
Journal of Computer Science 5 (10): 717-724, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: C. Manoharan, Principal/Director, VSA Group of Institutions, Salem, Tamil Nadu, India.
717

Initial Hybrid Method for Analyzing Software Estima tion, Benchmarking

and Risk Assessment Using Design of Software

J. Frank Vijay and C. Manoharan
Department of Computer Science and Engineering,

SRM Valliammai Engineering College, Chennai, Tamil Nadu, India
VSA Group of Institutions, Salem, Tamil Nadu, India

Abstract: Problem statement: Estimation models in software engineering are used to predict some
important attributes of future entities such as development effort, software reliability and programmers
productivity. Among these models, those estimating software effort have motivated considerable
research in recent years. Approach: In this study we discussed an available work on the effort
estimation methods and also proposed a hybrid method for effort estimation process. As an initial
approach to hybrid technology, we developed a simple approach to SEE based on use case models:
The “use case point’s method”. This method is not new, but has not become popular although it is easy
to understand and implement. We therefore investigated this promising method, which was inspired by
function points analysis. Results: Reliable estimates can be calculated by using our method in a short
time with the aid of a spreadsheet. Conclusion: We are planning to extend its applicability to estimate
risk and benchmarking measures.

Key words: Effort estimation, effort refinement, function points, use case points, risk assessment,

hybrid method

INTRODUCTION

 The planning, monitoring and control of software
development projects require that effort and costs be
adequately estimated. However, some forty years after
the term “Software Engineering” was coined[27], effort
estimation still remains a challenge for practitioners and
researchers alike. There is a large body of literature on
software effort estimation models and techniques in
which a discussion on the relationship between
software size and effort as a primary predictor has been
included[1,2,4]. They conclude that the models, which are
being used by different groups and in different
domains, have still not gained universal acceptance[19].
As a role of software in the society becomes larger and
more important, it becomes necessary to develop a
package which is used to estimate effort within a short
period. In order to achieve this goal, the entire software
development processes should be managed by an
effective model[16]. So, our proposed model will be
focusing on three basic parameters: (1) software
estimation, (2) benchmarking, (3) risk Assessment[32].
So far, several models and techniques have been
proposed and developed[6,9,12] and most of them include
“Software Size” as an important parameter[23]. Figure 1
shows the application of software engineering
principles and standards in medium sized organizations.

Fig. 1: The application of software engineering standards

in very small enterprises[6,9,12]

 Use case Model can be used to predict the size of
the future software system at an early development
stage to estimate the effort in the early phases of
software development; use case point method has been
proposed[13,20]. Use case Point Method is influenced by
the Function Points Methods and is based on analogous
use case point[11,22].
 We have been involved in the activity of
developing a hybrid model to estimate the effort in the
early phase of software engineering development[20,24].
This study describes the method of introducing use case
points method to software projects for estimating effort.
The study also describes the automatic classification of
actors and use cases in the UCP model rather than

J. Computer Sci., 5 (10): 717-724, 2009

718

doing it manually. The result of this study will be taken
as a base for developing a hybrid method which will be
used for bench marking and risk assessment[32].

Problem framework: Our understanding of the effort-
estimation problem arises from the idea that any
software project is the result of a set of business goals
that emerge from a desire to exploit a niche in the
marketplace with a new software product. Take, for
example, the development of an application server that
caters to on-demand software. The business goals of
having a robust, high-performance, secure server lead
to a set of architectural decisions whose goal is to
realize specific quality-attribute requirements of the
system (e.g., using tri-modular redundancy to satisfy
the availability requirements, a dynamic load-balancing
mechanism to meet the performance requirements and a
256 bit encryption scheme to satisfy the security
requirements). Each architecture A that results from a set
{Ai} of architectural decisions has a different set of costs
C{Ai} (Fig. 2). The choice of a particular set of
architectural decisions maps to system qualities that can
be described in terms of a particular set of
stimulus/response characteristics of the system {Qi}, i.e.,
Ai -> Qi. (For example, the choice of using concurrent
pipelines for servicing requests in this system leads to a
predicted worst-case latency of 500 ms, given a specific
rate of server requests.) The “value” of any particular
stimulus/response characteristic chosen is the revenue
that could be earned by the product in the marketplace
owing to that characteristic. We believe that the software
architect should attempt to maximize the difference
between the value generated by the product and its cost.

Fig. 2: Business goals drive the architectural decisions

{Ai}, which determine the quality attributes
{Qi}.Value (Va) depends on Qi and Cost(C)
depends on Ai

Related work: Until today, several researches[7,8] and
case studies have been reported about the use case point
and effort estimation based on Use Case Model[20].
Smith proposed a method to estimate Line of code from
use case diagram[21,22]. Arnold and Pedross reported the
Use Case Method can be used to estimate the size of the
software[26]. They also suggested that Use Case Point
Method should be used with other estimation method to
get the optimum result.

Limitations of function points: Function Point is a
measure of software size that logically measures the
functional terms and the measured size stays constant
irrespective of the programming language and
environments used[15,22]. In Function Point, it is very
much essential to use the detailed information about the
software. Such detailed information will be available in
software design specification. Function Point metric
evaluation is difficult to estimate for software which
has short development time[11,25]. So, in reality
estimation of software at the earlier phase of the
development life cycle process will certainly reduces
risk. To estimate the effort in the earlier phase of the
development life cycle process, use case point method
has been proposed[20].

MATERIALS AND METHODS

Use case model: The first and the foremost step are to
calculate Use Case Point (UCP) from use case
model[20]. The use case model mainly consists of two
documents, system or sub system documents and use
case documents contains the following description of
items: system name, risk factors, system-level use case
diagram,, architecture diagram, subsystem descriptions,
use case name, brief description, context diagram,
preconditions, flow of events, post conditions,
subordinate use case diagrams, subordinate use cases,
activity diagram, view of participating classes,
sequence diagrams, user interface, business rules,
special requirements and other artifacts[14].
 From the above specified information we are going
to focus mainly on two parameters system-level use
case diagram and flow of events. System-level use case
diagram includes one or more use case diagrams
showing all the use cases and actors in the system[14].
Figure 3 shows an example of system level use case
diagram for “ATM systems”:

• A session is started when a customer inserts an

ATM card into the card reader slot of the machine
• The ATM pulls the card into the machine and

reads it

J. Computer Sci., 5 (10): 717-724, 2009

719

Fig. 3: Use case diagram

• If the reader cannot read the card due to improper

insertion or damaged stripe, the card is ejected, an
error screen is displayed and the screen is aborted

• The customer is asked to enter his/her PIN and is
then allowed to perform one or more transactions,
choosing from a menu of possible types of
transaction in each case

Counting use case point: Intuitively, UCP is measured
by counting the number of actors and transactions
included in the flow of events with some weight. A
transaction is an event that occurs between an actor and
the target system, the event being performed entirely or
not at all. But, in our method the effort estimation is
calculated by applying the following procedure.

Procedure 1:
Counting actors weight: The actors in the use case are
categorized as simple, average or complex. A simple
actor represents another system with a defined API. An
average actor is either another system that interacts
through a protocol such as TCP/IP or it is a person
interacting through a text based interface. A complex
actor is a person interacting through a GUI interface.
 The number of each actor type that the target
software includes is calculated and then each number is
multiplied by a weighting factor shown in Table 1.
Finally, actor’s weight is calculated by adding those
values together.

Procedure 2:
Counting use case weights: Each use case should be
categorized into simple, average or complex based on
the number of transactions including the alternative
paths. A simple use case has 3 or fewer transactions, an
average use case has 4-7 transactions and a complex
use case has more than 7 transactions.

Table 1: Counting actors weight
Type Description Factor
Simple Program interface 1
Average Interactive, or protocol driver 2
Complex Graphical user interface 3

Table 2: Transaction based weighting factors
Type Description Factor
Simple 3 or fewer transactions 5
Average 4 to 7 transactions 10
Complex More than 7 transactions 15

 Then, the number of each use case type is counted
in the target software and then each number is
multiplied by a weighting factor shown in Table 2.
 Finally, use case weight is calculated by adding
these values together.

Procedure 3:
Calculating unadjusted use case points: It is
calculated by adding the total weight for actors to the
total for use cases (Fig. 4).

Procedure 4:
Weighting technical and environmental factors: The
UUCP are adjusted based on the values assigned to a
number of technical and environmental factors shown
in Table 3 and 4.

Method: Each factor is assigned a value between 0 and
5 depending on its assumed influence on the project. A
rating of 0 means the factor is irrelevant for this project
and 5 means it is essential.

Calculation of TCF: It is calculated by multiplying the
value of each factor (T1-T13) in Table 3 by its weight

J. Computer Sci., 5 (10): 717-724, 2009

720

and then adding all these numbers to get the sum called
the T factor. Finally, the following formula is applied:

TCF = 0.6 + (0.01 * T Factor) (1)

Calculation of environmental factor: It is calculated
accordingly by multiplying the value of each factor (F1-

F8) in Table 4 by its weight and adding all the products
to get the sum called the E factor. Finally, the following
formula is applied:

EF = 1.4 * (-0.03 * E Factor) (2)

Procedure 5:
Calculating UCP: Use case point (adjusted) is
calculated by:

UCP = UUCP * TCF * EF (3)

Procedure 6:
Estimating effort: By multiplying the specific value
(man-hours) by the UCP, the effort can be easily
calculated.

Research method: Based on the proposed method, we
have planned to develop a framework[3] as an automated
tool under the name (Hybrid tool). The input is a XMI
file. The tool is implemented in JAVA and Xerces 2
Java parser is used to analyze the model file[30].

An automated tool for estimating use case point:
Overview: In order to effectively introduce use case
point method to the software development, we have
decided to create a use case point measurement tool.
There were several existing tools available which is
based on use case model but in all these existing models,

Table 3: Calculation of TCF
Factor Description Weight
T1 Distributed system 3
T2 Response or throughput performance objectives 4
T3 End-user efficiency (online) 5
T4 Complex internal processing 2
T5 Code must be readable 3
T6 Easy to install 5
T7 Easy to use 5
T8 Portable 2
T9 Easy to change 5
T10 Concurrent 1
T11 Includes special security features 4
T12 Provides direct access for third parties 2
T13 User training facilities required 2

Table 4: Calculation of environmental factor
Factor Description Weight
F1 Familiar with the rational unified process 4
F2 Application experience 3
F3 Object- oriented experience 2
F4 Lead analyst capability 3
F5 Motivation 5
F6 Stable requirements 4
F7 Part -time workers 3
F8 Difficult programming language 3

Fig. 5: Calculating use case point

J. Computer Sci., 5 (10): 717-724, 2009

721

Fig. 6: Automated tool

it is necessary to judge the complexity of actors and use
cases by manually (Fig. 5). The judgment is the most
important part in software cost estimation so we have
decided to create an automated tool. So, in order to
obtain the entire procedure automatically, it is mandatory
to describe a set of rules to classify the weight for actor
and use case.
 Also, it is necessary to write the Use-Case Model
in machine-readable format. So, we assume that the use
case model is written in XMI (XML) Metadata
Interchange[30]. The reason for choosing this type of file
format is because most case tools for writing UML
diagrams support to export them as XMI files[30].

Rules for weighting actors: The weight for each action
is determined by the interface between actor and the
target software. But, the interface information will not
be available in the actor description. Only the name of
the actor will be available. So, it is very much essential
to create a protocol which determines the complexity of
actor.

Step 1:
Classification based on actor’s name: At the initial
stage of the classification we are going to determine
whether the actor is a person or an external system
based on the name of the actor. That is, beforehand, we
prepare the list of keywords which can be included in
the name of the software system.
 For example the keywords “system” and “server”
are used in the system’s name.

Keywords for step 1 (KLa):
System, server, application, tool (4)

 We are planning to initially start the automated tool
with a minimal set of keywords. As on later stages, the
new keywords will be updated automatically and can be
used for later projects.

Step 2:
Classification based on keywords included in use
case: Here, we are going to classify based upon on the
flow of events to which the actor is relevant. As an

J. Computer Sci., 5 (10): 717-724, 2009

722

initial stage, we are planning to develop a three set of
keywords to each complexity factor of actor and then,
we will try to extract all words included in the flow of
events and then match them with each keyword in the
lists. Finally, the actor’s weight is assigned as the
complexity for the keyword list that is most fitted to the
words in the flow of events:

Keywords for average actor (system) (KLaas):
Message, mail, send (5)

Keywords for average actor (person) (KLaap):
Command, text, I/P, CUI (6)

Keywords for complex actor (KL ca):
Press, push, select, show, GUI, window (7)

Keywords for simple actor (KL sa):
Request, send, inform (8)

Step 3:
Classification based on experience data: Suppose, if
we are unable to determine the actor’s weight at step 2,
we determine it based on the experience data. The
experience data includes the information about the use
case model and the use case point developed in the past
software projects.

Rules for weighting use cases: The complexity of use
case is determined by the number of transactions. So,
we have decided to focus on the flow of events in the
use case model. The simplest way to count the
transaction is to count the number of events. There are
no standard procedures or protocols to write the flow of
events and it is also quite possible that several
transactions are described in one event. So, because of
this limitation several guidelines to write events in use
case model have been proposed[14]. There are ten
guidelines to write a successful scenario. Among them,
we focus on the following two guidelines:

(G1) � Use a simple grammar
(G2) � Include a reasonable set of actions (9)

 Jacobson suggests the following four pieces of
compound interactions should be described:

• The primary actor sends request and data to the

system
• The system validates the request and the data
• The system alters its internal state
• The system responds to the actor with the result

 So, based on the above said guidelines, we propose
the way to analyze the events using the morphological
analysis and syntactic analysis. Through these analyses,
we can get the information of morpheme from the
statement and dependency relation between words in
the statement. We conduct the morphological analysis
for all statements and get the information of the subject
word and predicate word for each statement.
 Then, we apply the following rules:

Rule U-1: We regard each set of the subject
and predicate word as a candidate of a transaction (10)

Rule U-2: Among the candidates, we identify the
one that related to actor’s operation and system (11)
response as a transaction

 For each use case, we have to apply the above said
rules and based on these rules, we get the number of
transactions. Then, based on the number of transactions
we determine the complexity of each use-case.

RESULTS

In order to evaluate the usefulness of the automated
tool, we applied it to actual use case models developed
in software companies. We collected use case models
from five software projects where middle-size
application programs were developed[14,18]. All use case
models were developed on a UML Design tool
“Describe”[35]. In the evaluation, we focused in the
results of the automatic complexity classification of
actors and use cases. So, we compared the measurement
results calculated by our tool and ones calculated by a
specialist of use case point counting.

DISCUSSION

 Here, we discuss the following points: validity and
the limitation of our results:

Description of events: The use case models that we
have used in the model were constructed by the
engineers who have some experience of writing use
case models. So, actually, events descriptions of use
case were mostly satisfied with the guidelines described
in[2,13]. So, in order to confirm the applicability of the
automated tool we have to apply it to more use case
models developed by many engineers who have various
experience in the actual projects. Also, it would be very
much essential to prepare formal guidelines how to
write use case models to effectively use the automated
tool in companies.

J. Computer Sci., 5 (10): 717-724, 2009

723

Language: The input use case models to the automated
tool must be written in English.

CONCLUSION

 This study has proposed an automated Hybrid tool
which calculates Use Case Points from Use Case Models
in XMI files[30]. We will use the effort estimation based
on this Hybrid Tool in the hybrid technology proposed
for risk assessment and benchmarking. We will also
extend this technique for developing an automated tool
for assessing risk and benchmarking.

REFERENCES

1. Albrecht, A.J. and J.E. Gaffney, 1983. Software

function, source lines of codes and development
effort prediction: A software science validation.
IEEE Trans. Software Eng., SE-9: 639-648.
http://portal.acm.org/citation.cfm?id=1313875

2. Alistair Cockburn, 2000. Writing effective use
cases. Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA., USA., ISBN: 10: 0201702258,
pp: 304.

3. Boehm, B.W., D.J. Reifer, E. Horowitz, C. Abts,
A.W. Brown, S. Chulani and D. Reifer et al., 2000.
Software Cost Estimation with Cocomo II. Prentice
Hall, New Jersey, ISBN: 10: 0130266922, pp: 544.

4. Boehm, B.W., 1981. Software Engineering
Economics. Prentice-Hall, USA., ISBN: 13:
9780138221225, pp: 767.

5. T.E. Hastings, A.S.M. Sajeev, 2001. A vector-
based approach to software size measurement and
effort estimation. IEEE Trans. Software Eng.,
27: 337-350. DOI: 10.1109/32.917523

6. Boehm, B., B. Clark, E. Horowitz, C. Westland,
R. Madachy and R. Selby, 1995. Cost models for
future software life cycle processes. Ann. Software
Eng., 1: 57-94. DOI: 10.1007/BF02249046

7. Anda, B., H. Dreiem, D.I.K. Sjoberg and M. Jorgensen,
2001. Estimating Software development effort
based on use cases-experiences from industry.
Proceedings of the 4th International Conference on
the Unified Modeling Language, Modeling
Languages, Concepts and Tools, Oct. 1-5,
Springer-Verlag, London, UK., pp: 487-502.
http://portal.acm.org/citation.cfm?id=719453

8. Chen, Y. and B. Boehm, 2004. An empirical study
of eservices product UML sizing metrics.
Proceeding of the 2004 International Symposium
on Empirical Software Engineering, Aug. 19-20,
Redondo Beach, California, pp: 199-206. DOI:
10.1109/ISESE.2004.1334907

9. Common Software Measurement International
Consortium, 2000. Advancing software functional
size measurement. COSMIC-FFP Version 2.0.
http://www.Cosmicon.com/

10. Symons, C.R., 1991. Software Sizing and
Estimating: Mk II Function Point Analysis. John
Wiley and Sons, USA., ISBN: 13: 978-
0471929857, pp: 218.

11. Symons, C.R., 1988. Function point analysis:
Difficulties and improvements. IEEE Trans.
Software Eng., 14: 2-11. DOI: 10.1109/32.4618

12. Walston, C.E. and C.P. Felix, 1977. A Method of
program measurement and estimation. IBM Sys. J.,
16: 54-73.

13. Schneider, G. and J.P. Winters, 2001. Applying
Use Cases. 2nd Edn., Addison Wesley, ISBN: 13:
978-0201708530, pp: 240.

14. Jorgensen, M. and K. Molokken-Ostvold, 2004.
Impact of respondent role, information collection
approach and data analysis method. IEEE Trans.
Software Eng., 30: 993-1007. DOI:
10.1109/TSE.2004.103

15. International Function Point Users Group, 2008.
Function point counting practices manual.
http://www.ifpug.org/publications/manual.htm

16. Asundi, J., 2005. The need for effort estimation
models for open source software projects.
Proceedings of the 5th Workshop on Open Source
Software Engineering, May 17, ACM Press, St.
Louis, Missouri, USA., pp: 1-3.
http://portal.acm.org/citation.cfm?id=1083260

17. Jeffery, R., M. Ruhe and I. Wieczorek, 2000. A
comparative study of two software development
cost modeling techniques using multi-
organizational and company-specific data. Inform.
Software Technol., 42: 1009-1016. DOI:
10.1016/S0950-5849(00)00153-1

18. Jørgensen, M. and K. Molokken-Ostvold, 2004.
Reasons for software effort estimation error: Of
respondent role, information collection approach
and data analysis method. IEEE Trans. Software
Eng., 30: 993-1007.
http://portal.acm.org/citation.cfm?id=1042423

19. Jørgensen, M. and T.M. Gruschke, 2005. Industrial
use of formal software cost estimation models:
Expert estimation in disguise?. Proceeding of the
Em Assessment in Software Engineering, Apr. 11-
13, Keele, United Kingdom, pp: 1-7.
http://simula.no/research/engineering/publications/
Jorgensen.2005.1/simula_pdf_file

20. Smith, J., 1999. The estimation of effort based on
use cases.

 ftp://ftp.software.ibm.com/software/rational/web/wh
itepapers/2003/finalTP171.pdf

J. Computer Sci., 5 (10): 717-724, 2009

724

21. Aggarwal, K.K., Y. Singh, P. Chandra and M. Puri,
2005 . An expert committee model to estimate
lines of code. ACM SIGSOFT Software Eng. Notes,
30: 1-4.

 http://portal.acm.org/citation.cfm?id=1095439
22. Rao, K.K., S. Nagaraj, J. Ahuja, G. Apparao, J.R. Kumar

and G.S.V.P. Raju, 2008. Measuring the function
points from the points of relationships of UML.
Proceeding of the International Conference on
Computer and Electrical Engineering, Dec. 20-22,
IEEE Xplore Press, USA., pp: 748-752.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=4741083

23. Kitchenham, B. and E. Mendes, 2004. Software
productivity measurement using multiple size
measures. IEEE Trans. Software Eng., 30: 1023-1035.
http://ieeexplore.ieee.org/search/wrapper.jsp?arnu
mber=1377195

24. Briand, L.C., K.El Emam and F. Bomarius, 1998.
COBRA: A hybrid method for software cost
estimation, benchmarking and risk assessment.
Proceedings of the 20th International Conference
on Software Engineering, Apr. 19-25, IEEE Xplore
Press, USA., pp: 390-399. DOI:
10.1109/ICSE.1998.671392

25. Al-Hajri, M.A., A.A.A. Ghani, M.S. Sulaiman and
M.H. Selamat, 2005. Modification of standard
function point complexity weights system. J. Syst.
Software, 74: 195-206.
http://portal.acm.org/citation.cfm?id=1045934

26. Arnold, M. and P. Pedross, 1998. Software size
measurement and productivity rating in a large
scale software development department.
Proceedings of the 20th international conference on
Software engineering, April 19-25, IEEE Computer
Society, Washington, DC., USA., pp: 490-493.
http://portal.acm.org/citation.cfm?id=302163.302221

27. Jorgensen, M. and M. Shepperd, 2007. A
syestematic review of software development cost
estimation studies. Software Eng. IEEE Trans.,
33: 33-53. DOI: 10.1109/TSE.2007.3

28. Naur, P. and B. Randell, 1968. The NATO
Software Engineering, Conference Report.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

29. Mittas, N. and L. Angelis, 2008. Comparing cost
prediction models by resampling techniques. J.
Sys. Software, 81: 616-632.
http://portal.acm.org/citation.cfm?id=1353071

30. Object Management Group (OMG), 2005. XML
Metadata Interchange (XMI) specification version
2.0. http://dret.net/biblio/reference/xmi20

31. Sentas, P., L. Angelis, I. Stamelos and G. Bleris,
2005. Software productivity and effort prediction
with ordinal regression. Inform. Software Technol.,
47: 17-29. DOI: 10.1016/j.infsof.2004.05.001

32. Dekkers, T., Benchmarking is an essential control
mechanism for management. RPM-AEMES, 2007,
pp. 99-103, http://pi.informatik.uni-
siegen.de/stt/25_4/09_Konferenzberichte/Dumke_
Abran.pdf.

33. Basili, V.R. and K. Freburger, 1981.
Programming measurement and estimation in the
software engineering laboratory. J. Syst.
Software, 2: 47-57.
https://www.cs.umd.edu/~basili/publications/journ
als/J12.pdf

34. Xiaa, W., L.F. Capretz, D. Ho and F. Ahmed,
2008. A new calibration for function point
complexity weights. Inform. Software Technol.,
50: 670-683.

 http://portal.acm.org/citation.cfm?id=1365282
35. Embarcadero Technologies, Inc. All products.

http://www.embarcadero.com/products

