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Abstract: Problem statement: Kernel discriminative common vector (KDCV) was oofethe most
effective non-linear techniques for feature extaacfrom high dimensional data including images and
text data.Approach: This study presented a new algorithm called BogsKernel Discriminative
Common Vector (BKDCV) to further improve the ovénaérformance of KDCV by integrating the
boosting and KDCV techniqueResults: In BKDCV, the feature selection and the classifra@ining
were conducted by KDCV and AdaBoost.M2 respectivéllp reduce the dependency between
classifier outputs and to speed up the learningh etassifier was trained in the different featspace
which was obtained by applying KDCV to a small séthard-to-classify training samples. The
proposed method BKDCV possessed several appealopegies. First, like all Kernel methods, it
handled non-linearity in a disciplined manner. Setdy introducing pair-wise class discriminant
information into discriminant criterion, it furthencreased the classification accuracy. Third, by
calculating significant discriminant information, ithin class scatter space, it also effectively
contracted with the small sample size problem. #gut constituted a strong ensemble based KDCV
framework by taking advantage of boosting and KDi€thniquesConclusion: This new method was
applied on extended yale B face database and ashigetter classification accuracy. Experimental
results demonstrated the promising performancehefproposed method as compared to the other
methods.

Key words: Kernel discriminative common vectors, boosting, rpese class discriminant
information, Adaboost.M2, small sample size prohldicriminant criterion

INTRODUCTION processes the images as two dimensional holistic
patterns. In these approaches, a two dimensioredem
Face recognition techniques can be used in a widef size p by g pixels is represented by a vecta pyg-
range of applications such as identity authenticati dimensional space. This space is also called aplsam
access control, military, commercial and survedlan space since face images or samples are represented
For these applications, the data are the captunades this space. Therefore each facial image corresptnds
from a wide variety of sources i.e., sources geieya point in this space and its dimension is very HKigh
relatively controlled format images and other sesrof  This vector point describes the features of a fazge.
video images which require additional constraims i When the number of face images is large, the
terms of speed and processing requirenférite face  processing of these images in pg dimensional sjsace
recognition process includes different stages olioly  complex and it is very difficult to find the appmigte
localization of faces, feature extraction from flaee  hyper plane for classification. Thus the dimensiityia
image, recognition and verificatih reduction procedure is required to overcome the
Research on Human face recognition is going orproblems in high dimensional space. However, since
for a few decades and a number of contributione havface images have similar structure, the image vecto
already been mallé’. Among these methods, are correlated and any image in the sample spacbea
appearance based approach is one of the mostpresented in a lower dimensional subspace without
successful and well studied approach for facdosing a significant amount of information.
recognition proce§§?®. This approach operates The eigen face method has been proposed for
directly on images or appearance of face objects anfinding such a lower dimensional subspéte This
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method uses Principal Component Analysis (PCA), iPCA + LDA methods also known as fisher face
to find the best set of projection directions ia Hample method, in which PCA is first used for dimension
space that will maximize the total scatter acros areduction so as to makeySnhon singular before the
images. The projection directions are also calleel t application of LDA. However in order to makegyS
eigenfaces. Any face image in the sample spacé&ean nonsingular, some directions corresponding to thalls
approximated by a linear combination of the sigaifit  eigen values of Sare thrown away in the PCA step.
eigen faces. The sum of the eigen values thatThus there are chances for removing the dimensions
correspond to the eigen faces are not used ithat contain discriminative informati6fi®=%
reconstruction gives the mean square error of A new LDA method was proposed by Creral.*®
reconstruction. This method is an unsupervisedalso called null space method which is based on
technique since it does not consider the classdsnwi modified fisher’s linear discriminant criterion:

the training set data. This approach tends to model

unwanted within class variations such as thosdtiegu WTSBM
from the differences in lighting, facial expressoand o (V\/Om)= argm W
other factor$?!. The criterion used in this method does v SiW

not attempt to minimize the within class variatiptie . _ .
resulting class tend to have more overlap thanrothe In this method, all image samples are first
approaches. projected onto the null space of,Sresulting in a new

The Linear Discriminant Analysis (LDA) also Within-class scatter matrix that is a zero matiiken
known as Fisher's Linear Discriminant Analysis PCA is applied to the projected samples to obtain
(FLDA) is proposed i”. This method overcomes the optimal projection vectors. The drawback in this
limitations of the eigenface method by applyingmethod is they have applied this algorithm onlyaw
Fisher's linear discriminant criteri@f. This criterion reduced space not in the original sample spacetrt
is used for finding the best set of projection diens ~ method performance depends on the null space, o S

in the sample space that will maximize the ratio: turn which depends on the larger sample space. dityis
kind of preprocessing that reduces the originalgam
WTSBM space should be avoided. Another novel method is
3o (W) = argmax— PCA + Null space method was proposed by Hetra.”
v (W S\NM for dealing with the Small Sample Size (SSS) proble
In this method, at first, PCA is applied to remdhe
Where: null space of $and then the optimal projection vectors
W = The matrix whose columns are the projectionare found in the remaining lower dimensional spage
vectors used for feature extraction using the null space method. Although this methsel u
Sw = The within class scatter matrix the original sample space, applying PCA and uslhg a
S = The between-class scatter matrix eigen vectors corresponding to the non zero eigen

values make these methods impractical for face

The above criterion is maximized when the eigernrecognition applications when the training set dze
vectors of §7'Ss are employed as column vectors inlarge. This is due to the fact that the computation
matrix W. Since § 'Sg is non symmetric, its eigen expense of training becomes very large.
decomposition may be unstable. Therefore the major Another method, the Direct-LDA method is
drawback is that it cannot be applied directly sitice ~ proposed . This method uses the simultaneous
dimension of the sample space is typically largant ~ diagnolization methddl. First the null space ofgSis
the number of samples in the training set. As a@emoved and then the projection vectors that mizemi
consequence,Sis singular in this case. This problem is the within-class scatter in the transformed spaee a
known as the “Small Sample Size” (SSS) probfem selected from the range space pf Bowever removing

Various methods have been proposed to solve thée null space of gSwill also remove part of the null
SSS problem. Tiamt al.”! proposed pseudo inverse space of §. This may result in the loss of important
method by replacing by its pseudo inverse. ff  discriminative informatioft**?.
the perturbation method is used where a small Another novel method is Discriminative Common
perturbation matrix is added tqySn order to make it Vector (DCV) method is proposed O which
non singular. However the above methods areéddresses the limitations of above methods forisglv
computationally expensive since the scatter matice ~ SSS problem and also for finding optimal orthondrma
very large. Swets and werlgproposed a two stage Projection vectors in the optimal discriminant spdose.
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Two efficient algorithms were given to compute the MATERIALSAND METHODS

optimal projection vectors. One algorithm uses eang

space of @, while the other uses subspace methods and review of kernel discriminative common vector
the Gram-Schmidt orthogonalization procedure.method: Assuming that in a set
However this method can be applied only in the bmal y _[fy1 41 1] [y2 2 2] there are
sample size case and the dimensionality of the null {{ v N}{ v N} {){ % ){'}}

H i
space of the within-class scatter matrix must bgelan C C|fﬁShSGS and _ea:ig:h class contains N samples. "iﬂe*x
comparison with the training set size for good(h® N samplein¥ class. There are a total of M = N*C

recognition rates. Another limitation is that thigthod ~ Samples in the ”ai”i%glg‘;}])(- - .
extracts only linear features of the samples frow t In kernel metho the training samples in X
original sample space and it is failed to extract®'® transformed into an implicit higher dimensional

nonlinear features which describe the complexity of€aturé space F through a non linear mapping fancti
face image due to illumination, facial expressiamsl @+ This mapping function map two vectors that are
pose variatiorf§!"! linearly dependent in the original sample space ont

The kernel Discriminative Common Vector WO vectors that are linearly independent in high
(KDCV) method is proposed . This method dimensional feature spac€'f: The feature vector in F
overcomes the limitations of the DCV method by non-iS to be computed by computing the inner produTct of
linearly map the original sample space to an inifplic two vectors in F with a kernel function k(x, y)dXx)
higher dimensional feature space. Then the optimaP(y)-
projection vectors are computed in this transformed  Let the sample matrix set
space. The kernel tri€k used in this method is an X={{h st} (3G ) 6 X)) which
efficient way of nonlinear mapping. Thus the noaén
features due to illumination, facial expressiond pase ~ PECOMESX, =[d(xy), ¢(X,),.......» (%, ) after samples are
variations can be extracted. This method yields amnapped into feature space F through a non-linear
optimal solution for maximizing a modified fisher's mapping function. I#® researchers proved that the
linear discriminant criterion. However the performoa  rejation between the sample matrix, Xand the
of KDCV method degrades due to the following non,.yhqnormal basis of the range space gfirKfeature

balanced problems. The first problem is, in KDCV : . .
. L : space F is based on the fact that the QR decorgosit
method the optimal criterion is based on the " . " 4orived from the  Gram-Schmidt
conventional between-class scatter matrix whiatois o ;
orthogonalization procedure. Then performing the

directly related to classification accuracy. In : ST )
particular, the followed dimensionality reduction Gram-Schmldt orthogonallzatlon in feature space IS
gguivalent to performmg a Cholesl[<y decomposm(bn o}

scatter § of well separated outlier classes in the!n€ kernel matrix K is also proved M By using the
sample space at the expense of classes that aeetolo above concepts il the transformed sample matrix, X
each other, leading to significant overlap betweerfan be expressed as:
them. The second problem is the expression of the
average within-class scatter has an assumptionathat X,= QR (1)
classes have same weight for the covariance. Iniffac
the class with dominant covariance is an outli@ssl Where:
in the sample space, the within-class scattgrwil Q = Contains all the basis vectors in feature sjpace
fail to estimate the correct value for improvedR = an upper triangular matrix of Q
classification due to this assumption.

In this study we propose a novel KDCV algorithm Formula (1) is the QR decomposition of, ¥

called Boosting Kernel Discriminative Common featyre space. Because the columns of matrix Q are
Vector algorithm (BKDCV) to overcome the 4ihonormal. the kernel matrix:

limitations of KDCV. The proposed approach

effectively integrates the boosting techniques it ; s n

KDCV algorithm based on the pair wise class K=X;X,=R' Q' QR=R'R )
discriminant information. This BKDCV approach

employs the boosting technique to robustly adjbst t where, K is an n x n kernel matrix which can be

in_forr_na_tion _and ca_lculate t_he_ pair Wis_e Classcomputed using kernel function &), =k(x,x) and
discriminant information that is integrated intoeth

scatter matrices of KDCV in order to solve the nonK is @ symmetric positive semi definite matrix. Fro
balanced problems in KDCV. (2) the matrix R can be obtained by performing
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Cholesky decomposition of K. Therefore in (1), the
relation between the vectorg(x,)...(xy) and the

orthonormal basis vectors, @, ...

,Qu is built and it can

be written as:

=Q ®)

The above step shows that performing the Gram-

Schmidt orthogonalization in feature space is distua
equivalent to performing a Cholesky decompositibn o

the kernel matrix K®.

The within class scatter mats, the between

class scatter matri§, and the total scatter matri®
are defined as:

S0 20 2 904 u) (OO @
S DN G~ ) )
S=8+% (6)
Where:

u® = The mean of all samples
ne = The mean of samples of ttedlass

The algorithm for KDCV based on subspace

methods and cholesky decomposition of kernel matrix
K is summarized as follows.

In transformed feature space F, construct a
complete difference subspace is the range space of
matrix B

=[o(0})..0 0 1) (F)-0 By )o B)d (]
Where:
o(by) = o(B 1) -0 (%), k= 1..N
Suppose that all orthonormal basis vectors of the
sub space of Bform a matrix @ and R is an

upper triangular matrix of £
From (1) we have:

B,=Q:Rs BR'=Q ()

The common vectors of each class in feature space
F are obtained by projecting any sample from each
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class onto orthogonal complement of range space
of By as follows:

O(Xeom) = (X' ) — Q Qe (X,,) 8

The common vectoro(x!,)is independent of
sample x! of class i. In the following we choose
first samplex; from class i

Find the difference vectorg(b"
B¢

com *

) to form matrix

com

Blom=® (Do) (D) - (B}
Where
d)(bcom) d)(xi;r]ﬁ) - (chorr)l k=1...c— 1

Apply Gram-Schmidt orthogonalization procedure
to obtain an orthonormal basisgVWg, ..., Wg1
for the range space oB:_  which needs to

compute kernel matrixk, =B B

com

as follows:

(K o) § = 0D O (D) 9)

The upper triangular matrix .5, can be obtained
by performlng the Cholesky decomposition gf.k

and Iéom I'-"com Reom

According to (3) the optimal projection matrix:

c-1 ]
in feature space F is obtained as
)=

This optimal projection matrix \YWmaximize the
fisher discriminant criteria in feature space F:

[(WM, W, W

B't;OmR;][.)IT (10)

W, :[ (W¢11W¢2!--'W

I(Wop )= (11)

arg max ‘ W e W
WS,

where, S, § are between class and within class

scatter matrix in feature space F
The discriminative common vectary of class i

can be calculated as:
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O =W, 6(%)=Reon Blom® (X)) (12)

N\ Nl
R HISCH IS SRS
m=1 m=1

Q is independent of sample of class i 0 otherwise

(14)

Thus KDCV method classifies a new test image  Here the mislabel distribution” (%, e) measures
Xest 10 class C by finding the minimum Euclidean the extent of difficulty of discriminating the exate *
distance betweef® and’ ie.: from the improper labek on the basis of previous

o boosting results. A larger value df; indicates that the
worse separability between class i and class héurt
ji=1..c (13)  embodying also that the class i and j are closgetter
in F. By using (14), the relevance based weighfor
% iteration can be calculated which uses the

C=min|o; €

test

Boosting technique: Boosting is a general machine €1ass i at e
learning meta-algorithm for improving the accurafy Parameterd;; I.e..
any given learning algorithm. One of the most dffec

boosting algorithms, referred to as AdaBoost, can b riI:ZW(dit,j) (15)
used in conjunction with many learning algorithros t =

improve their performanfé?®. The AdaBoost

algorithm is based on the sample distribution, Wwhic For simplicity, we let W (*) =* in this study.

measure the hardness of classification of sampled.arger value ofr’ shows that the worse separability of
Moreover AdaBoost.M2 algorithm is more suitable for class i from other classes Btiteration.

classification of samples in multiclass environment  The other parameter) which represents the
than AdaBoost.M35%™. In this study we prefer using p
AdaBoost.M2 algorithm in order to effectively
overcome the non-balanced problems of KDCV an
form a strong connection between KDCV and
AdaBoost.M2. The reason for the strong connectson i q¢ —w
the KDCV method achieves better results on face "
recognition tasks by means of extracting the noedr

features of samples as described in section 2.h®n t where, j, = 1,2,....N and i, j = 1,2,....,C. larger value
other hand KDCV method suffers from the nonof g .

balanced problems dgscribed in section 1. In our  ghows the worse separability of'rsample of class
2%2?35; M\évealg(():r(i)tnr:r?:naend tQI%CVStrrnth%t]d t(())fsolt/heei from other classes al'fteration. The reason for the
the non balanced problems of KDCV and pair WiseprOblemS of KDCV'is th(_e procedurc.a of calcula.usg
class discriminant distribution is introduced ore th @nd S; does not consider the differences in class
basis of mislabels distribution from AdaBoost®t2 variances. This can be modified in present reselaych
and also it is used to compute the weighted scatteusing the above computed parametgrs r', d;, and
matrices of § and § which will overcome the

problems of KDCV.
The parameters, the pair-wise class discriminan

distribution d;, the relevance based weight for class i,y .\veen class scatter operatsf is replaced by a
r, the hardness of separating a sample of class from

other classes are used to modify the between clag¥eighted between class scatter opergfor
scatter matrixS, and within class scatter matrg, in .

order to solve the problems of KDCV. Thus theses;=>" > Ni':l"
parameters are called boosting parameters and the =t =i+ N

modified scatter matrices are called weighted scatt ] o
matrices. In Adaboost.M2 algorithm, at thd® t Where, p is mean of a class. The within class ecatt

iteration, the pair-wise class discriminant disttibon ~ operator S, is replaced by a weighted within class
d;, between classes @nd Cj can be calculated as: scatter operatcs), :

difficulty of separating an fh sample of class i from
Gother classes af'tteration can be calculated by using:

TN ,j)] (16)

j=i

generate the weighted scatter matri&sands,, . The

roblems of KDCV can be solved by replacing the
catter operators by means of its weight value. The

wid )@ = )6 = ) (17)
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18 & . ) _ the worst case of . Then the given test image is
%:N; Zl 1 qtim © (><m )1’ )@)(x,m )—u’ ) (18) recognized by:
The problems of KDCV can be addressed by using, (X...)=argma Tz: |0%1] by, (19)
Eq. 17 and 18. The first problem is addressed based '~ " ich.g |5 (Bt '

the pair wise class discriminant distribution arn t

cla_sses that are not well separated in F is heavilyhere, x) is the final hypothesis for a given test
weighted in F. The second problem can be addréssed jmage. Equation 19 shows the method of assigning a
the parameters relevance based weightand the test image to a class which scored maximum response

separability of a sample of class from other clagse  in all the iterations.
By using the parameter' the estimatedsS, is only

influenced slightly if class Xis an outlier class and by
evaluating the parameterq; the analysis of |nput:-

classification of an example, can be done with () A setoftraining examples X

Algorithm:

respect to the previous boosting results. In thay e X :{ X:m‘X:m eR%i=l.cj,= 1""\'}
problems of KDCV can be solved by using the above
boosting parameters. (i) A set of all mislabels M
M={G,im), 111,01, 2,...C}, in0{1,... N}, i
Proposed boosting kernel discriminative common #} 0 A AT b g

vector algorithm: Based on Adaboost.M2 algorithm
and the weighted scatter operatgys S; we propose (i) The initial Mislabel Distribution on M is:
the modified KDCV algorithm called Boosting Kernel
Discriminative Common Vector (BKDCV) algorithm.
In BKDCV algorithm, the KDCV technique with
weighted scatter matrices is used to extract
discriminative common vector of a class in feature 5 gmall constant

space F. In addition, discriminative common vector

method is a strong feature extraction technique fopygoedure:

classificatiof”. As a result, the boosting process

cannot go forward due to the very small pseudo d0ss | et T, = C (N-1):

In general, some sampling procedures are emplayed {j)  Fort=1.... udo
artificially weaken the discriminant technique aimd (i) Calculate the terms!  by:
BKDCV, we choose some examples in each class based Y
on q; to focus hardest examples in each class. For the

1

C0 D=

N; N;
feature_s _ext_raction, a simple nearest _neighbor d;:{%z F‘()g'm,j)+z Ft(x{m,i) Jfi =]
classification is generally employed for classifios. in=1 In=t
In this study, we have applied KDCV technique for 0 otherwise
feature extraction and it generates discriminative
common vector of each class in all the iteratidns. This step shows the separability between class i
order to be consistent with the Adaboost Algorithm and j.

our method, the hypothesis (, ®) between sample (i) Calculate the relevance based weight for clas's
and class can be built easily based on KDCV metfiod

classification. The hypothesis constructel i$ for

different hardest sample set in the training shusTthe ﬁt:ZW(d‘u)

discriminative common vector of each class can be .

generated in a refined manner in its iterations.

To recognize a given test image in BKDCV, the This step shows the separation of class i from
hypothesis hbuilt for all the classes in iterations t = 1 other classes.
t0 Tmax The Thax represents the maximum number of (i) ~ Calculate the separability of samplg of class i
hardest samples in X. In this study we have comsitle from other classes; :
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(iv)

V)

(vi)

(vi)

(vii)

(viii) Calculate the pseudo loss based pash

(ix)

)

(xi)

J. Computer <ci., 5 (11): 801-810, 2009

. o end for
g, =W ZF ()(il,“’J)]
. Output: The final hypothesis;{x) is:
Select S hardest examples per class baseg] on T 1
- ! he (x )=argmax > log—| h (¥ i
to form a training subset, c X. Larger value of f g | & Bt '
a; shows hardest samples of class i.
Compute the modified boosting between class  For a given sample x i.e. test sampY¥écR" in all
scatter matrixs; : the iterations is the corresponding non linear Uieat
vector extracted by kernel Discriminative common
1 & NN, s evee ow vector method and the maximum response of class is
SE:; _Zl N2 w(d) @ = )6 — i) the class label for a given test sample x.
i= j=i+
And the modified boosting within class scatter RESULTS
.
matrix S, - The Yale B face databa$€swere used to test our
. proposed method In this, portion of the Yale B face
1&H ¢ j : j o database were retrieved for our testing. Figurbdws
b _ _— to ¢ ¥ )=—u°Y g g
S N; .; i, @G0 R )-n) the three sample sets of Yale B database. Thevetti
Yale B face database consists of images from CG= 10
apply KDCV in section2 on Jand constitute the different people, using 10 images from each pergam,
KDCV based feature extraction technique,?@ total of 1000 images. The image contains vanatio
denoted by KDCY with the following facial expression as center-tigbft-
Apply KDCV, on )(pand form V- light, normal, right-light, happy, sad, sleepy and
surprised. First these images were converted to
o grayscale images. Second we preprocessed thesesmag
Yt:{yi’mER } by aligning and scaling them so that the distance
between the eyes was the same for all images and al
where. Y consists of common vector of all the €nsuring that the eyes occurred in the same caatedin
classe,s atiteration. of the image. The resulting images were then crdppe
Built the hypotheses Sample, cIass@ [0,1] on The final size of the images was 92x112. The tngini

set consisted of seven images that were randomly
selected from each subject and the rest of the esag
were used for constructing test set. Thus a trgisit
o L . of 700 images and a test set of 300 images were
DD A I [ YR B () created. This process was repeated 5 times and 5
g, = LM > different training and test sets were created. &lie®
training set and testing set were created by ramgom
selecting samples from classes at each trial. Thetse
Set B, =¢/(1-¢,) and are used by all the three methods for training famd
1 testing. On each trial DCV, KDCV and our proposed
N(C—1) then T =t-1 and break.  method BKDCV is applied and found its recognitiater

the subset Ycorresponding to J1

If B<eie.,

Update the mislabel distribution' :
Ft+1(xi j)*Fl(Xi J))B (1+h‘()/|n;'i)—h‘())‘"“' Nz
imt )= im? t

Normalizer+:

T L) =T 00 D0 DS T(x/,9)
" T imglem " Fig. 1: Three sample sets from the Yale B facelueta
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Table 1: Comparison of average recognition rates (%
No. of training

samples in each class DCV KDCV BKDCV
N=3 90.1 91.5 92.5
N=5 93.7 95.3 96.1
N=7 96.4 97.6 99.3
1004
S
L 984
it
& 96
-
g - .
5 94 .
=
= -
-ag 32 A [= .- N—3
oo N=5
& N=7
28 1
0 20 40 &0 20

T max value

Fig. 2: Comparative performance of BKDCV under

different T,.x values on varying number of
samples in a class

The final recognition rate of each method is therage
recognition rate of 5 trials in each method. Assuit the

time. Because of the classification procedure dme t
selection of hardest samples for training based on
mislabel distribution makes our proposed methodke/or
well as compared to other face recognition mettinds
terms of accuracy.

DISCUSSION

Accuracy, execution speed are some of factors that
may be used for validating the face recognitionhoet
Experimental results show that the proposed method
yielded the highest performance in terms of acgurac
Since our method training is based on the hardest
samples in the training set, the execution speealuof
method is very high as compared to DCV and KDCV
methods. The hypothesis constructédstor different
hardest sample set in the training set. Thus the
discriminative common vector of each class can be
generated in a refined manner in its iterationsis Th
work can be extended for face images varying im@gi
and pose.

CONCLUSION

In this study, a novel KDCV algorithm has been
presented by incorporating the boosting technigque i

observed recognition rate of each method on diftere KDCV and called as Boosting Kernel Discriminative
number of samples in a class is shown in TabledlL anpigorithm. The Adaboost.M2 algorithm is used as
also it shows our proposed method response isrbettgoosting technique. On each iteration, this alpanit
than the other two methods. We observed that iedSe | hqates the mislabel distribution parameterbased on

of overlapping state the performance of DCV, KDCVthe previous boosting results. This increases the
method is poor as compared to other methods sivee t c|assification accuracy. This new algorithm BKDCV
assumptlon_ln DCV, KDCV is all classes having theeffectively integrates the strengths of the bogstind
same covariance structure. The _Table 1 sh_ows$rmea KDCV techniques to give an ensemble based KDCV
number of samples in the training set increases, tframework with strong nonlinear feature extraction
recognition rate also increases. The reason for th@apability and overcomes the problems in KDCV

improvement in classification accuracy is, the hipeis
constructed on each iteration is considered infitted
hypothesis of classification of test image. Anottearson

is the features which are not considered in itenatire
considered in further iterations. Thus the consgtdic
discriminative common vector of a class includégted
features of samples which increase the accuracy.

Another experiment on comparative of the

classification accuracy of BKDCV under different.f

values on training data sets for varying number of

samples in a class is shown in Fig. 2. The experiate
results in Fig. 2 shows that the increases in nurobe
samples in the training set increase the classifica
accuracy. Another observation is that the increpsin
number of iterations also increases the classifinat

accuracy. At certain state increasing the number of

iterations does not react on the classificationueaxy
due to the method of formation of subseirrtraining
808

method. The experimental results on Yale B faca dat
base show that the proposed BKDCV method enhances
the performance of KDCV method of face recognition
process.
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