Journal of Computer Science 5 (11): 783-787, 2009
ISSN 1549-3636
© 2009 Science Publications

Enhanced Utility Accrual Scheduling Algorithmsfor Adaptive Real Time System

'l dawaty Ahmad an@Muhammad Fauzan Othman
'Department of Communication Technology and Network,
Faculty of Computer Science and Information Tecbgp| University Putra Malaysia,
43400 UPM, Serdang, Selangor DE, Malaysia
“Motorola Multimedia Sdn Bhd 3507 Prima Avenue, dalaknokrat 5, 63000 Cyberjaya Malaysia

Abstract: Problem statement: This study proposed two utility accrual real tiseheduling algorithms
named as Preemptive Utility Accrual Scheduling (F)Aand Non-preemptive Utility Accrual
Scheduling (NUAS) algorithms. These algorithms adsed the unnecessary abortion problem that was
identified in the existing algorithm known as Gexiddtility Scheduling (GUS). It is observed that GU

is inefficient for independent task model becausgmply aborts any task that currently executing a
resource with lower utility when a new task witlgtner utility requests the resource. The scheduling
optimality criteria are based on maximizing accruélity accumulated from execution of all tasksie
system. These criteria are named as Utility Acc(u&l). The UA scheduling algorithms are design for
adaptive real time system environment where deadiimsses are tolerable and do not have great
consequences to the systepproach: We eliminated the scheduling decision to abodsk in GUS
and proposed to preempt a task instead of beingesbip the task is preemptive able. We compared th
performances of these algorithms by using discestent simulationResults. The proposed PUAS
algorithm achieved the highest accrued utility thee entire load range. This is followed by the NUAS
and GUS algorithmsConclusion: Simulation results revealed that the proposedritihgs were more
efficient than the existing algorithm, producingttwhigher accrued utility ratio and less abortiatiar
making it more suitable and efficient for real tiaggplication domain.

Key words: Adaptive real-time system, utility accrual schedgliaccrued utility ratio, discrete event

simulation
INTRODUCTION Utility +
A real time system is a system where the time at Maxhl
which event occurs is important. Real-time scheuuli
is fundamentally concerned with satisfying applmat . B —»
EtartTime TrerminateTime Tine

time constraints. In adaptive real time system an
acceptable deadline misses and delays are toleaadle
do not have great consequences to the system. Fig. 1: The step TUF?

One of the scheduling paradigms in adaptive real
time system environment is known as Time/Utility Objective: The scheduling objective of this research is
Function (TUFY.. A TUF specifies the utility of to maximize the accrued utility from all executegks
completing a task as an application function of mwhe in the system. These criteria are named as Utility
the task completes as shown in Fig. 1. The urgefiey Accrual (UA) criteri&. A UA scheduling algorithm
task is captured as a deadline on X-axis and théhat maximizes the sum of tasks’ attained utilitieifi
importance of a task is measured by utility in ¥sax seek to meet all task deadlines and naturally tend

As illustrated in Fig. 1, completion of a taskhiit ~ favor task that are more important (from whom highe
the deadline (i.e., within the StartTime and utility can be accrued) when the system is overaad
TerminateTime) will accrue some positive utilitye(j As suggested in the recent overview of the UA
MaxAU) or zero utility otherwise. scheduling domalfl, one of the existing algorithms

Corresponding Authors. Idawaty Ahmad, Department of Communication Techgpland Network,
Faculty of Computer Science and Information Tedbagyy University Putra Malaysia, UPM 43400,
Serdang, Selangor DE, Malaysia
783

J. Computer Sci., 5 (11): 783-787, 2009

that provide general assurance on timeliness behavi

we speculate that more unnecessary abortions @cturr
General Utility Scheduling (GUS) algoritfh

in GUS which could possibly reduce the tasks’ agdi
utility. It is important to observe that by redugithe
number of aborted tasks, it is very likely that weuld

Problem statement: It is observed that GUS algorithm NUMDE Ol
gain higher utility.

is inefficient for independent task model becaugerye
time a new task with higher utility requests a tese,
the GUS simply aborts any task that is currentlypgs
the resource if the task produces lower utilitygufe 2
illustrates this inefficiency scenario. There ittasks
currently involved in the scenario i.e., task Towaad
Treq. Table 1 summarizes the characteristics odethe Preemptive Utility Accrual Scheduling (PUAS)
tasks. Task Towner request for a resource at tifie 1 algorithm: In this model, the owner task is preempted
After executing the resource for 0.10 sec, a neest (i.e., suspended) temporarily instead of being tlor
from task Treq for the same resource arrived ih® t when a new request with higher PUD task arrivetth@n
system. The Potential Utility Density (PUD) of both system. In PUAS, task with highest PUD is given the
tasks is calculated. The PUD of a task measures thHaghest priority to hold the resource.

amount of utility that can be gained per unit tilme

executing the task] Task Treq produced larger PUD Non-Preemptive Utility Accrual Scheduling (NUAS)
(i.e., 36) than Towner (i.e., 25). GUS then decittes glgorithm: In this model, the owner task continues to
abort Towner for 0.075 sec before it releases theqgld a resource without being aborted although it

resource. GUS then allows Treq to execute thgyroduces lower PUD when a new request with higher
available resource. Execution of aborted task willpyp task arrived in the system.

Approach: To rectify the inefficiency identified in
GUS, we proposed two solutions according to the
preemptive nature of the task as stated below:

accrue zero PUD and zero utility to the systemafje

Figure 3 illustrates the scheduling decision made

sequencing tasks using the GUS algorithm accrued By the proposed algorithms after the arrival oéquest

utility (i.e., zero for Towner that has been abdrpus
9 for Treq).

from a task into the system. After the scheduleepts
a request from task Treq, it will first check the

We identified that the decision to immediately ayailability of the requested resource. If the tese is
abort the lower PUD task is not necessary. Natufell jgle, task Treq can be scheduled immediately totbse

tasks that are independent each other, the decision resource. For the case when the resource is busy an
execute one task should not result from the abowio

another task. Task that has been aborted will not
contribute any positive utility to the system. Téfere,

[Acceptanew request from task Treqg for resource J

Idle
Avzlability of the
ESOUCE

Busy
[Insert the request of task Treq into wilist]

Termination Termination
of Towner of Treg

1 Towner
! (@bort)

ICalculate the PUD of requesting task: TraqFUD]
I

|
! | Calculate the PUD of pwner fask TmmeerD}
T

L{ Towner. PUS<Treq PUD
|
e Ves

GUs
[Scheduling algorithm

Mo “Abortatis
Tes
Abort
Towner.mode

Mormal

Abortthe Towner

PUAS

Stop exeenting the owner task Towmer

Normal Towner. mode Abort
pdate the remaining holding tims
of owener task: Towener. holdiime

Update the remaining abort time
of owner task: Towener.aboritime

NUAS

1.4

1.3

Time

1.2

Fig. 2: Inefficiency scenario in GUS algorithm

in Abort.mode Towner aborttime @
Table 1: Task characteristics v [[Delte the equst offsk Tro from wtlist |
Task Characteristic Towner (white) Treq (black) ey wf‘ r—
Initial Holdtime 0.300 0.25 e
Remaining Holdtime 0.200 0.25 Exit
Aborttime 0.075 0.10
Maximum Utility (MaxAU) 5.000 9.00
PUD 5/0.20 = 25 9/0.25 = 36

Fig. 3: Flow charts of the UA scheduling algorithms

784

J. Computer Sci., 5 (11): 783-787, 2009

Eesource

(r1]

()

(&)
5

currently being used by the owner task Towner, the
PUD for both tasks is compared. If requesting thsq
produced higher PUD:

Tasks

Bchedule

* In GUS, Towner is aborted and immediately
change its state from Normal to Abort mode

* In NUAS, Towner is continuously executed
without being aborted, although it produced a
lower PUD than Treq

 In PUAS, Towner is preempted instead of being
aborted and Treq is granted to use the resource
because it produced higher PUD than Towner Fig. 4: Simulation model

Tnordered task list (utlist)

MATERIALSAND METHODS

StactTime TerminateTime

Average execution time: C_Avg = 0.5 sec

<

We developed a Discrete Event Simulator (DES) to
verify the performance of our proposed algorithiiise
rationale of using DES lies in the fact that theyious [y oo
research (i.e., GUS) was based on the discretet ever Request Release Request R
simulation tool§“. Therefore, in order to precisely —® ™ ¥
remodel and further enhance the GUS algorithm, DES
written in C language is the best method to achthise
objective. We used experiment settings that aréasim
to those proposed!th

Holdtime {nested)

v

Fig. 5: Task model

Figure 4 shows the entities involve
simulation study. It consists of a stream of 104¥ks, a
gueue of an unordered task list, the scheduleraaset
of resources.

The task model is shown in Fig. 5. The averageévaxAu
execution time for a task is 0.50 sec. Each taskdm APortime

initial time and a termination time. Initial time ithe
earliest time for which the utility of a task isfihed
and termination time is the latest time for whidte t
utility is defined. That is, utility is defined ithe time
interval of [StartTime, TerminateTime] for eachkas
Beyond that, the utility is undefined.

During the lifetime of a task, it may request aore
more resources. In general, the requested timevaite
of holding resource maybe overlapped. A task sjgcif
the duration to hold the requested resource in ttoél
parameter. The duration to hold a resource is nahgdo
generated following the normal distribution as dég
in Table 2. The scheduler uses
information at run time to make scheduling decision

in our

Table 2: Simulation parameters

Parameter Range Description
iat Exponential (C_AVG/load) Task inter-arrival #m
Holdtime Normal (0.25,0.25) Duration for holding a

resource
Task maximum utility
Duration for clegn
time of a task
Percentage of abortable
tasks in the system

Normal (10,10)

Any random number that
is less than Holdtime
Abortability 95%

We refer to this aspect of a task as its Abortghilt is
assumed that 95% (i.e., Abortability) of the exedut
tasks are abortable in the system. For those tdwsits
can be aborted, aborting a task usually involves
necessary cleanup operating by both the system
software and the exception handlers in the apjdicat
We refer to the time consumed by this cleanup as
Aborttime.

the Holdtime

RESULTS

Table 2 summarized the details task settings

configured for the simulation model. The arrivahéis
of tasks into the system (i.e., IAT) are random chhi

The performances of UA scheduling algorithms are
measured by the metrics that relies on the apjicat

follows exponential distribution. Each task has itsspecifications. For UA scheduling domain, the Aectu
maximum utility that could possibly accrued by the Utility Ratio (or AUR) metric defined i has been
system from the task if it is completed within its used in many algorithis*! and can be considered as a

deadline. We refer this value as MaxAU.
If task has not completed its execution, it wileh
be aborted. However, some tasks cannot be aborted.

standard metric in this domain. AUR is defined las t
ratio of accrued aggregate utility to the maximum
possibly attained utility.

785

J. Computer Sci., 5 (11): 783-787, 2009

Abortability = 95%, NUM _resources = S Abortability = 5%, UM _resources =3

1M f-‘ 100 *?‘k

* e -
0 [N ke \\\ 90 [P
R o - w_
" - \;\\\. -
i T 80 -
0 = & .
/3\ B ‘\,__ e ~ éo/
& o = o 0
m e - 2%
: T
e 60
= e
50
= _ —&—PUAS —-@ — GUS ——& — NUAS |
—8— PUAS —- #-— OIS - & - NUAS o
4 02 04 06 08 1 12 1.4
02 04 08 08 1 12 14 Awerage load

Average load
Fig. 7: SR Vs average load
Fig. 6: AUR Vs average loads
Abortabdity = 55%, NI _resources = 3

. . . 45

In addition, we consider two other metrics to [—=—PUsS - % - GUS — & - US|
precisely examine the effectiveness of our proposed 4 =
algorithms. The Success Ratio (or SR) is the rafio =T
task successfully attained positive utility to theal = e
task executed in the system. The SR supports thdtre 30 P A
of AUR because it measures the exact number oftask & o o
that contributed to AUR. The Abortion Ratio (or AR) ;’ a8 e L
defined as the ratio of aborted tasks to the tofal <= - X -
executed tasks. The results presented are intetaded i 550, /f/*"
illustrate the characteristics of the proposed rilgms B I = =
towards variation of the load in the system. 10 [5——" '(__(_,.-f"

Figure 6 depicts the AUR result under an Js' it e
increasing load. The proposed PUAS algorithm
achieved the highest accrued utility for the enkirad 0
range. This is followed by the NUAS and GUS 02 04 06 08 1 12 14
algorithms. In lower loads, all algorithms perfodne Average load

better i.e., more than 90% of the tasks, accruiityub

the system. The gaps between these algorithms afdg. 8: AR Vs average load

relatively small and insignificant (i.e., 0.94-3%).

However, as the load increases, the AUR gap widethat the existing algorithm GUS produced high numbe
significantly. In highest load, almost 81% of utili of aborted task that we believed can be resurreicted
accrued in PUAS, 67.8% in NUAS and 59% in GUS.our proposed algorithms. Figure 8 verified the
These gaps exist because GUS in nature has mospeculation. It can be observed that the propossdiSP
aborted tasks compared to NUAS and PUAS. Since thand NUAS algorithms are able to reduce the number o
aborted tasks produced zero utility to the systemabortion compared to GUS algorithm. This justifies
consequently GUS produced more zero utility tabks t why higher utility can be accrued in the proposed

ultimately contributed to lowest accrued utility. PUAS and NUAS algorithm compared to GUS.
Figure 7 plots the task success ratio experieased
a function of the increasing loads. Figure 7 sufspthre DISCUSSION

AUR results in Fig. 6 because it measures the exact

number of tasks that has successfully contributed t The proposed PUAS algorithm achieved the best

AUR. performances with highest accrued utility, highest
In Fig. 8, we can see the abortion ratio resultthé success ratio and lowest abortion ratio. In genenal

system. As mentioned in the first section, pecsilate proposed algorithms PUAS and NUAS have

786

J. Computer Sci., 5 (11): 783-787, 2009

successfully reduced the number of aborted tasks if.

GUS that ultimately contributed to higher accrued
utility to the system.

CONCLUSION

In this study we proposed an efficient UA realéim 3.

scheduling algorithms called PUAS and NUAS that
considers task subjected to deadline expressedy usin
step TUFs. The proposed algorithms are compardd wit
the existing UA algorithm known as GIS Simulation
results reveal that PUAS outperform the NUAS and
GUS with highest accrued utility and lowest abartio
ratio making it more suitable and efficient in réiahe
application domain.

A number of extensions to this research can bd.

carried out and are given as follows:

* The algorithms can be deployed in network and
distributed environment. Flow control and routing
algorithms should be integrated into the research.
Thus, increasing the feasibility in actual
implementation of the algorithms

e The real implementation of PUAS and NUAS on
real-time POSIX-compliant operating system using
the meta-scheduling framework can also
demonstrates the effectiveness of these algorithms

REFERENCES

1. Wu, H., B. Ravindran, E.D. Jensen and P. Li/ 200
CPU scheduling for statistically-assured real-time
performance and improved energy efficiency.
Proceeding of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 8-10, IEEE
Xplore Press, USA,, pp: 110-115.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn
umber=1360490

787

Jensen, E.D., C.D. Locke and H. Tokuda, 1985. A
time driven scheduling model for real time
operating systems. Proceeding of the IEEE
Symposium on Real-Time System, Dec. 1985,
IEEE Xplore Press, USA., pp: 112-122.
http://www.real-time.org/docs/rtss85.pdf

Ravindran, B., E.D. Jensen and P. Li, 2005. On
recent advances in time/utility function real-time
scheduling and resource management. Proceeding
of the 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed
Computing, May 18-20, IEEE Xplore Press, USA.,
pp: 55-60.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumbe
r=01420952

Li, P., H. Wu, B. Ravindran and E.D. Jensen,&00
A utility accrual scheduling algorithm for real-tam
activities with mutual exclusion resource
constraints. IEEE Trans. Comput., 55: 454-469.
DOI: 10.1109/TC.2006.47

