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Abstract: Problem statement: Knapsack problem is a typical NP complete probl®uaring last
few decades, Knapsack problem has been studiedghrdifferent approaches, according to the
theoretical development of combinatorial optimieati Approach: In this study, modified
evolutionary algorithm was presented for 0/1 knagsaproblem. Resultss A new
objective_func_evaluation operator was proposechvi@mployed adaptive repair function named
as repair and elitism operator to achieve optirealilts in place of problem specific knowledge or
domain specific operator like penalty operator @thare still being used). Additional features had
also been incorporated which allowed the algoritbrperform more consistently on a larger set of
problem instancesConclusion/Recommendations. This study also focused on the change in
behavior of outputs generated on varying the cromsand mutation rates. New algorithm
exhibited a significant reduction in number of ftino evaluations required for problems
investigated.
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I.INTRODUCTION have a running time that is bounded by an expoalenti
function of length of input data, thus it is verifidult
Knapsack problem is a well known and well to obtain the exact solutions in case of many |aagde
studied problem in combinatorial optimization beingknapsack instances which come from practical
widely used in areas like network planning, networkapplication&!. Hence, for those large scale instances, it
routing, parallel scheduling and budgefthg has to rely on heuristic algorithms to obtain theam
Mathematically the 0-1 Knapsack problem may beoptimal solutions to them.

formulated as: Amongst the Heuristic algorithms for knapsack
problem, genetic algorithm is an effective method t
o n solve the knapsack instances approximately. Genetic
Maximize : PR

algorithm is a search technique to find exact or

j= . . . .
J approximate solutions to optimization and search

N problems. Genetic algorithms are categorized asaglo
Subject to: D wxs search heuristi€s’. They work on the Darwin’s

= principle of natural selection and survival of fiiteest.
xj=0orland F 1,2,..n Evolutionary algorithm produces initial populatiofith

individuals selected at random. The fitness valfie o

where, xthe number of each kind of item is restricted each individual of the population is worked out.itlf
to one or zero indicating its presence or absem¢hd does not satisfy the goal criterion then it is ioyad
knapsack. c is the capacity of the knapsack intwlwh  through crossover and mutation operators. Becafise o
types of objects may be placed. The object of iypes  the incompatibility between the speed of convergenc
a profit p and weight w associated with it. and the action for searching for the best solutibe,

Since the Knapsack problem is NP problem,simple evolutionary algorithm always behave sloimly
various approaches presently available such asnigna convergence, easily in prematurity and plunges into
programming, backtracking, branch and bound et. arlocal optimizations. The Evolutionary algorithm it
not very useful for solving it. These exact aldgums  adaptive repair operator is proposed in this stutly.
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leads the search direction of the population by
collecting some better individuals from every
generation by using the elitism operator and hence
results in improving the searching efficiency.
Furthermore, the computational cost implications of
using adaptive repair function in the algorithm déav
also been evaluated.

Evolutionary algorithm with adaptive repair
operator: A modified algorithm called KNAP-GA is
described in this section for solving KP using istit
GAs. The structure of the proposed KNAP-GA is
presented in Fig. 1.

Here P represents the population o{PP;,
..... Pna¢ Where each population comprises of m
entries {3, S,.....Sy} and each entry ;S= {Ji such
that k<n and J={0,1}} . Let J = {J1, b, &,
represents the set of unique items that are availab
The selected items are represented by value 1hend t
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1 Sett =0,
2. Intialize P ()= {51, 3. .. Spe), such that 3= {Jywhere 1 &k &0, L ={0,1}}

* 1 13 the number of unicue jobs
Ewaluate P (1):= {£(31), £ (52).. A500):.f (1) = Hitness Jwhere 1 1 <n | only
i1 =1};

3

4. Find 8 e P ) such that /(3" <7 (8), forall S P (D)
1* 3" stores the most fit
chromosome™®/
5. whilet< tyy, do
6. select {34510 = PN * d="inary tournament operator *
7. crossover C = £ (35, 5, * L2 = uniform crossover operator *
B mutate C (3, (C) {* {3, = mutation operator *
5 1f C=any 3 F(t) then discerd Cand goto step &
10 end if

11 evaluate fC)

124 AC) > A" then

JE e

14.end if

15, Lpply abjgctive_fise_avaluation operator A to evaluate the unfit chromoseme
and accordingly apply the repair operator and elitism eperator to convert them
into fit chromosomes.

16.1 41,

17 end while

18 return 3, 73

Fupdate best fit chromosome found™®

not selected ones are represented by value 0. THdg. 1: Algorithm for KNAP-GA

fithess values of the chromosomes in a populatien a

items. The best fit chromosome generated from a
given population is stored in"SThe crossover and
mutation rate are varied to study the impact of/vay
these operators on the outputs obtained. The wgrkin
the characteristics and the need of
objective_func_evaluation operator is explainedhie
preceding section. Each generation of the populatio
yields a set of unique items that would result in
maximum profit, thus modifying the solution vector
each step by proceeding towards the best fit swiuti

Objective func_evaluation operator A: The
objective_func_evaluation is a function which ezas

the fitness of chromosomes in the new populatiam. F
the Knapsack problem, we calculate the fitnessache
chromosome by summing up the benefits of the items
that are included in the knapsack, restricting titel
weight of the selected items to the capacity of
knapsack. If the total weight of the items in the

chromosome generated by the crossover and mutation

procedure is greater than the capacity of the ladps

1. Count= 0,
evaluated based on the profits associated with the*

=1 ton {n represents the number of chromosomes in a popul ation}
3Chromosome E] fitness » Capacity) then

Count = Count + 1
end if

3. If Count < (population size = 0.02) then
Efitismi

The unfit chromosome is replaced by the most fit chromosome ofthe
previous generation, the second unfit chromosome replaced by the
second most fit chromosome of previous generation and so on.
1
dse
Repair Operatar
{

/¥ It malees all the bits of the chromosome equal to zero from the point
when the fithess exceeds the capacity */
Let R =the accumulated weight of the chromosome S of length {
and C = capacity of the Knapsaclk

1. Begin
2 Initialize R= Ewg ] for 1 =] =1
3. Initidize) =1

4 While (R > C)and 2 1)) do
5. IF(5 [j] = 1) then

6. set 3] =0and R=R-w;

7 oend if

g j=ji-1

9. end while

10. End

}
Fig. 2: Objective_func_evaluation operafor

MATERIALSAND METHODS

S . ) The test data represents various instances d@f/the
then that solution is infeasible and the Repair rajoe Knapsack problem as available in the literdfirahe

and the eliism come into play. The gata sets consist of varying correlation types betw
Objective_func_evaluation operator is basically aprofits and weights.

combination of Elitism and Repair operator which is
simple to implement and provides us with similar
results as obtained with other operators which neegata set Uncorrelated (UC)
complex computations. The outline of the algoritem w; = (uniformly) random (1...v) and
given in Fig. 2. pi = (uniformly) random (1...v)
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Data set Weakly Correlated (WC) strategies randomly generated at the beginningthar

w; = (uniformly) random (1...v) and words, with no with no crossover or mutation, &ié t

pi = W + (uniformly) random ( -r..r) children looked exactly like one of their parents.
However, on setting crossover rate equal to zero

Data set Strongly Correlated (SC) and varying the mutation rate it was observed that

w; = (uniformly) random (1...v) and mutation rate of n/100 (where n can be anything

pi =W +r between 0-9) yields the best results. Due to space

constraint we have shown only 3 instances of the

The experiments have been conducted withoumutation rate i.e., 03, 0.003, 0.70. Experimengalits
sorting the items onv; values. Knapsack problem do not show the case when mutation is turned off,
instances were studied on data sets with 100, 280 a because it does not matter much what the crossater
500 items for each of the three correlation typebsthe is when mutation is turned off as mutation is action
three types of Knapsack capacities. However, due twhich is an integral part of crossover operator #&nd
space limitation we are presenting only the cash wi mutation is off, it yields the same results as when
250 items. crossover and mutation are set equal to zero.

KNAP-GA was implemented on Pentium-4 The second observation worth noticing from
(1.7 Ghz) and the results were compared with thos@able 1 is that crossover rate between 60 and &l@syi
obtained by the dynamic programming algorithm. Webest solution with mutation rate having negligible
ran 100 instances of the random sets. Each tabigisn impact on the output. On examining the three cases,

the average of 30 runs. without Elitism and Repair operator, with Repair
operator and with elitism and Repair operator, we
RESULTS observed that the mere presence of Repair operator

improved the final solution than the one that weewe
The effects of varying crossover and mutationgate getting in the absence of Elitism and Repair opesat
have been studied and is presented in Table 1. Wheand by clubbing the Elitism and Repair operatabyi.
the crossover and mutation rates are both set tbe0, using objective_func_evaluation operatgrconsiderable
population has obviously contained copies of themprovement in the final solution has been found.

Table 1: Comparison of varying crossover and monatates

c=0 c=0.30 c=0.50 c=0.60 c=0.70 c=0.90
Uncorrelated data
Without elitism and repair operator m = 0.003 2650 2607 2669 2669 2701 2625
m = 0.030 2702 2791 2676 2810 2679 2761
m =0.700 2525 2540 2469 2981 2613 2490
With repair operator m =0.003 2661 2681 2716 2650 2771 2678
m = 0.030 2663 2653 2806 2690 2667 2614
m =0.700 2576 2528 2590 2604 2611 2389
With elitism and repair operator m =0.003 3308 225 3333 3310 3346 3365
m = 0.030 3333 3318 3330 3336 3337 3323
m =0.700 3210 3225 3288 3265 3280 3265
Weakly correlated data
Without elitism and repair operator m =0.003 2741 2717 2753 2771 2799 2783
m = 0.030 2674 2684 2698 2784 2743 2706
m =0.700 2694 2642 2649 2733 2763 2705
With repair operator m =0.003 2654 2764 2807 2812 2741 2734
m = 0.030 2777 2802 2782 2705 2833 2834
m =0.700 2684 2674 2725 2743 2756 2613
With elitism and repair operator m =0.003 3379 6340 3369 3378 3321 3347
m = 0.030 3406 3394 3413 3444 3403 3407
m =0.700 3269 3250 3219 3250 3270 3202
Strongly correlated data
Without elitism and repair operator m =0.003 2300 2336 2321 2326 2408 2345
m = 0.030 2310 2304 2326 2351 2368 2370
m =0.700 2269 2254 2252 2272 2263 2258
With repair operator m = 0.003 2311 2325 2354 2338 2334 2365
m = 0.030 2349 2302 2318 2366 2358 2320
m =0.700 2253 2254 2281 2260 2246 2247
With elitism and repair operator m = 0.003 2332 237 2386 2404 2383 2379
m = 0.030 2377 2393 2408 2404 2416 2382
m = 0.700 2251 2249 2295 2284 2330 2283
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DISCUSSION further the results, application of the developedAr-
GA to real life problems, hybridization of localaseh
The objectivefunc_evaluation operator techniques with other heuristic or meta heuristic
incorporating the new adaptive repair operatorbfeen  techniques for solving the Knapsack problem may be
found to be more cost effective than the existingstudied. Future work may address whether the pexpos
techniques that have been used in the past to énandhlgorithm can be applied to other constraint
chromosomes yielding infeasible solutions. As ger t optimization problems such as the maximum clique or

philosophy Richardsoret al.”!, (employing penalty

the degree constrained minimum spanning

tree

method) infeasible bred strings (or chromosomesgwe problems.

allowed to join the population however by reducihg
string strength by adding penalty terms to theefg

The farther the string is from feasibility, the hag is

the penalty term. In the other approach flags vsed 1.
to signal the feasibility of final solution. If &ft several
runs on the same problem instance, the flag camigt
indicated an infeasible string then one had toeeibias

the random number generator so as to produce strin@.
in which the number of zeros is greater than thalver

of one’$® or use some other heuristic such as greedy
one, to generate a solutlBn Both the methods, the
penalty method or using flags increase the comjomat
overhead because in addition to estimating thedgrof
chromosomes in a population the track of unfit3.
chromosomes had to be kept by assigning varying
penalties and again estimating the strength in each
iteration. Whereas if flags were used then one toad
keep track of the status of the flag amongst sévera
problem instances and if the same value persists th 4.
greedy approach is used thus increasing compuédtion
cost multi folds.

The algorithm employing
objective_func_evaluation operatarprovides a much 5.
efficient approach of reaching an optimal solution
using a simple to implement adaptive repair operato
which incorporates a strategy of making all bitsthod
chromosome equal to zero from the point where the
fithess exceeds the capacity and by employingsaiiti
to get a small percentage of the best chromosorogs f
the old population to the new population. Thus the
evolutionary algorithm with adaptive repair operato 6.
proposed in this study, leads the search direafahe
population by collecting the few best individuaterh
every generation by using the elitism operatorhds
resulted in improving the search efficiency.

CONCLUSION
7.

The results obtained with the newly designed
genetic operators in algorithm are encouragingthen
practical data sets. Rather than augmenting thetigen
algorithm with domain specific knowledge, we have
introduced a fitness function employing adaptiveaie
operator and elitism which is simple to use. Ineortb
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