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Abstract: Problem statement: Dynamic Quadratic Assignment Problem (DQAP) is NP hard 
problem. Benders decomposition based heuristics method is applied to the equivalent mixed-integer 
linear programming problem of the original DQAP. Approach: Approximate Benders Decomposition 
(ABD) generates the ensemble of a subset of feasible layout for Approximate Dynamic Programming 
(ADP) to determine the sub-optimal optimal solution. A Trust-Region Constraint (TRC) for the master 
problem in ABD and a Successive Adaptation Procedure (SAP) were implemented to accelerate the 
convergence rate of the method. Results: The sub-optimal solutions of large-scales DQAPs from the 
method and its variants were compared well with other metaheuristic methods. Conclusion: Overall 
performance of the method is comparable to other metaheuristic methods for large-scale DQAPs. 
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INTRODUCTION 
 
 A Dynamic Quadratic Assignment Problem 
(DQAP) is a decision problem of finding the optimal 
location assignments among a set of facilities over a set 
of discrete periods. The objective is to minimize the 
sum of flow costs and rearrangement cost over all 
discrete time periods. 
 DQAP can be mathematically formulated as the 
following modified QAP:  
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Where:  
n = The number of facilities/locations in 

each period t  
T =  The number of discrete time periods 
Cijklt = fikt*djlt = The cost of assigning facility i to 

location j and facility k to location l at 
period t 

fikt = The workflow cost from facility i to 
facility k at period t 

djlt = The distance from location j to 
location l at period t 

Rijlt = The rearranging cost when facility i 
located on location j at period t is 
moved to location l at period (t+1) 

Xijt  = 1, if facility i is assigned to location l 
at period t. Otherwise, Xijt = 0 

 
 This study presents an alternative approach to 
large-scale DQAPs. To take a full advantage of 
existing, well-developed exact algorithm, DQAP is 
transformed into an equivalent linear problem. Our 
approach is based on Benders Decomposition (BD) and 
Dynamic Programming (DP). Relaxations are 
introduced in order to make the methods competitive 
for large-scale problems. Different accelerating 
techniques including trust-region and a Successive 
Adaptation Procedure (SAP) are examined. 
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MATERIALS AND METHODS 
 
An equivalent linear problem: The linearization of 
QAP can be modified for the DQAP by introducing two 
new variables. The variable Yijklt is equal to one if at 
period t, the facility i is assigned to site j and facility k 
is assigned to site l. Another variable is Vijl(t+1) 
representing the facility i located to site j at period t and 
relocated to site l at period t+1. Therefore, the linear 
transformed problem of (1-4) becomes:  
 
Minimize: 
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Subject to: 
 
Yijklt ≥Xijt + Xklt -1, i = 1,..,n, j = 1,…,n, t = 1,…T  (6) 
 

ijl( t 1) ijt il(t 1)V X X 1,i 1,..,n,  j = 1, ,n,  t = 1, T+ +≥ + − = … …  (7) 

 
n

ijt
i 1

X 1
=

=� , j = 1,…, n, t = 1,…T   (8) 

 
n

ijt
j 1

X 1
=

=� , i = 1,…, n, t = 1,…T    (9) 

 

ijklt ijl(t 1)Y , V 0+ ≥  ,∀ i, j, t       (10) 

 
{ }ijtX 0,1∈ ,∀ i, j, t (11) 

 
 Let the DQAP defined in (1-4) be designated 
problem Q and the Mixed-Integer Linear Programming 
(MILP) defined in (5-11) be designated problem L. By 
extending the theorem and proof in Lawler[1], the 
equivalence of Q and L for any given set of cost 
coefficients can be assured. 
 
Benders Decomposition (BD): Using the BD 
algorithm, presented in Benders[2], the linearized DQAP 
(5-11) can be decomposed into:  
 
A linear programming sub-problem (dual problem): 
Maximize: 
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Subject to: 
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for a given layout { }*
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A mixed-integer-linear-programming master-problem: 
Minimize: 
 
Z  (15) 
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for given all possible values of *

ijkltU and ( )
*

ijl t 1V + . 

 The upper bound and the lower bound of the 
problem are defined respectively as: 
 

currentUB min(UB ,Objective value of the sub-problem)=  
 
and 
 

currentLB max(LB ,Objective value of the master-problem)=  
 
 In exact algorithm, BD solves the sub-problem and 
master problem iteratively until: 
 

BDUB LB− ≤ δ  (20) 
 
where, BDδ  is a given tolerance. 
  At the end of each iteration, a new cut is added to 
constraint (16) in the master problem. 
 Since constraints (13 and 14) are always feasible, 
there is no feasibility cut in BD of the linearized DQAP 
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(5-11). Furthermore, this implies that the solution of the 
sub-problem can be determined directly from: 
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Approximate Benders Decomposition (ABD): An 
aggressive relaxation to the exact BD algorithm is 
taken. The solution of master problem is approximated 
by a linear programming whose solution is a real 
number from 0-1. Hungarian algorithm is utilized to 
round the solution to 0 or 1. The cost function in 
Hungarian algorithm is defined as the difference 
between the solution from the linear programming and 
1. Note that this ABD does no longer guarantee the 
optimal solution after adding all the cuts as the exact 
BD does. 
 Furthermore the maximum number of allowable 
cuts Ncut_max is added as the other stopping criterion 
for large-scale problems. ABD is likely to stop because 
the number of iterations has reached the maximum 
number of allowable cuts. 
 
Trust-Region Constraint (TRC): An additional 
constraint for trust-region to regulate the change of the 
solutions in the two consecutive iterations in the master 
problem is introduced into the master problem of the 
ABD. As proposed by Santoso[3], the additional 
constraint imposed at p+1th iteration bounds the 
Hamming distance of the master problem solution from 
the solution at pth iteration: 
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Where: 
 �p+1 = The trust-region size at p+1th iteration 

pX  = The master problem solution obtained at pth 

iteration and let p p p
q ijtX {q : x X 1}= = =  

 
 The trust-region size is kept constant through out 
each solution procedure in this study.  
 
Approximate Dynamic Programming (ADP): With 
Rosenblatt’s dynamic programming model[4], each 

period corresponds to a stage and each layout 
arrangement corresponds to a state. Therefore, there are 
n! states in each of the T stages. The total number of 
possible solutions is (n!)T. The bounding procedure 
reduces the number of candidate static layouts to be 
examined by including only best static layouts for each 
period defined by any layout arrangement (for a given 
period) that has the difference between the total cost of 
the arrangement and the cost of optimal static solution 
for that period lower than the difference between the 
values of the upper bound and the lower bond of the 
model. 
 In large-scale problems, it is impossible to include 
all (n!)T possible layouts in the bounding procedure. 
ADP relies on the ensemble of sample static layouts 
given to the bounding procedure. There is no guarantee 
that the solution from ADP is the optimal solution. The 
quality of the sub-optimal solution from ADP depends 
strongly on the quality of the ensemble of sample static 
layouts. 
 
Combinatorial Method and Successive Adaptation 
Procedure (SAP): The combinatorial method makes 
use of ABD to generate the ensemble of sample static 
layouts given to ADP. ADP performs the bounding 
procedure and searches for the sub-optimal solution. 
Iterations over ABD and ADP loop are introduced to 
further improve the quality of the sub-optimal solution. 
The iterations continue until: 
 

 current previous
opt

previous

Total Cost Total Cost
100

Total Cost

−
× ≤ δ  (24) 

 
where, optδ  is a given tolerance. From our unpublished 
study, the final sub-optimal solution is not sensitive to 
the exact value of optδ  in (24); optδ  is set to be to 
0.001% though out our study. 
 Another way to improve the quality of the solution 
is to include as many static layouts in the ensemble as 
possible. In this study, the ensemble is expanded by 
including unique static layouts from different time 
periods obtained from ABD layouts and appending the 
new set of unique static layouts to the ensemble in the 
previous iteration.  
 The combinatorial method is further enhanced by a 
SAP. In SAP, ABD and ADP loops are implemented 
successively with different trust-region-sizes and the 
numbers of maximum allowable cuts in ABD. For a 
given initial layout, the procedure starts with a small 
number of maximum allowable cuts and large trust-
region size. The sub-optimal solution from the previous 
iteration is used as an initial layout for the method with 
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a smaller trust-region size to regulate the sampling 
process in ABD to be in the neighbor of a good initial 
layout from the previous step. The procedure continues 
successively until no further improvement is achievable 
or termination by the user. The procedure may continue 
successively with a larger number of maximum 
allowable cuts with a successive trust-region size 
reduction procedure. 
 
Implementation: All algorithms are implemented in 
MATLAB version R2007b and all the experiments are 
done on a notebook with 1.66 GHz. Intel®Core 2 CPU, 
1 GB RAM with Window XP 64 bits. All test data are 
available upon request. 
 

RESULTS 
 
Combinatorial Method (ABD+ADP): The total cost 
of the DQAP of the size n = 20, T = 5 from the 
combinatorial method without the trust-region 
constraint or the adaptive procedure (ABD+ADP) with 
the number of maximum allowable cuts Ncut_max of 
500 is shown in Table 1 against the total costs from 
other metaheuristic methods including Simulated 
Annealing (SA)[5], Genetic Algorithm (GA) and Tabu 
Search (TS)[6]. The initial layout for ABD+ADP is 
arbitrary and set to be iitX 1, i, t= ∀ . The possibility of 
improving the quality of the sub-optimal solution from 
ABD+ADP by using a better initial layout from SA is 
investigated. The total cost is also shown in Table 1. 
 Figure 1 shows the best total cost from ABD (the 
upper bound of ABD) and the total costs from ADP 
from all iterations before the solution from ABD+ADP 
converges to its sub-optimal value. The initial layout in 
this case is set to be iitX 1, i, t= ∀  as well. 
 
Table 1: Cost (units) and CPU time (seconds) for DQAP by 

ABD+ADP  
 Problem size 
 ----------------------------------------- 
Algorithms n = 20, T = 5 n = 40, T = 3 
ABD+ADP (initial layout  4,416,613 11,203,203 
-arbitrary; ncutmax = 500) (366,872 sec) (not converged) 
ABD+ADP (initial layout-SA;  4,383,877 10,872,483 
ncutmax = 500) (39,845 sec) (6,773 sec) 
TRC (initial layout – SA;  4,360,788 10,834,881 
Ncutmax = 20; TR = 0.5) (712 sec) (892 sec) 
SAP (initial layout-arbitrary) 4,370,302 11,015,498 
 (18,239 sec) (43,910 sec) 
SAP (initial layout-SA) 4,316,387 10,817,002 
 (11,459 sec) (16,359 sec) 
SA 4,383,877 10,872,483 
TS (Initial Layout-Random) 4,399,513 11,245,315 
TS (Initial Layout-SA) 4,256,480 10,761,358 
GA (Initial Layout-Random) 4,605,719 11,358,612 
GA (Initial Layout-SA) 4,361,559 10,854,512 

 The effect of the number of maximum allowable 
cuts Ncut_max on the performance of ABD+ADP is 
shown in Table 2. The initial layout in this case is set to 
be iitX 1, i, t= ∀ . It is clear from the Table that the 
executable time for ABD+ADP with Ncut_max of 500 
is unreasonably long (more than 4 days) making it is 
impractical for large-scale problems. From this point of 
view, ABD+ADP with Ncut_max of 20 is adopted for 
further development. 
 ABD+ADP is further tested with the DQAP of the 
size n = 40, T = 3. The calculation has not fully 
converged for an arbitrary layout iitX 1, i, t= ∀ . It 
terminated due to memory overflowing. Nevertheless, 
the unconverged result (Table 1) is comparable with 
other metaheuristic methods and exhibit similar feature 
as the problem of the size n = 20, T = 5. The total 
executable time is not available for this set of 
experiment. 
 
Trust-Region  Constraint (TRC): TRC is tested with 
n = 20,T = 5. The maximum number of allowable cuts 
is set to 20. The trust-region size, �p+1, is set to be 0.5 
corresponding to allowing only 25% of the layout to be 
changed. The sub-optimal layout from SA is used as an 
initial layout. The result and the executable time are 
also shown in Table 1. 
 
Table 2: Cost (units), CPU time (seconds) and the number of sample 

layouts in ADP for DQAP with different number of 
maximum allowable cuts in ABD (DQAP:  n = 20, T = 5; 
initial layout: Arbitrary) 

Algorithm Ncut_max Cost (units) CPU (sec.) #L/O 
ABD+ADP 10 4,519,097 118.74 337 
 20 4,485,903 171.02 463 
 40 4,494,882 640.11 601 
 500 4,416,613 366,872.16 14,954 
  500(SA) 4,256,480 47,552.52 2,505 
 

 
 
Fig. 1: ABD and ADP Costs (units) from ABD + ADP 

and the number of sample layouts (#L/O) in 
ADP.  (DQAP: n = 20, T = 5; initial layout: 
Arbitrary; Ncut_max = 500) 
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Fig. 2: ABD and ADP costs (units) from TRC and the 

number of  sample  layouts  in  ADP.  (DQAP: 
n = 20, T = 5; initial layout: SA; Ncut_max = 20, 
TR_size_constant = 0.5)  

 

 
 
Fig. 3: Cost (units) and cost reduction (%) over each 

iteration of SAP. (DQAP: n = 20, T = 5; initial 
layout: SA) 

 
 The same test with the same parameters is carried 
out with the problem of the size n = 40, T = 3. The 
result is also shown in Table 1. 
 
Successive Adaptation Procedure (SAP): TRC is 
implemented successively by increasing the number of 
maximum allowable cuts Ncut_max in the following 
order: 10, 20, 40 and 80 and reducing the trust region 
size �p+1 TR_size_constant in (24) in the following 
order: 1, 0.5 and 0.25. The total cost of SAP starting 
from the sub-optimal layout from SA with n = 20, T = 5 
is shown in Table 1. The total cost and cost reduction 
during SAP is shown in Fig. 3. SAP takes 11,459 
seconds (over 3 h) to complete the procedure shown in 
Table 1. Figure 4 shows the best total cost from ABD 
(the upper bound of ABD) and the total costs from ADP 
during SAP. 
 The total cost and cost reduction during SAP for 
arbitrary  initial  layout ( iitX 1, i, t= ∀ ) is shown in 
Table 1 and Fig. 5. The best total cost from ABD (the 
upper bound of ABD) and the total costs from ADP 
during SAP for this case shown in Fig. 6, quite similar 
to other methods above. The executable time (Table 1) 
for this case is 18,239 sec (more than 5 h). 

 
 
Fig. 4:  ABD and ADP Costs (units) and Cost 

Reduction (%) over each iteration of SAP. 
(DQAP: n = 20, T = 5; initial layout: SA) 

 

 
 
Fig. 5: Cost (units) and cost reduction (%) over each 

iteration of SAP. (DQAP: n = 20, T = 5; initial 
layout: Arbitrary) 

 
Table 3: The result summary provided by ABD+DAP with SAP 
Problem   Total cost  
size  Cost of ------------------------------------------------
----------- Int. L/O Best cost Reduction Exe time  
n T (units) (units)  (%) (sec) 
20 3 2,904,999* 2,724,991 6.1965 8,335.3  
20 5 4,694,840* 4,370,302 6.9127 18,238.8  
20 8 7,491,424* 6,887,656 8.0595 122,621.4 
40 3 11,601,354* 11,015,498 5.0499 43,910.1  
40 5 19,247,187* 18,131,694 5.7956 103,756.6 
20 5 4,383,729** 4,316,387 1.5362 11,459.1  
40 3 10,862,694** 10,817,002 0.4206 16,359.3  

 
 SAP has also applied to DQAP with different sizes. 
Because there is no available sub-optimal solution from 
other methods, SAP starts from an arbitrary initial 
layout iitX 1, i, t= ∀ . The initial cost, sub-optimal total 
cost, over cost reduction and executable time are shown 
in Table 3 (SAP starting with a sub-optimal layout from 
SA for n = 20, T = 5 and n = 40, T = 3 problems are 
also included for the sake of reference). The total cost 
reductions are in the neighbor of 5-8%. The executable 
time  varies from 8,335 sec (slightly more than 2 h) for 
n = 20, T = 3 problem to 122,621 sec. (more than 34 h) 
for n = 20, T = 8 problem. 
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Fig. 6: ABD and ADP Costs (units) and Cost 

Reduction (%) over each iteration of SAP. 
(DQAP: n = 20, T = 5; initial layout: Arbitrary) 

 
DISCUSSION 

 
ABD+ADP: The total cost from ABD+ADP is 
4,416,613 (Table 1) compared well to that from other 
metaheuristic methods starting from random initial 
layouts. In fact, ABD+ADP produces a lower total cost 
than the total cost from GA with a random initial 
layout. However, TS and GA slightly outperform 
ABD+ADP, if the best layout from SA is supplied in as 
initial layouts for the two methods. The result of 
ABD+ADP starting from SA sub-optimal layout shown 
in Table 1 suggesting that ABD+ADP fails to take 
advantage of the better initial layout from SA. The total 
cost remains unchanged from that of the initial layout 
regardless of the number of maximum allowable cuts 
Ncut_max. The root of the failure is tracked back to the 
poor performance of BD that is solutions  from   initial 
iterations oscillate widely from one region of the 
feasible set to another; thereby slowing the convergence 
rate of BD (Hiriart-Urruty and Lemaréchal[7]). In this 
case, the number of maximum allowable cut is only 500 
negligibly small compared to the total number of cuts 
of the problem ((n!)T = (20!)5). Consequently, ABD 
poorly samples layouts from the feasible space for 
ADP. The TRC restricting the change of the solution 
from one to the next iteration should improve the 
sampling process of ABD and is investigated later. 
 Figure 1 shows the dynamics of ABD+ADP. ADP 
in every iterations except the last one significantly 
reduces the total cost from ABD. On the contrary, ABD 
in every iterations except the first one fails to reduce the 
cost from ADP in the previous iteration. Evidently, the 
performance of ABD+ADP is hinged on the solution 
from ADP not that from ABD. Nevertheless, the quality 
of ADP solution implicitly relies on sample layouts 
generated from ABD. 

 As Ncut_max increased, the total cost improves 
and the executable time increases (Table 2). The 
improvement of the total cost is most likely to be a 
result of the increase in the number of sample layouts 
for ADP from ABD. 
  
TRC: TRC takes advantage of the sub-optimal layout 
from SA and improves the sub-optimal solution (see 
Table 1). The total cost reduces to 4,360,788. The TRC 
restricts the change of solution during each cut in ABD 
such that the new solution is in the neighbor of the 
previous solution. In this way, the TRC allows 
thoroughly search for the best solution in the neighbor 
of the previous sub-optimal solution; thereby enhancing 
the performance of TRC. Figure 2 reveals that the 
dynamics of TRC is similar to that of ABD+ADP. 
 Evidently from Table 1, TRC outperforms 
ABD+ADP in all aspects-the quality of the total cost 
and the executable time. In particular, the executable 
time of TRC is almost three order of magnitudes lower 
than ABD+ADP with Ncut_max = 500. TRC 
outperforms ABD+ADP for n = 40, T = 3 problem as 
shown in Table 1. 
 
SAP: The total cost from the procedure starting from 
SA sub-optimal initial layout shown in Table 1 is 
4,316,387 and the grand total cost reduction over the 
whole procedure is 1.5%. SAP produces a better sub-
optimal solution than TRC and a comparable sub-
optimal solution compared with other metaheuristic 
methods. The most two effective steps produce the cost 
reduction of 0.542 and 0.469% respectively as shown in 
Fig. 3 occurring at Ncut_max of 40 and 
TR_size_constant of 0.25 and 0.5 respectively. The 
most two effect steps indeed account for about 2/3 of 
the grand total cost reduction. Unlike the first few steps 
running at Ncut_max of 10 and 20, they seem not to 
improve the solution so much. With a good initial 
layout, SAP requires sufficient Ncut_max before it can 
produce significant improvement in the total cost when 
the trust-region size is relatively restricted. Also, there 
is not much improvement at Ncut_max of 80. It is 
speculated that with this even better solution, the 
procedure requires more Ncut_max than 80. The 
dynamics of SAP over each TRC is similar to a single 
TRC and ABD+ADP as shown in Fig. 4. SAP takes 
less time than ABD+ADP but longer than TRC. 
Nevertheless, its sub-optimal solution is better than 
ABD+ADP’s and TRC’s (Table 1). 
 With an arbitrary initial layout, the most cost 
reduction accounting almost all of the total reduction 
occurs during Ncut_max of 10 and TR_size_constant of 
1 as shown in Fig. 5. The convergence behavior in this 
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case is much more organized than SAP starting from a 
sub-optimal initial layout. A total cost is significantly 
reduced during low Ncut_max for a large 
TR_size_constant and its reduction decrease as 
TR_size_constant decreases. The total cost reduction 
significantly reduces again when Ncut_max increases 
even though the total cost reduction is not as large as 
the previous steps. Evidently, SAP takes a great 
advantage of ADP to single out the best sub-optimal 
solution from random layouts generated by ABD with a 
large TR_size_constant during initial steps. With the 
reduction of TR_size_constant further, ABD tends to 
sample layout only in the neighbor of a sub-optimal 
layout from the previous step. As a result ADP slightly 
improves the solution from the previous step. If the true 
global minimum lays further way from this neighbor, 
SAP may not be able to single out the true global 
minimum. 
 

CONCLUSION 
 
 New combinatorial solution methods for large-
scale DQAPs are developed based on an equivalent 
linear problem. The principle algorithms for the 
proposed combinatorial method are based on BD 
successfully applied to large-scale MILP problem and 
ADP successfully applied to dynamic assignment 
problem. Due to slow convergence of BD and limited 
ability of a MILP algorithm, BD is relaxed by linear 
programming and Hungarian algorithm. The methods 
are further accelerated by the TRC and the SAP. In 
summary, the overall performances of the proposed 
methods are comparable with other metaheuristic 
methods.  
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