
Journal of Computer Science 5 (8): 544-547, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Sunanda Gupta, School of Computer Science and Engineering, Shri Mata Vaishno Devi University,
Katra, J and K, India

544

An Improved Genetic Algorithm Based on Adaptive Repair Operator

for Solving the Knapsack Problem

Sunanda Gupta and M.L. Garg
School of Computer Science and Engineering,

Shri Mata Vaishno Devi University, Katra, J and K, India

Abstract: Problem statement: Knapsack problem is a typical NP complete problem. During last
few decades, Knapsack problem has been studied through different approaches, according to the
theoretical development of combinatorial optimization. Approach: In this study, modified
evolutionary algorithm was presented for 0/1 knapsack problem. Results: A new
objective_func_evaluation operator was proposed which employed adaptive repair function named
as repair and elitism operator to achieve optimal results in place of problem specific knowledge or
domain specific operator like penalty operator (which are still being used). Additional features had
also been incorporated which allowed the algorithm to perform more consistently on a larger set of
problem instances. Conclusion/Recommendations: This study also focused on the change in
behavior of outputs generated on varying the crossover and mutation rates. New algorithm
exhibited a significant reduction in number of function evaluations required for problems
investigated.

Key words: Knapsack problem, genetic algorithm, adaptive repair operator

 I. INTRODUCTION

 Knapsack problem is a well known and well
studied problem in combinatorial optimization being
widely used in areas like network planning, network
routing, parallel scheduling and budgeting[1].
Mathematically the 0-1 Knapsack problem may be
formulated as:

n

i i
j 1

Maximize : p x
=
∑

n

j j
j 1

Subject to : w x c

xj 0 or 1 and j 1,2,...n

=

≤

= =

∑

where, xj the number of each kind of item is restricted
to one or zero indicating its presence or absence in the
knapsack. c is the capacity of the knapsack into which n
types of objects may be placed. The object of type i has
a profit pi and weight wi, associated with it.
 Since the Knapsack problem is NP problem,
various approaches presently available such as dynamic
programming, backtracking, branch and bound etc. are
not very useful for solving it. These exact algorithms

have a running time that is bounded by an exponential
function of length of input data, thus it is very difficult
to obtain the exact solutions in case of many large scale
knapsack instances which come from practical
applications[2]. Hence, for those large scale instances, it
has to rely on heuristic algorithms to obtain the near
optimal solutions to them.
 Amongst the Heuristic algorithms for knapsack
problem, genetic algorithm is an effective method to
solve the knapsack instances approximately. Genetic
algorithm is a search technique to find exact or
approximate solutions to optimization and search
problems. Genetic algorithms are categorized as global
search heuristics[3,4]. They work on the Darwin’s
principle of natural selection and survival of the fittest.
Evolutionary algorithm produces initial population with
individuals selected at random. The fitness value of
each individual of the population is worked out. If it
does not satisfy the goal criterion then it is improved
through crossover and mutation operators. Because of
the incompatibility between the speed of convergence
and the action for searching for the best solution, the
simple evolutionary algorithm always behave slowly in
convergence, easily in prematurity and plunges into
local optimizations. The Evolutionary algorithm with
adaptive repair operator is proposed in this study. It

J. Computer Sci., 5 (8): 544-547, 2009

545

leads the search direction of the population by
collecting some better individuals from every
generation by using the elitism operator and hence
results in improving the searching efficiency.
Furthermore, the computational cost implications of
using adaptive repair function in the algorithm have
also been evaluated.

Evolutionary algorithm with adaptive repair
operator: A modified algorithm called KNAP-GA is
described in this section for solving KP using elitist
GAs. The structure of the proposed KNAP-GA is
presented in Fig. 1.
 Here P represents the population {P0, P1,
P2…..Pmax} where each population comprises of m
entries {S1, S2,…..Sm} and each entry Si = {Jk such
that 1≤k≤n and Jk = {0 ,1}} . Let J = {J1, J2, J3,……Jn}
represents the set of unique items that are available .
The selected items are represented by value 1 and the
not selected ones are represented by value 0. The
fitness values of the chromosomes in a population are
evaluated based on the profits associated with the
items. The best fit chromosome generated from a
given population is stored in S* . The crossover and
mutation rate are varied to study the impact of varying
these operators on the outputs obtained. The working,
the characteristics and the need of
objective_func_evaluation operator is explained in the
preceding section. Each generation of the population
yields a set of unique items that would result in
maximum profit, thus modifying the solution vector in
each step by proceeding towards the best fit solution.

Objective_func_evaluation operator ∆∆∆∆: The
objective_func_evaluation is a function which evaluates
the fitness of chromosomes in the new population. For
the Knapsack problem, we calculate the fitness of each
chromosome by summing up the benefits of the items
that are included in the knapsack, restricting the total
weight of the selected items to the capacity of
knapsack. If the total weight of the items in the
chromosome generated by the crossover and mutation
procedure is greater than the capacity of the knapsack
then that solution is infeasible and the Repair Operator
and the elitism come into play. The
Objective_func_evaluation operator is basically a
combination of Elitism and Repair operator which is
simple to implement and provides us with similar
results as obtained with other operators which need
complex computations. The outline of the algorithm is
given in Fig. 2.

Fig. 1: Algorithm for KNAP-GA

Fig. 2: Objective_func_evaluation operator ∆

MATERIALS AND METHODS

 The test data represents various instances of the 0/1
Knapsack problem as available in the literature[1]. The
data sets consist of varying correlation types between
profits and weights.

Correlation types:

Data set Uncorrelated (UC)
wi = (uniformly) random (1…v) and
pi = (uniformly) random (1…v)

J. Computer Sci., 5 (8): 544-547, 2009

546

Data set Weakly Correlated (WC)
wi = (uniformly) random (1…v) and
pi = wi + (uniformly) random (-r..r)

Data set Strongly Correlated (SC)
wi = (uniformly) random (1…v) and
pi = wi + r

 The experiments have been conducted without
sorting the items on pi/wi values. Knapsack problem
instances were studied on data sets with 100, 250 and
500 items for each of the three correlation types and the
three types of Knapsack capacities. However, due to
space limitation we are presenting only the case with
250 items.
 KNAP-GA was implemented on Pentium-4
(1.7 Ghz) and the results were compared with those
obtained by the dynamic programming algorithm. We
ran 100 instances of the random sets. Each table entry is
the average of 30 runs.

RESULTS

 The effects of varying crossover and mutation rates
have been studied and is presented in Table 1. When
the crossover and mutation rates are both set to 0, the
population has obviously contained copies of the

strategies randomly generated at the beginning. In other
words, with no with no crossover or mutation, all the
children looked exactly like one of their parents.
 However, on setting crossover rate equal to zero
and varying the mutation rate it was observed that the
mutation rate of n/100 (where n can be anything
between 0-9) yields the best results. Due to space
constraint we have shown only 3 instances of the
mutation rate i.e., 03, 0.003, 0.70. Experimental results
do not show the case when mutation is turned off,
because it does not matter much what the crossover rate
is when mutation is turned off as mutation is a function
which is an integral part of crossover operator and if
mutation is off, it yields the same results as when
crossover and mutation are set equal to zero.
 The second observation worth noticing from
Table 1 is that crossover rate between 60 and 70 yields
best solution with mutation rate having negligible
impact on the output. On examining the three cases,
without Elitism and Repair operator, with Repair
operator and with elitism and Repair operator, we
observed that the mere presence of Repair operator
improved the final solution than the one that we were
getting in the absence of Elitism and Repair operators
and by clubbing the Elitism and Repair operators i.eby
using objective_func_evaluation operator ∆, considerable
improvement in the final solution has been found.

Table 1: Comparison of varying crossover and mutation rates
 c = 0 c = 0.30 c = 0.50 c = 0.60 c = 0.70 c = 0.90
Uncorrelated data
Without elitism and repair operator m = 0.003 2650 2607 2669 2669 2701 2625
 m = 0.030 2702 2791 2676 2810 2679 2761
 m = 0.700 2525 2540 2469 2981 2613 2490
With repair operator m = 0.003 2661 2681 2716 2650 2771 2678
 m = 0.030 2663 2653 2806 2690 2667 2614
 m = 0.700 2576 2528 2590 2604 2611 2389
With elitism and repair operator m = 0.003 3308 2254 3333 3310 3346 3365
 m = 0.030 3333 3318 3330 3336 3337 3323
 m = 0.700 3210 3225 3288 3265 3280 3265
Weakly correlated data
Without elitism and repair operator m = 0.003 2741 2717 2753 2771 2799 2783
 m = 0.030 2674 2684 2698 2784 2743 2706
 m = 0.700 2694 2642 2649 2733 2763 2705
With repair operator m = 0.003 2654 2764 2807 2812 2741 2734
 m = 0.030 2777 2802 2782 2705 2833 2834
 m = 0.700 2684 2674 2725 2743 2756 2613
With elitism and repair operator m = 0.003 3379 3406 3369 3378 3321 3347
 m = 0.030 3406 3394 3413 3444 3403 3407
 m = 0.700 3269 3250 3219 3250 3270 3202
Strongly correlated data
Without elitism and repair operator m = 0.003 2300 2336 2321 2326 2408 2345
 m = 0.030 2310 2304 2326 2351 2368 2370
 m = 0.700 2269 2254 2252 2272 2263 2258
With repair operator m = 0.003 2311 2325 2354 2338 2334 2365
 m = 0.030 2349 2302 2318 2366 2358 2320
 m = 0.700 2253 2254 2281 2260 2246 2247
With elitism and repair operator m = 0.003 2332 2372 2386 2404 2383 2379
 m = 0.030 2377 2393 2408 2404 2416 2382
 m = 0.700 2251 2249 2295 2284 2330 2283

J. Computer Sci., 5 (8): 544-547, 2009

547

DISCUSSION

 The objective_func_evaluation operator
incorporating the new adaptive repair operator has been
found to be more cost effective than the existing
techniques that have been used in the past to handle
chromosomes yielding infeasible solutions. As per the
philosophy Richardson et al.[5], (employing penalty
method) infeasible bred strings (or chromosomes) were
allowed to join the population however by reducing the
string strength by adding penalty terms to the fitness.
The farther the string is from feasibility, the higher is
the penalty term. In the other approach flags were used
to signal the feasibility of final solution. If after several
runs on the same problem instance, the flag consistently
indicated an infeasible string then one had to either bias
the random number generator so as to produce strings
in which the number of zeros is greater than the number
of one’s[6] or use some other heuristic such as greedy
one, to generate a solution[7]. Both the methods, the
penalty method or using flags increase the computation
overhead because in addition to estimating the fitness of
chromosomes in a population the track of unfit
chromosomes had to be kept by assigning varying
penalties and again estimating the strength in each
iteration. Whereas if flags were used then one had to
keep track of the status of the flag amongst several
problem instances and if the same value persists then
greedy approach is used thus increasing computational
cost multi folds.
 The algorithm employing
objective_func_evaluation operator ∆ provides a much
efficient approach of reaching an optimal solution by
using a simple to implement adaptive repair operator
which incorporates a strategy of making all bits of the
chromosome equal to zero from the point where the
fitness exceeds the capacity and by employing elitism
to get a small percentage of the best chromosomes from
the old population to the new population. Thus the
evolutionary algorithm with adaptive repair operator
proposed in this study, leads the search direction of the
population by collecting the few best individuals from
every generation by using the elitism operator. It has
resulted in improving the search efficiency.

CONCLUSION

 The results obtained with the newly designed
genetic operators in algorithm are encouraging, on the
practical data sets. Rather than augmenting the genetic
algorithm with domain specific knowledge, we have
introduced a fitness function employing adaptive repair
operator and elitism which is simple to use. In order to

further the results, application of the developed KNAP-
GA to real life problems, hybridization of local search
techniques with other heuristic or meta heuristic
techniques for solving the Knapsack problem may be
studied. Future work may address whether the proposed
algorithm can be applied to other constraint
optimization problems such as the maximum clique or
the degree constrained minimum spanning tree
problems.

VII. REFERENCES

1. Martello, S. and P. Toth, 1990. Knapsack

Problems: Algorithms and Computer
Implementation. John Wiley and Sons, New York,
ISBN: 0-471-92420-2, pp: 296.

2. Li, K.L., G.M. Dai and Q.H. Li, 2003. A genetic
algorithm for the unbounded knapsack problem.
Proceedings of the 2nd International Conference on
Machine Learning and Cybernetics, No. 2-5, IEEE
Xplore Press, USA., pp: 1586-1590. DOI:
10.1109/ICMLC.2003.1259749

3. Holland, J.H., 1975. Adaptation in Natural and
Artificial Systems: Introductory Analysis with
Applications to Biology, Control and Artificial
Intelligence. University of Michigan Press, ISBN:
0472084607, pp: 183.

4. Goldberg, D.E., 1989. Genetic Algorithm in Search
Optimization and Machine Learning. 1st Edn.,
Addison-Wesley, New York, ISBN: 10:
0201157675, pp: 432.

5. Richardson, J.T., M.R. Palmer, G. Liepins and
M. Hillard, 1989. Some guidelines for genetic
algorithms with penalty functions. Proceedings of
the 3rd International Conference on Genetic
Algorithms, (ICCA’89), Morgan Kaufmann
Publishers Inc., San Francisco, CA., USA.,
pp: 191-197.

 http://portal.acm.org/citation.cfm?id=657233
6. Khuri, S., T. Back and J. Heitkotter, 1994. The

zero/one multiple knapsack problem and genetic
algorithms. Proceeding of the ACM Symposium on
Applied Computing, Mar. 06-08, ACM Press,
Phoenix, Arizona, United States, pp: 188-193.
http://portal.acm.org/citation.cfm?id=326619.3266
94

7. Moret, B.M.E. and H.D. Shapiro, 1991. Algorithms
from P to NP, Design and Efficiency. Benjamin
Cummings, Menlo Park, CA., USA., ISBN: 0-
8053-8008-6, pp: 576.

