Journal of Computer Science 5 (10): 717-724, 2009
ISSN 1549-3636
© 2009 Science Publications

Initial Hybrid Method for Analyzing Software Estima tion, Benchmarking
and Risk Assessment Using Design of Software

J. Frank Vijay and C. Manoharan
Department of Computer Science and Engineering,
SRM Valliammai Engineering College, Chennai, TaNaldu, India
VSA Group of Institutions, Salem, Tamil Nadu, India

Abstract: Problem statement: Estimation models in software engineering are usepredict some
important attributes of future entities such asalepment effort, software reliability and programme
productivity. Among these models, those estimatsuftware effort have motivated considerable
research in recent year8pproach: In this study we discussed an available work om éffort
estimation methods and also proposed a hybrid rdetbo effort estimation process. As an initial
approach to hybrid technology, we developed a gngpproach to SEE based on use case models:
The “use case point’s method”. This method is rt,nbut has not become popular although it is easy
to understand and implement. We therefore invetgtifjthis promising method, which was inspired by
function points analysigResults: Reliable estimates can be calculated by usingrmthod in a short
time with the aid of a spreadshe@bnclusion: We are planning to extend its applicability toireste

risk and benchmarking measures.

Key words: Effort estimation, effort refinement, function ptén use case points, risk assessment,
hybrid method

INTRODUCTION 100

Specialized product

The planning, monitoring and control of software 80
development projects require that effort and cdss gg:Customized
adequately estimated. However, some forty yeaes aft
the term “Software Engineering” was coiffé{ effort Commercial
estimation still remains a challenge for practiémiand 33 off-the-shelf
researchers alike. '_rherg is a large body of Iitasgat)n . 10 '”‘hﬁ‘“ lf3|0_‘T51 EmbeddelénTg_m‘ted
software effort estimation models and techniques in 0 =
which a discussion on the relationship between

software size and effort as a primary predictortesn Fig. 1: The application of software engineeringdtrds

104 Other

Number of answers
o
L]
1

included“?*. They conclude that the models, which are in very small enterpris88-2
being used by different groups and in different
domains, have still not gained universal acceptihce Use case Model can be used to predict the size of

As a role of software in the society becomes laeget the future software system at an early development
more important, it becomes necessary to develop gtage to estimate the effort in the early phases of
package which is used to estimate effort withimars software development; use case point method has bee
period. In order to achieve this goal, the entoftveare proposet®*®. Use case Point Method is influenced by
development processes should be managed by aRe Function Points Methods and is based on anatgo
effective modet®. So, our proposed model will be use case poifit?2

focusing on three basic parameters: (1) software We have been involved in the activity of
estimation, (2) benchmarking, (3) risk Assessiidnt developing a hybrid model to estimate the efforttie

So far, several models and techniques have beesarly phase of software engineering developHferit
proposed and develop&d'? and most of them include This study describes the method of introducingazse
“Software Size” as an important param8érFigure 1 points method to software projects for estimatifigre
shows the application of software engineeringThe study also describes the automatic classidinaf
principles and standards in medium sized orgamirati actors and use cases in the UCP model rather than

Corresponding Author: C. Manoharan, Principal/Director, VSA Group oftihgions, Salem, Tamil Nadu, India.
717

J. Computer <ci., 5 (10): 717-724, 2009

doing it manually. The result of this study will teken Related work: Until today, several researcHeé and

as a base for developing a hybrid method which béll case studies have been reported about the uspaase

used for bench marking and risk assessHent and effort estimation based on Use Case Mtdel
Smith proposed a method to estimate Line of coodle fr

Problem framework: Our understanding of the effort- yse case diagrdfh??. Arnold and Pedross reported the

estimation problem arises from the idea that anyyse Case Method can be used to estimate the sthe of

software project is the result of a set of busimgsals softward®. They also suggested that Use Case Point

that emerge from a desire to exploit a niche in theviethod should be used with other estimation metood
marketplace with a new software product. Take, forget the optimum result.

example, the development of an application seivar t

caters to on-demand software. The business goals @fmitations of function points: Function Point is a
having a robust, high-performance, secure sernat le measure of software size that logically measures th
to a set of architectural decisions whose goalois tfynctional terms and the measured size stays aunsta
realize specific quality-attribute requirements thie irrespective of the programming language and
system (e.g., using tri-modular redundancy to Batis environments uséd??. In Function Point, it is very
the availability requirements, a dynamic load-bela@ much essential to use the detailed information aitreu
mechanism to meet the performance requirementsiandseftware. Such detailed information will be avaitam

256 bit encryption scheme to satisfy the securitysoftware design specification. Function Point ngetri
requirements). Each architecture A that resulifeoset evaluation is difficult to estimate for software ialn

{Ai} of architectural decisions has a different edtcosts has short development tife?®. So, in reality

C{A} (Fig. 2). The choice of a particular set of estimation of software at the earlier phase of the
architectural decisions maps to system qualities ¢an development life cycle process will certainly reesic
be described in terms of a particular set ofrisk. To estimate the effort in the earlier phasehe

stimulus/response characteristics of the systerh {@i, development life cycle process, use case point adeth
Ai -> Qi. (For example, the choice of using coneutr has pbeen proposlé@_l

pipelines for servicing requests in this systendset a
predicted worst-case latency of 500 ms, given &ifipe MATERIALS AND METHODS
rate of server requests.) The “value” of any paldic
stimulus/response characteristic chosen is thenteve yse case modelThe first and the foremost step are to
that could be earned by the product in the mar&e®l calculate Use Case Point (UCP) from use case
OWing to that characteristic. We believe that thftvgare modeizo]_ The use case model main|y consists of two
architect should attempt to maximize the diﬁerencqjocumentS, System or sub System documents and use
between the value generated by the product aedsts ~ case documents contains the following descriptibn o
items: system name, risk factors, system-leveloase
A diagram,, architecture diagram, subsystem desonipti
Performance L .. .
Securite use case name, brief description, context diagram,
Availability preconditions, flow of events, post conditions,
subordinate use case diagrams, subordinate use, case
decisions Value activity diagram, view of participating classes,
O O @ D sequence diagrams, user interface, business rules,
Business Quality attributes special requirements and other artif&éts
goals From the above specified information we are going
to focus mainly on two parameters system-level use
case diagram and flow of events. System-level ase c
diagram includes one or more use case diagrams
showing all the use cases and actors in the s{étem
‘.-" Figure 3 shows an example of system level use case
diagram for “ATM systems”:

Modifiability

Architectural

Cost

Fig. 2: Business goals drive the architectural sleas * A session is started when a customer inserts an

{Ai}, which determine the quality attributes ATM card into the card reader slot of the machine
{Qi}.Value (Va) depends on Qi and Cost(C) « The ATM pulls the card into the machine and
depends on Ai reads it

718

J. Computer <ci., 5 (10): 717-724, 2009

ATM system

Swstem start up

%4

Operation

Customer

Fig. 3: Use case diagram

» If the reader cannot read the card due to impropeFable 1: Counting actors weight

insertion or damaged stripe, the card is ejectad, aType Description Factor

error screen is displayed and the screen is abortedSimple Program interface _ 1
« The customer is asked to enter his/her PIN and i§/¢"29¢ Interactive, or protocol driver 2

then allowed to perform one or more transactions; omplex Graphical user interface 3

choosing from a menu of possible types of

transaction in each case Table 2: Transaction based weighting factors

Type Description Factor
Counting use case pointintuitively, UCP is measured Simple 3 or fewer transactions 5
by counting the number of actors and transactiongVverage 4 to 7 transactions 10
included in the flow of events with some weight. A-SomPleX More than 7 transactions 15
transaction is an event that occurs between am antb
the target system, the event being performed dytire Then, the number of each use case type is counted
not at all. But, in our method the effort estimatis in the target software and then each number is
calculated by applying the following procedure. multiplied by a weighting factor shown in Table 2.
Finally, use case weight is calculated by adding

Procedure 1: these values together.

Counting actors weight: The actors in the use case are
categorized as simple, average or complex. A simplegcedure 3:
actor represents another system with a defined ARI. cgjculating unadjusted use case points:lt is
average actor is either another system that interaccajculated by adding the total weight for actorstte
through a protocol such as TCP/IP or it is a persoRtg for use cases (Fig. 4).
interacting through a text based interface. A caxpl
actor is a person interacting through a GUI intefa

The number of each actor type that the targe
software includes is calculated and then each nuimbe
multiplied by a weighting factor shown in Table 1.
Finally, actor's weight is calculated by adding gho
values together.

g’\/rocedure 4:

eighting technical and environmental factors:The
UUCP are adjusted based on the values assigned to a
number of technical and environmental factors shown
in Table 3 and 4.

Procedure 2: Method: Each factor is assigned a value between 0 and
Counting use case weightsEach use case should be 5 depending on its assumed influence on the profect
categorized into simple, average or complex based orating of 0 means the factor is irrelevant for thisject

the number of transactions including the alterrativ and 5 means it is essential.

paths. A simple use case has 3 or fewer transagtiom

average use case has 4-7 transactions and a compléalculation of TCF: It is calculated by multiplying the
use case has more than 7 transactions. value of each factor (IT.3) in Table 3 by its weight

719

J. Computer <ci., 5 (10): 717-724, 2009

and then adding all these numbers to get the slledca An automated tool for estimating use case point:

the T factor. Finally, the following formula is dpgul:

TCF = 0.6 + (0.01 * T Factor) 1)

Calculation of environmental factor: It is calculated
accordingly by multiplying the value of each fac{6x.

Fg) in Table 4 by its weight and adding all the produ

to get the sum called the E factor. Finally, thiofeing
formula is applied:

EF = 1.4 *(-0.03 * E Factor) (2)

Procedure 5:

Calculating UCP: Use case point (adjusted)
calculated by:

UCP = UUCP * TCF * EF 3)

Procedure 6:

Overview: In order to effectively introduce use case
point method to the software development, we have
decided to create a use case point measurement tool
There were several existing tools available whish i
based on use case model but in all these existougls,

Table 3: Calculation of TCF

Estimating effort: By multiplying the specific value 1,pe 4: calculation of environmental factor

(man-hours) by the UCP, the effort can be easilyEactor

calculated.

Research method:Based on the proposed method, weFs
have planned to develop a framewdiks an automated

tool under the name (Hybrid tool). The input is ®IIX

file. The tool is implemented in JAVA and Xerces 2 F

Java parser is used to analyze the modé&i%ile

| Actor | | Usecase |

Factor Description Weight
T, Distributed system 3
T Response or throughput performance objectives 4
Ts End-user efficiency (online) 5
T4 Complex internal processing 2
Ts Code must be readable 3
Ts Easy to install 5
Tz Easy to use 5
Ts Portable 2
To Easy to change 5
T1o Concurrent 1
T Includes special security features 4
T2 Provides direct access for third parties 2
Tz User training facilities required 2
Description Weight
Fr Familiar with the rational unified process 4
F Application experience 3
Object- oriented experience 2
Fs Lead analyst capability 3
5 Motivation 5
Fs Stable requirements 4
Part -time workers 3
Fs Difficult programming language 3
Swstem
h J
Technicalproperties Project

Il

Calculated
from

Use casetransactions

/

Operation

Use case weight

Technical complexity factor ‘

7

Unadjusteduse casze points

Size

Other environmental factors

Team properties

Environmental

Hours per UCP Supplementary
¥ ¢ l

N Size * EF* H* SE]

N

'

I

Fig. 5: Calculating use case point
720

J. Computer <ci., 5 (10): 717-724, 2009

| Uszcassinformation {actor, nsa cass, flow
avants, stc)

l

Un adjustsd uss casz points

A2
o
GUI

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@
________________ -

Tachnical factors |1—
il
AN
Usar Factor caleulator +
k4
UCP caleulator |

v
| Caleulation rzsult |

Expeariznce datshazs

Diata
Fig. 6: Automated tool

it is necessary to judge the complexity of actord ase Step 1:

cases by manually (Fig. 5). The judgment is thetmosClassification based on actor's nameAt the initial
important part in software cost estimation so weeha stage of the classification we are going to deteemi
decided to create an automated tool. So, in order twhether the actor is a person or an external system
obtain the entire procedure automatically, it icatory ~ Pased on the name of the actor. That is, beforehaed

to describe a set of rules to classify the weightaictor ~ Prepare the list of keywords which can be inclutted
and use case. the name of the software system.

Also, it is necessary to write the Use-Case Model FOr example the keywords “system” and “server”

in machine-readable format. So, we assume thaigee /€ used in the system’s name.
case model is written in XMl (XML) Metadata
InterchangB®. The reason for choosing this type of file
format is because most case tools for writing UML
diagrams support to export them as XMl fitds

Keywords for step 1 (KY):
System, server, application, tool (4)

We are planning to initially start the automatedit
with a minimal set of keywords. As on later staghs,
Rules for weighting actors:The weight for each action new keywords will be updated automatically and lsan
is determined by the interface between actor aed thysed for later projects.

target software. But, the interface information|wibt

be available in the actor description. Only the @ash Step 2:

the actor will be available. So, it is very muclsesstial Classification based on keywords included in use
to create a protocol which determines the compledfit case:Here, we are going to classify based upon on the
actor. flow of events to which the actor is relevant. As a

721

J. Computer <ci., 5 (10): 717-724, 2009

initial stage, we are planning to develop a threeo$ So, based on the above said guidelines, we propose
keywords to each complexity factor of actor andhthe the way to analyze the events using the morphadbgic
we will try to extract all words included in theo¥ of analysis and syntactic analysis. Through theseyses)|
events and then match them with each keyword in theve can get the information of morpheme from the
lists. Finally, the actor's weight is assigned && t statement and dependency relation between words in
complexity for the keyword list that is most fittenlthe the statement. We conduct the morphological amalysi

words in the flow of events: for all statements and get the information of thbject
word and predicate word for each statement.
Keywords for average actor (system) @3- Then, we apply the following rules:
Message, mail, send (5)
Rule U-1: We regard each set of the subject
Keywords for average actor (person) ¢g): and predicate word as a candidate of a transac{it)
Command, text, I/P, CUI (6)
Rule U-2: Among the candidates, we identify the
Keywords for complex actor (KLy): one that related to actor’s operation and system 1) (1
Press, push, select, show, GUI, window (7) response as a transaction
Keywords for simple actor (KLy): For each use case, we have to apply the above said
Request, send, inform (8) rules and based on these rules, we get the nuniber o
transactions. Then, based on the number of transact
Step 3: we determine the complexity of each use-case.
Classification based on experience datéSuppose, if
we are unable to determine the actor’s weightegi 8t RESULTS

we determine it based on the experience data. The
experience data includes the information aboutugee In order to evaluate the usefulness of the autadnate
case model and the use case point developed jpaite tool, we applied it to actual use case models dpezl
software projects. in software companies. We collected use case models
from five software projects where middle-size
Rules for weighting use casesthe complexity of use application programs were developéd®. All use case
case is determined by the number of transactions. Smodels were developed on a UML Design tool
we have decided to focus on the flow of eventshin t “Describe®™. In the evaluation, we focused in the

transaction is to count the number of events. Thege actors and use cases. So, we compared the meastireme

results calculated by our tool and ones calculatea

no standard procedures or protocols to write the tf = i X
a§peC|aI|st of use case point counting.

events and it is also quite possible that sever
transactions are described in one event. So, beaafus
this limitation several guidelines to write eveimsuse
case model have been propd¥éd There are ten
guidelines to write a successful scenario. Amoranth
we focus on the following two guidelines:

DISCUSSION

Here, we discuss the following points: validitydan
the limitation of our results:

Description of events: The use case models that we
have used in the model were constructed by the
engineers who have some experience of writing use
)) case models. So, actually, events descriptionssef u
Jacobson suggests the following four pieces Ofagse were mostly satisfied with the guidelines dieed

compound interactions should be described: in%3. S0, in order to confirm the applicability of the

. automated tool we have to apply it to more use case
* The primary actor sends request and data to thgodels developed by many engineers who have various

(G1) = Use a simple grammar
(Gy) = Include a reasonable set of actions (9)

system _ experience in the actual projects. Also, it wouddvery
* The system validates the request and the data much essential to prepare formal guidelines how to
» The system alters its internal state write use case models to effectively use the autedna

* The system responds to the actor with the result tool in companies.
722

J. Computer <ci., 5 (10): 717-724, 2009

Language: The input use case models to the automate@®.
tool must be written in English.

CONCLUSION

10.

This study has proposed an automated Hybrid tool
which calculates Use Case Points from Use Case Islode
in XMI filesB%. We will use the effort estimation based

on this Hybrid Tool in the hybrid technology propds 11.

for risk assessment and benchmarking. We will also
extend this technique for developing an automabed t

for assessing risk and benchmarking. 12.

REFERENCES

13.

1. Albrecht, AJ. and J.E. Gaffney, 1983. Software
function, source lines of codes and development

effort prediction: A software science validation. 14.

IEEE Trans. Software Eng., SE-9: 639-648.
http://portal.acm.org/citation.cfm?id=1313875

2. Alistair Cockburn, 2000. Writing effective use
cases. Addison-Wesley Longman Publishing Co.,

Inc. Boston, MA., USA., ISBN: 10: 0201702258, 15.

pp: 304.
3. Boehm, B.W., D.J. Reifer, E. Horowitz, C. Abts,

A.W. Brown, S. Chulani and D. Reifetal., 2000. 16.

Software Cost Estimation with Cocomo Il. Prentice
Hall, New Jersey, ISBN: 10: 0130266922, pp: 544.

4. Boehm, B.W., 1981. Software Engineering
Economics. Prentice-Hall, USA., ISBN: 13:
9780138221225, pp: 767.

5. T.E. Hastings, A.S.M. Sajeev, 2001. A vector-
based approach to software size measurement and
effort estimation. IEEE Trans. Software Eng.,
27: 337-350. DOI: 10.1109/32.917523

6. Boehm, B., B. Clark, E. Horowitz, C. Westland,

R. Madachy and R. Selby, 1995. Cost models forg.

future software life cycle processes. Ann. Software
Eng., 1: 57-94. DOI: 10.1007/BF02249046

7. Anda, B., H. Dreiem, D.I.K. Sjoberg and M. Jorgemse
2001. Estimating Software development effort
based on use cases-experiences from industry.
Proceedings of the 4th International Conference on g
the Unified Modeling Language, Modeling
Languages, Concepts and Tools, Oct. 1-5,
Springer-Verlag, London, UK., pp: 487-502.
http://portal.acm.org/citation.cfm?id=719453

8. Chen, Y. and B. Boehm, 2004. An empirical study
of eservices product UML sizing metrics.

Proceeding of the 2004 International Symposium0.

on Empirical Software Engineering, Aug. 19-20,
Redondo Beach, California, pp: 199-206. DOI:
10.1109/ISESE.2004.1334907

723

Common Software Measurement International
Consortium, 2000. Advancing software functional
size measurement. COSMIC-FFP Version 2.0.
http://www.Cosmicon.com/

Symons, C.R., 1991. Software Sizing and
Estimating: Mk Il Function Point Analysis. John
Wiley and Sons, USA., ISBN: 13: 978-
0471929857, pp: 218.

Symons, C.R., 1988. Function point analysis:
Difficulties and improvements. IEEE Trans.
Software Eng., 14: 2-11. DOI: 10.1109/32.4618
Walston, C.E. and C.P. Felix, 1977. A Method of
program measurement and estimation. IBM Sys. J.,
16: 54-73.

Schneider, G. and J.P. Winters, 2001. Applying
Use Cases. 2nd Edn., Addison Wesley, ISBN: 13:
978-0201708530, pp: 240.

Jorgensen, M. and K. Molokken-Ostvold, 2004.
Impact of respondent role, information collection
approach and data analysis method. IEEE Trans.
Software Eng., 30: 993-1007. DOI:
10.1109/TSE.2004.103

International Function Point Users Group, 2008.
Function point counting practices manual.
http://www.ifpug.org/publications/manual.htm
Asundi, J., 2005. The need for effort estinmatio
models for open source software projects.
Proceedings of the 5th Workshop on Open Source
Software Engineering, May 17, ACM Press, St.
Louis, Missouri, USA., pp: 1-3.
http://portal.acm.org/citation.cfm?id=1083260

17. Jeffery, R., M. Ruhe and |. Wieczorek, 2000. A

comparative study of two software development
cost modeling techniques using multi-
organizational and company-specific data. Inform.
Software Technol.,, 42: 1009-1016. DOI:
10.1016/S0950-5849(00)00153-1

Jorgensen, M. and K. Molokken-Ostvold, 2004.
Reasons for software effort estimation error: Of
respondent role, information collection approach
and data analysis method. IEEE Trans. Software
Eng., 30: 993-1007.
http://portal.acm.org/citation.cfm?id=1042423

. Jargensen, M. and T.M. Gruschke, 2005. Indlstri

use of formal software cost estimation models:
Expert estimation in disguise?. Proceeding of the
Em Assessment in Software Engineering, Apr. 11-
13, Keele, United Kingdom, pp: 1-7.
http://simula.no/research/engineering/publications/
Jorgensen.2005.1/simula_pdf_file

Smith, J., 1999. The estimation of effort based
use cases.
ftp://ftp.software.ibm.com/software/rational/wel'w
itepapers/2003/finalTP171.pdf

21

22.

23.

24.

25.

26.

27.

J. Computer <ci., 5 (10): 717-724, 2009

. Aggarwal, K.K., Y. Singh, P. Chandra and M.iPur 28.
2005. An expert committee model to estimate
lines of code. ACM SIGSOFT Software Eng. Notes,
30: 1-4.
http://portal.acm.org/citation.cfm?id=1095439

Rao, K.K., S. Nagaraj, J. Ahuja, G. Apparao, J.Riiér
and G.S.V.P. Raju, 2008. Measuring the function
points from the points of relationships of UML. 30.
Proceeding of the International Conference on
Computer and Electrical Engineering, Dec. 20-22,
IEEE Xplore Press, USA., pp: 748-752. 31.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnu
ber=4741083

Kitchenham, B. and E. Mendes, 2004. Software
productivity measurement using multiple size 32.
measures. IEEE Trans. Software Eng., 30: 1023-1035.
http://ieeexplore.ieee.org/search/wrapper.jsp?arnu
mber=1377195

Briand, L.C., K.EI Emam and F. Bomarius, 1998.
COBRA: A hybrid method for software cost 33.
estimation, benchmarking and risk assessment.
Proceedings of the 20th International Conference
on Software Engineering, Apr. 19-25, IEEE Xplore
Press, USA, pp: 390-399. DOl:
10.1109/ICSE.1998.671392

Al-Hajri, M.A., A.A.A. Ghani, M.S. Sulaiman and 34.
M.H. Selamat, 2005. Modification of standard
function point complexity weights system. J. Syst.
Software, 74: 195-206.
http://portal.acm.org/citation.cfm?id=1045934

Arnold, M. and P. Pedross, 1998. Software size5.
measurement and productivity rating in a large
scale software development department.
Proceedings of the 20th international conference on
Software engineeringpril 19-25, IEEE Computer
Society, Washington, DC., USA., pp: 490-493.
http://portal.acm.org/citation.cfm?id=302163.302221
Jorgensen, M. and M. Shepperd, 2007. A
syestematic review of software development cost
estimation studies. Software Eng. IEEE Trans.,
33: 33-53. DOI: 10.1109/TSE.2007.3

29.

724

Naur, P. and B. Randell, 1968. The NATO
Software Engineering, Conference Report.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
Mittas, N. and L. Angelis, 2008. Comparing cost
prediction models by resampling techniques. J.
Sys. Software, 81: 616-632.
http://portal.acm.org/citation.cfm?id=1353071
Object Management Group (OMG), 2005. XML
Metadata Interchange (XMI) specification version
2.0. http://dret.net/biblio/reference/xmi20

Sentas, P., L. Angelis, I. Stamelos and G.igler
2005. Software productivity and effort prediction
with ordinal regression. Inform. Software Technol.,
47:17-29. DOI: 10.1016/).infsof.2004.05.001
Dekkers, T., Benchmarking is an essential obntr
mechanism for management. RPM-AEMES, 2007,

pp. 99-103, http://pi.informatik.uni-
siegen.de/stt/25_4/09 Konferenzberichte/Dumke_
Abran.pdf.

Basili, V.R. and K. Freburger, 1981.

Programming measurement and estimation in the

software engineering laboratory. J. Syst.
Software, 2: 47-57.
https://lwww.cs.umd.edu/~basili/publications/journ
als/J12.pdf

Xiaa, W., L.F. Capretz, D. Ho and F. Ahmed,
2008. A new calibration for function point
complexity weights. Inform. Software Technol.,
50: 670-683.
http://portal.acm.org/citation.cfm?id=1365282
Embarcadero Technologies, Inc. All products.
http://www.embarcadero.com/products

