in Table 1 and 
also it shows our proposed method response is better 
than the other two methods. We observed that in the case 
of overlapping state the performance of DCV, KDCV 
method is poor as compared to other methods since the 
assumption in DCV, KDCV is all classes having the 
same covariance structure. The Table 1 shows that as the 
number of samples in the training set increases, the 
recognition rate also increases. The reason for the 
improvement in classification accuracy is, the hypothesis 
constructed on each iteration is considered in the final 
hypothesis of classification of test image. Another reason 
is the features which are not considered in iteration are 
considered in further iterations. Thus the constructed 
discriminative common vector of a class includes all the 
features of samples which increase the accuracy. 
 Another experiment on comparative of the 
classification accuracy of BKDCV under different Tmax 
values on training data sets for varying number of 
samples in a class is shown in Fig. 2. The experimental 
results in Fig. 2 shows that the increases in number of 
samples in the training set increase the classification 
accuracy. Another observation is that the increasing 
number of iterations also increases the classification 
accuracy. At certain state increasing the number of 
iterations does not react on the classification accuracy 
due to the method of formation of subset Ts in training 

time. Because of the classification procedure and the 
selection of hardest samples for training based on 
mislabel distribution makes our proposed method works 
well as compared to other face recognition methods in 
terms of accuracy. 
 

DISCUSSION 
 
 Accuracy, execution speed are some of factors that 
may be used for validating the face recognition method. 
Experimental results show that the proposed method 
yielded the highest performance in terms of accuracy. 
Since our method training is based on the hardest 
samples in the training set, the execution speed of our 
method is very high as compared to DCV and KDCV 
methods. The hypothesis constructed ht is for different 
hardest sample set in the training set. Thus the 
discriminative common vector of each class can be 
generated in a refined manner in its iterations. This 
work can be extended for face images varying in aging 
and pose. 
 

CONCLUSION 
 
 In this study, a novel KDCV algorithm has been 
presented by incorporating the boosting technique into 
KDCV and called as Boosting Kernel Discriminative 
Algorithm. The Adaboost.M2 algorithm is used as 
boosting technique. On each iteration, this algorithm 
updates the mislabel distribution parameter tΓ  based on 
the previous boosting results. This increases the 
classification accuracy. This new algorithm BKDCV 
effectively integrates the strengths of the boosting and 
KDCV techniques to give an ensemble based KDCV 
framework with strong nonlinear feature extraction 
capability and overcomes the problems in KDCV 
method. The experimental results on Yale B face data 
base show that the proposed BKDCV method enhances 
the performance of KDCV method of face recognition 
process. 
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