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Absract: Problem statement: Handling numerical data stored in a relational biate has been
performed differently from handling those numeridata stored in a single table due to the multiple
occurrences (one-to-many association) of an indalidecord in the non-target table and non-deteatain
relations between tables. Numbers in Multi-Relatlobata Mining (MRDM) were often discretized,
after considering the schema of the relational dete. Study the effects of taking the one-to-many
association issue into consideration in the proggdiscretizing continuous numbefgppr oach: Different
alternatives for dealing with continuous attribuirSMRDM were considered in this study, namely
equal-width (EWD), Equal-Height (EH), equal-weigEWG) and Entropy-Based (EB). The
discretization procedures considered in this stndiuded algorithms that were not depended on the
multi-relational structure of the data and alsot thee sensitive to this structure. A new method of
discretization, called the entropy instance-badel@) discretization method was implemented and
evaluated with respect to C4.5 on the two well-knomulti-relational databases that include the
Mutagenesis dataset and the Hepatitis dataset ifmoizery Challenge PKDD 200Results: When

the number of bins, b, is big (b = 8), the entrapsgtance-based discretization method producedrbette
data summarization results compared to the ottseretization methods, in the mutagenesis dataset. |
contrast, for the hepatitis dataset, the entrogtaimce-based discretization method produced better
data summarization results for all values of b, parad to the other discretization methods. In the
Hepatitis dataset, all discretization methods peeduhigher average performance accuracy (%) for
partitional clustering technique, compared to therdrchical techniqueConclusion: These results
demonstrated that entropy-based discretization lmarimproved by taking into consideration the
multiple-instance problem. It was also found the partitional clustering technique produced better
performance accuracy compared to the one produgcééharchical clustering technique.

Key words. Discretization, entropy-based, semi-supervisagsteking, genetic algorithm, multiple

instances
INTRODUCTION target table and non-determinate relations between
tables.
Most multi-relational data mining deals with Firstly, most pre-processing steps, such as the

nominal or symbolic values, often in the context ofdiscretization and aggregation operations, thatgse
structural or graph-based mining (e.g., [fP)Much attributes stored in relational database, needséothe
less attention has been given to the area o$tructure (schema) of the relational database afidd
discretization of continuous attributes in a rela#l out how attributes stored in non-target and tatajeles
database, where the issue of one-to-many assatiati@re related to each other. One may perform the
between records has to be taken into accountggregation operation on the attributes that have
Continuous attributes in multi-relational data mopi  numerical multi-set values and then perform the
are seldom used due to the difficulties in handtimgm  discretization operation on the aggregated value.
particularly when we have a one-to-many associdtion However, this is not an easy task as the non-tdatp

a relational database. may have categorical and numerical attributes & th

Handling numerical data stored in a relationalsame table.

database is different from handling those numerical  Next, the task of discretizing continuous attrésut
data stored in a single table due to the multiplds more complex when the occurrences of multiple
occurrences of an individual record stored in tba-n instances in the non-target table are taken into
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consideration, since most traditional discretizatio The records stored in the non-target table that
methods deal with a single flat table and quiteeroft correspond to a particular record stored in thgetar
ignore the one-to-many relationships problem. table can be represented as vectors of patterna As

And finally, using a class-based discretizationresult, based on the vector space mddet unique
method, such as an entropy-based discretiZ&tiois  record stored in non-target table can be represersea
not a straight-forward task in a relational databas it vector of patterns. In other words, a particulacord
needs to be done in a single table. Most traditidaga  stored in the target table that is related to ssver
mining methods only deal with a single table whalte records stored in the non-target table can be septed
attributes are available in that table and diszeeti as a bag of patterns, i.e., by the patterns itainstand
columns that contain aggregated continuous numbetbeir frequency, regardless of their order. The bég
into nominal values. In a relational database, iplelt patterns is defined as follows:
records with non-aggregated numerical attributess ar
stored in the non-target table, separately frontdhget  Definition: In a bag of patterns representation, each
table and these records are usually associated awithtarget record stored in the non-target table is
single individual stored in the target table. Aseault, represented by the set of its pattern and the rpatte
discretizing continuous attributes in non-targebléa frequencies.
based on the class information requires user tsiden This definition follows the notion of an individua
the structure of the relational database. Thus,beusn  centered representation defined by Lachiche anthi®la
in relational databases are often discretized, r aftewhere the data is described as a collection o¥iddals
considering the schema of the relational database, and the induced rules generalize over the indivgjua
order to reduce the continuous domains to morenapping them to a class. For instance, individual-
manageable symbolic domains of low cardinality andcentered domains include classification problems in
the loss of precision is assumed to be acceptable. molecular biology where the individuals are molesul

In our approach, an individual is represented as a

Data transformation using Dynamic Aggregation of  hag of patterns. In the DARA algorithm, these pate
Relational Attributes (DARA): The DARA algorithm  are encoded into binary numbers. The process of

is designed to transform the data representatioa of encoding these patterns into binary numbers depemds
relational database into a vector space model, futh the number of attributes that exist in the nondarg

records stored in the non-target table can bgaple. For example, there are two different caseenw
summarized to characterize the related recordedtior encoding patterns for the data stored in the nogeta
the target table. In a relational database, aasirggtord, taple. In the first case (Case 1), a non-targeletahay
R, stored in the target table can be associated withgye g single attribute. In this case, the DARA
other records stored in the non-target table, aa/shin - aigorithm transforms the representation of the data
Fig. 1. Let R denote a set of m records storeché t stored in a relational database without constrgctiny
target table and let S denote a set of n recordsTel  new feature to build the (nxp) TF-IDF weighted
Tz, ..., T), stored in the non-target table. Lett® a  frequency matri¥!, as only one attribute exists in the
subset of S, S S, associated through a foreign key non-target table. In the other case (Case Il),ratacget
with a single record Rstored in the target table, where table may have multiple attributes exist in thelgaln
R, O R. Thus, the association of these records can bghis case, DARA may construct new features, which
described as R= S. In this case, we have a single results in richer representation of each targebnin
record stored in the target table that is assatiai¢h  the non-target table. The method used to encode the
multiple records stored in the non-target table. patterns derived from these attributes has some
influences on the final results of the modelingtas

Non-Target

Target table table Target table o
- . - Case 1. A non-target table with a single attribute:
R, = T, = R, Case 1 assumes that there is exactly one attribute
- v 4 - describing the contents of the non-target tablé tha
Rn T R, associated with the target table. For instanc€&jgn 2,

the Trans attribute is the Primary Key (PK) of the
T Béi:f Sales table and the Customer attribute is the Gorei
Key (FK) of the table that associates records stame
Fig. 1. A one-to-many association between target anthis non-target table (sales table) with recordsest
non-target relations in the target table (consists of individualstomer).
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[ Sales Table (Nontarget table)  Binary mapping | Table 1: Nuorlnbezj of attributes combined, p and ise df patterns

i | Trans (PK) | Customer (FK) | City City Binary || produce

i 1 Joe London London 001 i P Patterns prOduced

i 2 Joe London New York 010 1 F]”a, F2,b, F3,c, F4,d, vaey E—l.n Fk‘n

| 3 Joe New York Paris 011 2 F.d2m BdFad, - R-1.0kn (With even number of attributes)

| 4 Joe Paris Kuala Lumpur | 100 2 F.d2m FsdFad, - Rn (With odd number of attributes)

i 5 Joe Kuala Lumpur Chicago 101 k Fl,aFZ,bFS,cFA,d- . kal.IJ:k‘n

i 6 Mary Chicago T

{ 7 Mary London E J_[ . .

; 5 | May Newvok || After encoding the patterns as binary numbers, the

Lo [May Newvok i ‘ algorithm determines a subset of the attributededo

! 10 Brandon London Data

] 11 Brandon New York !—:> Transformation used to ConStrUCt a new feature. . A

| 12| Brandon Paris | Here is an example of a simple algorithm to

i 13| Brandon Kuala Lumpur | | construct features without using feature scoring to

bl 14 [Bamdon | Chicage 1} generate the patterns that represent the inputhier
Jos. 2001, 2001, 2010, 2017, 2100 DARA algorithm. For each record stored in the non-
Mary. 2101, 2001, 2010, 2010 ’
My, 210 . 2010 2010 0. 2101 target table, we concatenate p number of columns
: values, where p is less than or equal to the tataiber

Objects are represented as bags of patterns of attributes. For example, let F = (F, Fs, ..., R)

denote k field columns or attributes in the norgédr
table. Let dom(ff = (R1, F2 Fs, ..., Fn) denote the
domain of attribute F with n different values. So, one

The algorithm computes the cardinality of the htte ~ May have an _mstance of a record stored in the non-
domain in the non-target table. Cardinality of ant@rget table with these valuesifFFop Fso Fag -
attribute is defined as the number of unique vathas  Fi1b Fcn), Where o0 dom(R), Fop O dom(R), Fsc O
the attribute can take. If the data consists otinaous ~ domM(R), Faq 0 dom(R), ..., Fe1,p O dom(R-1), Ren O
values, the data is discretized and the numberirsf b dom(R). Table 1 shows the list of patterns produced
taken as the cardinality of the attribute domainoider ~ With different values of p. It is not natural to viea
to encode the values into binary numbers, the @lgor ~ concatenated features like &, but not i &3, when
finds the appropriate number of bits, n, such thean ~ We have p = 2, since the attributes do not havataral
represent all different values of the attributecsrrhin, ~ order. However, a genetic algorithm can be appiced
where 27" < |Attribute’s Domaink 2". solve this problef’. S

For example, if the attribute has 5 different ealu For each record, a bag of patterns is maintaioed t
(London, New York, Chicago, Paris, Kuala Lumpur), keep trqck of the patterns encountered and_thelr
then we just need 3 {Z 5< 2°) bits to represent each frequencies. For each new pattern encoded, if the
of these values (001, 010, 011, 100, 101), as stiown Pattern exists in the bag, the counter for the
Fig. 2. A bag of patterns is maintained to keepkraf ~ corresponding pattern is increased, else the paiser
the number of patterns encountered and thejdded to the bag and set the counter for thisquiati
frequencies. For each encoded pattern, the cotmter Pattern to 1. The resulting bag of patterns cansgel to
the corresponding pattern in the bag is incremented describe the characteristics of a record associatéd
the pattern is added to the bag of patterns i§ ingt ~ them. _ _
already in the bag. The resulting bag of patteshewn In short, the encoding process described here
in Fig. 2, can be used to describe the charadtaristan ~ transforms data stored in the non-target table fiaat
individual record. In Fig. 2, the first digit “2"rpceded ~Many-to-one relations with the target table, to the
the binary numbers indicates the index of attritthist ~ representation of data in a vector-space nibdeVith
the binary numbers are belong to. Since therelijsame  this representation, the data can be conveniently
attribute exists in the datasets, all the encodsteqms ~ Clustered by using the hierarchical or partitioning

produced are belong to index attribute “2”. clustering technique, as a means of summarizing the
In short, the encoding process described here

Case 2: A non-target table with multiple attributes: transforms data stored in the non-target table liaat
Case 2 assumes that there is more than one aétribumany-to-one relations with the target table, to the
that describe the contents of the non-target tableepresentation of data in a vector-space ndeVith
associated with the target table. All continuoukiga  this representation, the data can be conveniently
of the attributes are discretized and the numider oclustered by using the hierarchical or partitioning
bins is taken as the cardinality of the attribdibenain.  clustering technique, as a means of summarizingthe
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Types of discretization: The motivation for the range of observed values for the variable into kady
discretization of continuous features is based o t sized bins, where k is a parameter supplied byisee:
need to obtain higher accuracy rates in order tallea

data with high cardinality attributes using the DAR Vo= Vi)

algorithm, although this operation may affect theet ~ nterval = K (1)
of any learning procedure that may subsequentlituse
There are a few common methods used to discretizgoundaries=%in+(ixinterva|) )

continuous attributes that include equal-width, aqu

height, equal-weight and entropy-based discretmati ang then the boundaries then can be constructeg usi
methods. A new method of discretization, caIIequ_ 2 where i = 1,..., k-1. This type of discretiaa
entropy-instance-based discretization, will also bejpes not depend on the multi-relational structdréhe
introduced later. In the DARA algorithm, all atiles  gata. However, this method of discretization issétére
with continuous values are discretized before they g outliers that may drastically skew the rdflge
transformed into vector space data representation.

D}lscretlzanon methods can be categorized along %qual-height discretization method: Another simple
axe$™: (a) Supervised versus unsupervised (b) Globa}jiscretization method, called equal-height interval
versus local and (c) Static versus dynamic. Supetvi - pinning, discretizes data so that each bin will ehav
methods make use of the class label when partiioni approximately the same number of samples. Thisadeth
the continuous features. On the other handinyolves sorting the observed values together with
unsupervised discretization methods do not redtiee  ocord ID. If IR| refers to the size of the recoads V

class inforr_na_\tior) to discretize continuous attrésut [|R[] refers to the size of the array that storesgorted
Next, the distinction between global and local roeih y5jyes, then the boundaries can be constructed as:

is based on the stage when the discretization takes
place. Global methods discretize features prior to |R|
induction. In contrast, local methods discretizatfiees = Boundaries = V{(T)xi} (3)
during the induction process.

Given k as the number of intervals or bins, some ) ) , )
discretization methods discretize features indepetiyl where, i=1, ..., k'_l' The_result IS a cpllectun‘rk t_)ms
of the other features-this is called static diszagion. of roughly equal_ SIZE. Th|_s algqnthm is class-tiland
On the other hand, dynamic discretization method&08S not take into consideration the structurehef t
search for the space of possible k values foreaifufres ~ database, especially the one-to-many association
at the same time and this allows inter-dependerinies ProPlem. Since unsupervised methods do not make use
feature discretization to be captured. In this ptule  ©f the class information in finding the interval
global discretization method is used to discretizePOundaries, the classification information can dst bs
continuous features. In addition to that, sinceelig no a.reSL.'lt of placing va}lues that are strongly asded
significant improvement in employing dynamic with different classes in the same intef{al
discretization over static methdds we employ the
static method when discretizing the continuousufiesst
in this studies.

Equal-weight  discretization method:  Another
unsupervised discretization method called the equal
weight interval binning, which was introduced by
Knobbe and HU. The equal-weight discretization
method considers not only the distribution of numer

. . N ) values present, but also the groups they appedmis.
Unsuper vised discr etization methods: method involves an idea proposed by Van Laer and De

Equal-width discretization method: The simplest 6 1 .
discretization method is called equal-width intérva Raed[tl - Itis observed that larger groups have a bigger

discretization and this method has often been egs influence on th(_a ch0|ce of poundarles because _they
. X : have more contributing numeric values. In equalghei
a means for producing nominal values from contisuou .

ones. This approach divides the range of observe'tﬁnerval binning, numeric values are weighted vt

values for a feature into k equal sized bins, wieiea mv_erﬁte_ m;ﬂ:c.e s(|jz_e OEf thzz.group they belong to il
parameter provided by the user. The process ingolve 9Nt 1S detined in £q. 4-

sorting the observed values of a continuous featnck

finding the minimum, V,, and maximum, Vs, values. W, (V)=——
The interval (Eq. 1) can be computed by dividing th |aroun)

522

MATERIALSAND METHODS

L (@)



J. Computer Sci., 5 (7): 519-528, 2009

Where: K s | Ent
Wi = The weight function I(A,T,S,k) :M) )
% = The value being considered H

|group| = The size of the group thatbelongs to
The stopping condition proposed by Fayyad and

Irani*” is based on the Minimum Description Length
(MDL) principaf®. The stopping condition prescribes
accepting a partition induced by T if and onlyhiétcost

of encoding the partition and the classes of the
instances in the intervals induced by T is less tthee
cost of encoding the classes of the instances dd¢ffier
split as shown in Eq. 8:

Instead of producing bins of equal size, the
boundaries are computed to obtain bins of equal
weight. The algorithm starts by computing the sife
each group, then it moves through the sorted améys
values, keeping a running sum of weights\Whenever
w; reaches a target bounde(rg'umbe:isi_ groqu, the

current numeric value is added as one of the baigsla

and the process is repeated k-1 times (k is thebrum Gain(A, T,S)< log,(N-1), AA.T.5) (8)
of bins). N N

Supervised discretization methods: where, N is the number of instances in the setdS an
Entropy-based discretization method: One of the Ent (AT,S) = Ent(s)-E(AT,S) )

supervised discretization methods, introduced by

Fayyad and Irani, is called the entropy-basedya 1,s) = log(3*-2)-[cEnt(S)-GENd(S)-c.End(S)]  (10)

discretizatioft”. A lot of significant research in

entropy-based discretization has been carriedrmiea  and in Eq. 10, c,;cand ¢ are the number of distinct

early comparison of entropy-based methods forclasses presentin S, &d S respectively.

discretization of continuous features and multeiaal

discretization methods can be found in the worksEqual-weight discretization method: This  study

conducted by Kohavi and Sahd&fli Algorithms, such introduces a new method of discretizing continuous

as C4.5, try to find a binary cut for each attrébaind ~ attributes that takes into account the one-to-many

use a minimal entropy heuristic for the discretamf ~ association between records stored in the targdt an

continuous attributes. The algorithm uses the clas§on-target tables. In this study, the entropy-basatti-

information entropy to select binary boundaries forinterval discretization method introduced by Fayyad

discretization. In entropy-based discretizationjegia and Iranf” is modified. In the proposed entropy-

set of instances S, a feature A and a partitiombary ~ instance-based discretization method, besides |t#s ¢

T, the class information entropy is: information entropy, another measure that uses
individual information entropy is added to seleailtin
interval boundaries for the continuous attributesen

E(A,T,S) =iEnt(§ )+i Ent(S | (5) n individuals taken from the target table, the viutial

S S information entropy of a subset S is:

where, $ and $ correspond to the samples in S |ndent(S)= _Z?j p(l ,S)log (p(l ,S) (11)
satisfying the condition A<T and >A, respectively. =

The entropy function Ent for a given set is caleda \yhere, p(, S) is the probability that a random record

based on the class distribution of the: associated with individual i from this table is the
subset S. This is due to the fact that in a melational
Ent(S):—Zle p9G ,S)log (p(C ,S. (6) environment in which an entity may have a one-to-

many relationship with another entity, an objeciret

] . ] _in the target table may have more than one occceren
where, p(G S) is the probability of observing the ith f jts instances stored in the non-target table. tAis

class randomly in the subset S. This method can bggason, the total individual information entropy fl
applied recursively to both partitions induced buritil  partitions is defined as:

some stopping condition is achieved, thus creating

multiple intervals of feature A. So, for k binsgthlass Zk |SD| IndENt(S )
information entropy for multi-interval entropy-bakse Ind(A,T,S,k)==2= (12)
discretization is: H
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In other words, the Entropy-Instance-Based
interval binning considers the distribution of nuioe
values present, the groups they appear in andse al
based on all occurrences of each individual recoha:
individual information entropy (Eq. 12) is addedthe
existing entropy-based discretization formula imler
to get better partitions in a multi-relational sejt For
that reason, by minimizing the function Indinf (A, S,

K) in Eqg. 13, which consists of two base functidn@,

T, S, k) and Ind(A, T, S, k), continuous attributee
discretized based on the class and individua
information entropy:

Y. S| IndEnt§ ) 3. |
E

> Js)|ndEnt(s ¥ X | o Entes
S

Feature construction for data summarization: These
experiments are designed to investigate:

IndInf (A, T,S,k)=

ﬁ Ent($ 13
S (13)

Indinf (A, T,S, k)= (14)

The effects of taking into account one-to-many
relationships  when  discretizing  continuous
attributes in a multi-relational environment

tested on Mutagenesis datasets (B1, B2, B3) and
Hepatitis datasets (H1, H2, H3), for each method of
discretization. In these experiments, all five roelh of
discretization are evaluated, namely equal-wid\W [,
Equal-Height (EH), Equal-Weight (EWG), Entropy-
Based (EB) and Entropy-Instance-Based (EIB).

Based on the experimental results, in most cases,
the entropy-instance-based discretization method
produced better data summarization results that fea
a better performance accuracy for the predictiva to
(C4.5), compared to the other discretization method
There is one exception, in the Mutagenesis daB3et
where the improvement of the data summarization
results produced by entropy-instance-based
discretization method is not that obvious.

Table 2 and 3 also show the behaviors of each
discretization method with different values of hibs
performed on the Mutagenesis and Hepatitis
datasets. When b is big (b = 8), the entropy-instan
based discretization method produced better data
summarization results compared to the other
discretization methods, in the mutagenedataset.

Table 2: Performance accuracy (%) of 10-fold cnesgdation of
C4.5 on Mutagenesis dataset with different methofls
discretization

any impacts on the data summarization results

In this experimental study, the discretization

Whether the choice of clustering techniques has

Mutagenesis dataset

methods, described previously, are implementedhén t
DARA algorithm™*? in conjunction with the C4.5
classifier (J48 in WEKAY, as an induction algorithm
that is run on the discretized and transformed tgta

the DARA algorithm. Then, the effectiveness of each

discretization method with respect to C#4,5is
evaluated. Two datasets are chosen from the wel
known Mutagenesis dataSefaind the Hepatitis dataset

EWD EH EWG EB EIB

Dalab H P H P H P H P H P
BL 2 825 800 793 783 79.3 783 800 800 82.B.77
4 825 800 744 742 744 742 800 80.0 827779
6 827 80.0 76.4 747 749 750 77.7 77.7 827 479.
8 80.8 79.6 734 749 739 749 727 727 827479

B2 2 805 823 77.4 764 77.4 764 756 756 78.B.77
4 775 814 741 717 744 719 734 734 826779
6 80 79.2 727 689 73.6 675 734 734 785577
8 733 739 7L1 727 73.6 749 733 733 785577
B3 2 813 8Ll 788 788 782 728 820 820 8149.48
- 4 775 8L4 8L7 827 828 833 789 789 79.948L
6 810 79.2 813 803 8L1 808 813 813 80.6877.
8 733 739 8L0 803 808 816 80.2 80.2 816 6 80.

for Discovery Challenge PKDD 20088.

There are four different values used for the numbeTable 3:

of bins, b = 2, 4, 6, 8, to evaluate different noelh of
discretization. For each dataset, the data sumatemz
process is performed using both the Hierarchicgl (H

Performance accuracy (%) of 10-fold cneafdation of
C4.5 on Hepatitis dataset with different methods of
discretization

Hepatitis PKDD 2005 dataset

and Partitional (P) clustering techniques. After EWD EH EWG EB EIB

summarizing the datasets using the. DAM. bata b H 5 h b h ey TRTTTR
algorlthm,. the effecthGne?S. of each dlSC.retlzaUOlBl 2 719 723 683 711 701 709 721 742 74547
method with respect to C4’5is evaluated using the g ;ié ;;g Z}é-j géi ;3-;‘ gé-g ;gg %g ;i-g g;g
10-fold cross-validation. 8 708 696 694 694 699 69.9 701 719 743 675.
B2 2 718 738 707 718 709 718 703 73.4 73.8.37
4 726 745 710 725 720 720 69.8 73.4 74.1175.
RESULTS 6 70.6 747 68.6 69.2 68.8 69.8 726 73.7 74.2575.
8 70.8 717 700 695 70.3 69.8 69.6 727 73.7 475.
Table 2 and 3 prov|de a deta”ed Overv|eW Of theB3 2 723 743 722 728 719 728 704 731 74497
. . . 4 731 756 722 729 718 724 701 737 74.7 175.
accuracy estimation from 10-fold cross-validation 6 715 748 690 693 694 69.6 723 73.4 743974
8 716 709 704 69.7 704 69.9 703 719 74.2 974

performance of C4.5 for different number of bins, b
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Hepatitis H1 (hierarchical H vs paritional P) Mutagenesis B1 (hierarchical H vs paritional P)
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= 5710
2
T T - - 68.0 T T T T
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Hepatitis H2 (hierarchical H vs paritional P) Mutagenesis B 2 (hierarchical H vs paritional P)

86.0
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5 2 F 810
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s E 3
5 3704
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Methods Methods
(c) (d)
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Fig. 3: Comparison of the average performance (4pefold cross validation of C4.5 on mutagenesis
and hepatitis datasets for hierarchical and patiti clustering

For mutagenesis dataset, the optimal value for the The results of paired t-test (p = 0.05) to incéctite
number of discretization is relatively low: Betwegn significant improvement of each discretization noeth
and 4. In contrast, for the hepatitis datasetetiteopy-  OVer the other methods for mutagenesis and hepatiti

instance-based discretization method produced rbettéjatf"ls.etS are also collected. 5'“9? there are. three
- varieties of datasets for each hepatitis and mutsjs
data summarization results for all values of b, parad

. o : databases, with four different values for the nurfe
to the other discretization methods. The optimduea ;o (b = 2, 4, 6, 8), there are 24 cases in weith

for the number of discretization for the hepatili#aset gjscretization method is evaluated for each databas
is less clear. Table 4 and 5 show the number of cases in which the
Fig. 3 also shows that the Entropy-Instance-Basethethod of discretization in row indicates signifita
(EIB) discretization method produced higher averagéemprovement over the other discretization methads i
performance accuracy (%), for both hierarchical andcolumn. For hepatitis dataset, Table 4 shows thet t
partitional clustering techniques, compared to theentropy-instance-based discretization method has
Entropy-Based (EB), Equal-Height (EH), EquaI-Weighth'gher number of cases in which this discretization
(EWG) and finally Equal-Width (EWD) discretization method indicates significant improvement over thst r

of the discretization methods. For the mutagenesis
methods, for datasets H1, H2, H3 and B3. Howe'eer, f dataset, Table 4 shows that both the equal-width an

datasets Bl and B2, the equal-width discretizationyiropy-instance-based discretization methods have
method produced comparable results with the on@jgher number of cases in which these discretiratio

produced by entropy-instance-based discretizatiomethods indicate significant improvement over the

method. other discretization methods.
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Table 4: The number of cases in which the methodisifretization =~ Table 7: Mutagenesis Datasets: The percentage ghifisant

in row indicates significant improvement over ththey improvement for each discretization method over dtieer
discretization methods in column for the Hepatitisaset methods (Won = percentage of significant improvenoéthe
Hepatitis PKDD 2005 discretization method in row over the method iruouh)
Hepatitis
Methods EWD EH EWG EB EIB
EWD - 7 7 3 0 EWD EH EWG EB EIB  Average
EH 0 - 0 0 0 Discretizations:
EWG 0 0 - 0 0 EWD  Won 50.0 582 375 125 396
EB 5 10 10 - 0 Ties 375 293 542 70.8 48.0
EIB 15 24 24 15 - Loss 125 125 83 167 125
EH Won 125 42 000 000 4.2
Table 5: The number of cases in which the methadisafretization in I'es ?(;Z)g ggg ?L;g i‘;g g??
row indicates significant improvement over the othe _ VSSS 125 00,0 ' 000 o000 a1
discretization methods in column for the Mutagesesitaset von : : : : :
Henatitis PKDD 2005 Ties 292 958 83.3 542 656
epatitis Loss 58.3 4.2 167 458 31.3
EB Wi 83 124 167 00.0 9.4
Methods EWD  EH EWG EB EIB Tin 542 876 834 67 730
EWD - 12 14 9 3 Loss 37.5 00.0 00.0 333 177
EH 3 - 1 0 0 EIB Won 167 458 458  33.3 35.4
EWG 3 0 - 0 0 Ties 70.8 542 542  66.7 61.5
EB 2 3 4 - 0 Loss 125 000 000 00.0 3.1
EIB 4 11 11 8 -
Table 6: Hepatitis Datasets: The percentage off&ignt improvement DISCUSSION
for each discretization method over the otmethods
(Won = percentage of significant improvement of the In general, based on these experiments we can
discretization method in row over the method irunuoh)
Hepatitis conclude that the Entropy-Instance-Based (EIB)
discretization method helps one to achieve higher
EWD EH EWG EB EIB Average percentage of accuracy. This should come as no
Discretizations: surprise, as the EIB is more precise in choosirg th
EWD  Won 292 292 125 000 177  gptimal numeric cut points. In other words, ElBitspl
Ties 70.8 708 66.7 375 615 the data better based the cl inf "
Loss 000 000 208 625 208 e data better based on the class informa ionadswl
EH Won  00.0 00.0 00.0 00.0 00.0 the individual information entropy. As a result,cha
Ties 93.0 100.0 100.0  00.0 73.3 object in the target table can be described more
Loss 29.2 00.0 00.0 1000 32.3 ; ; ;
EWG Wor 000 00.0 000 000 000 aC(t:turater SI(;Kf:e e?cr; o_bject possesses more @nisist
Ties 70.8 100.0 1000 00.0 67.7 patterns useda for clustering. N _
Loss 29.2 000 00.0 100.0 32.3 It is also found that the partitional clustering
EB Won 208 417 417 000 26.1 technique often performs much better compared ¢o th
Ties 66.7 583 583 37.5 552 hierarchical clustering technique in summarizingada
Loss 125 00.0 00.0 625 18.8 ith itiol tored in_ th " ¢
EIB Won 625 1000 1000 625 81.3 with multiple occurrences stored in the non-targe
Ties 375 000 000 375 18.8 relation. Fig. 3 shows the comparison of the awerag
Loss 00.0 000 00.0 00.0 00.0 performance accuracy (%) for the hierarchical and

partitional clustering techniques on both the
From Table 4 and 5, the percentages of significantnutagenesis and hepatitis datasets.

improvement performed by each discretization method In clustering, the frequency of patterns is used t
are computed in Table 6 and 7. For the hepatitissgg,  distinguish records of different classes. And most
the entropy-instance-based discretization methosl haecords may have only a subset of all patterns fitoen
the highest average percentage of significantomplete patterns used to cluster these recordsiaynd
improvement. In contrast, for the mutagenesis @#tas two records may share many of the same patterna. As
both the equal-width interval discretization anck th result, two records could often be nearest neighbor
Entropy-Instance-Based (EIB) discretization methodswithout belonging to the same classes. Since, the
show high average percentage of ties (no significannearest neighbors of a record are of differentselas
improvement). However, both methods showhierarchical clustering technique will often putoeds
reasonable high average percentage of significanaf different classes in the same cluster, evenhat t
improvement over the other discretization methodsearliest stages of the clustering process. In cabese
with EIB having the lowest percentage of loss. nearest neighbors are unreliable, partitioningtehirsg
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technique Ssuch as K-means) that relies on moreaglo 3.

propertieS? is needed. In partitioning clustering
technique, computing the cosine similarity of aorec
to a cluster centroid is the same as computing the
average similarity of the record to all the cluster
record§’, the partitioning clustering technique is
implicitly making use of such a global property
approach. For that reason, this explains why
partitioning clustering technique does better comga
to the hierarchical clustering technique in
categorical domain, although this is not the case i
some other domains.

One of the main problems with Entropy-Based and

Entropy-Instance-Based discretization criterionthiat 5.

they are relatively expensive. For instance, fdyir®s
(k = 2), for a continuous attribute, the Eq. 7 aftl
must be evaluated N-1 times for each attribute revie

is the number of attribute values. Therefore, orsy m 6.

use a genetic algorithm-based discretizatthrin order
to obtain a multi-interval discretization for camibus
attributes in a very large database, using Entidased
or Entropy-Instance-Based methods.

CONCLUSION

This study has revealed, through experiments, th
the entropy-instance-based discretization
which is implemented in the DARA algorithm, helps
one to achieve higher percentage of accuracy. The
entropy-instance-based  discretization method s
recommended for discretization of attribute valies
multi-relational datasets, in which the individual
information entropy can be used to improve the

discretization process, as it has been shown here.

However, when the dataset is too large, one malyapp
the genetic algorithm-based for the entropy-instanc
based discretization method to find the best pamntt

It is also found that, from this experiment, the
partitional clustering technique produced better

performance accuracy compared to the one produged 0.

hierarchical clustering technique.
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