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Abstract: Problem statement: Handling numerical data stored in a relational database has been 
performed differently from handling those numerical data stored in a single table due to the multiple 
occurrences (one-to-many association) of an individual record in the non-target table and non-determinate 
relations between tables. Numbers in Multi-Relational Data Mining (MRDM) were often discretized, 
after considering the schema of the relational database. Study the effects of taking the one-to-many 
association issue into consideration in the process of discretizing continuous numbers. Approach: Different 
alternatives for dealing with continuous attributes in MRDM were considered in this study, namely 
equal-width (EWD), Equal-Height (EH), equal-weight (EWG) and Entropy-Based (EB). The 
discretization procedures considered in this study included algorithms that were not depended on the 
multi-relational structure of the data and also that are sensitive to this structure. A new method of 
discretization, called the entropy instance-based (EIB) discretization method was implemented and 
evaluated with respect to C4.5 on the two well-known multi-relational databases that include the 
Mutagenesis dataset and the Hepatitis dataset for Discovery Challenge PKDD 2005. Results: When 
the number of bins, b, is big (b = 8), the entropy-instance-based discretization method produced better 
data summarization results compared to the other discretization methods, in the mutagenesis dataset. In 
contrast, for the hepatitis dataset, the entropy-instance-based discretization method produced better 
data summarization results for all values of b, compared to the other discretization methods. In the 
Hepatitis dataset, all discretization methods produced higher average performance accuracy (%) for 
partitional clustering technique, compared to the hierarchical technique. Conclusion: These results 
demonstrated that entropy-based discretization can be improved by taking into consideration the 
multiple-instance problem. It was also found that the partitional clustering technique produced better 
performance accuracy compared to the one produced by hierarchical clustering technique. 
 
Key words: Discretization, entropy-based, semi-supervised clustering, genetic algorithm, multiple 
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INTRODUCTION 
 
 Most multi-relational data mining deals with 
nominal or symbolic values, often in the context of 
structural or graph-based mining (e.g., ILP)[3]. Much 
less attention has been given to the area of 
discretization of continuous attributes in a relational 
database, where the issue of one-to-many association 
between records has to be taken into account. 
Continuous attributes in multi-relational data mining 
are seldom used due to the difficulties in handling them 
particularly when we have a one-to-many association in 
a relational database. 
 Handling numerical data stored in a relational 
database is different from handling those numerical 
data stored in a single table due to the multiple 
occurrences of an individual record stored in the non-

target table and non-determinate relations between 
tables.  
 Firstly, most pre-processing steps, such as the 
discretization and aggregation operations, that process 
attributes stored in relational database, need to use the 
structure (schema) of the relational database and to find 
out how attributes stored in non-target and target tables 
are related to each other. One may perform the 
aggregation operation on the attributes that have 
numerical multi-set values and then perform the 
discretization operation on the aggregated value. 
However, this is not an easy task as the non-target table 
may have categorical and numerical attributes in the 
same table. 
 Next, the task of discretizing continuous attributes 
is more complex when the occurrences of multiple 
instances in the non-target table are taken into 
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consideration, since most traditional discretization 
methods deal with a single flat table and quite often 
ignore the one-to-many relationships problem.  
 And finally, using a class-based discretization 
method, such as an entropy-based discretization[17], is 
not a straight-forward task in a relational database as it 
needs to be done in a single table. Most traditional data 
mining methods only deal with a single table where all 
attributes are available in that table and discretize 
columns that contain aggregated continuous numbers 
into nominal values. In a relational database, multiple 
records with non-aggregated numerical attributes are 
stored in the non-target table, separately from the target 
table and these records are usually associated with a 
single individual stored in the target table. As a result, 
discretizing continuous attributes in non-target table 
based on the class information requires user to consider 
the structure of the relational database. Thus, numbers 
in relational databases are often discretized, after 
considering the schema of the relational database, in 
order to reduce the continuous domains to more 
manageable symbolic domains of low cardinality and 
the loss of precision is assumed to be acceptable. 
 
Data transformation using Dynamic Aggregation of 
Relational Attributes (DARA): The DARA algorithm 
is designed to transform the data representation of a 
relational database into a vector space model, such that 
records stored in the non-target table can be 
summarized to characterize the related records stored in 
the target table. In a relational database, a single record, 
Ri, stored in the target table can be associated with 
other records stored in the non-target table, as shown in 
Fig. 1. Let R denote a set of m records stored in the 
target table and let S denote a set of n records (T1, T2, 
T3, ..., Tn), stored in the non-target table. Let Si be a 
subset of S, Si ⊆ S, associated through a foreign key 
with a single record Ra stored in the target table, where 
Ra ∈ R. Thus, the association of these records can be 
described as Ra ⇐ Si. In this case, we have a single 
record stored in the target table that is associated with 
multiple records stored in the non-target table. 
 

 
 
Fig. 1: A one-to-many association between target and 

non-target relations 

The records stored in the non-target table that 
correspond to a particular record stored in the target 
table can be represented as vectors of patterns. As a 
result, based on the vector space model[4], a unique 
record stored in non-target table can be represented as a 
vector of patterns. In other words, a particular record 
stored in the target table that is related to several 
records stored in the non-target table can be represented 
as a bag of patterns, i.e., by the patterns it contains and 
their frequency, regardless of their order. The bag of 
patterns is defined as follows: 
 
Definition: In a bag of patterns representation, each 
target record stored in the non-target table is 
represented by the set of its pattern and the pattern 
frequencies. 
 This definition follows the notion of an individual-
centered representation defined by Lachiche and Flach[9], 
where the data is described as a collection of individuals 
and the induced rules generalize over the individuals, 
mapping them to a class. For instance, individual-
centered domains include classification problems in 
molecular biology where the individuals are molecules.  
 In our approach, an individual is represented as a 
bag of patterns. In the DARA algorithm, these patterns 
are encoded into binary numbers. The process of 
encoding these patterns into binary numbers depends on 
the number of attributes that exist in the non-target 
table. For example, there are two different cases when 
encoding patterns for the data stored in the non-target 
table. In the first case (Case I), a non-target table may 
have a single attribute. In this case, the DARA 
algorithm transforms the representation of the data 
stored in a relational database without constructing any 
new feature to build the (n×p) TF-IDF weighted 
frequency matrix[4], as only one attribute exists in the 
non-target table. In the other case (Case II), a non-target 
table may have multiple attributes exist in the table. In 
this case, DARA may construct new features, which 
results in richer representation of each target record in 
the non-target table. The method used to encode the 
patterns derived from these attributes has some 
influences on the final results of the modeling task[11]. 
 
Case 1: A non-target table with a single attribute: 
Case 1 assumes that there is exactly one attribute 
describing the contents of the non-target table that is 
associated with the target table. For instance, in Fig. 2, 
the Trans attribute is the Primary Key (PK) of the 
Sales table and the Customer attribute is the Foreign 
Key (FK) of the table that associates records stored in 
this non-target table (sales table) with records stored 
in  the  target  table  (consists  of  individual  customer). 
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Fig. 2: Case I: A data transformation for data stored in 

a non-target table with a single attribute 
 
The algorithm computes the cardinality of the attribute 
domain in the non-target table. Cardinality of an 
attribute is defined as the number of unique values that 
the attribute can take. If the data consists of continuous 
values, the data is discretized and the number of bins 
taken as the cardinality of the attribute domain. In order 
to encode the values into binary numbers, the algorithm 
finds the appropriate number of bits, n, such that it can 
represent all different values of the attribute’s domain, 
where 2n−1 < |Attribute’s Domain| ≤ 2n.  
 For example, if the attribute has 5 different values 
(London, New York, Chicago, Paris, Kuala Lumpur), 
then we just need 3 (22 < 5 ≤ 23) bits to represent each 
of these values (001, 010, 011, 100, 101), as shown in 
Fig. 2. A bag of patterns is maintained to keep track of 
the number of patterns encountered and their 
frequencies. For each encoded pattern, the counter for 
the corresponding pattern in the bag is incremented or 
the pattern is added to the bag of patterns if it is not 
already in the bag. The resulting bag of patterns, shown 
in Fig. 2, can be used to describe the characteristics of an 
individual record. In Fig. 2, the first digit “2” preceded 
the binary numbers indicates the index of attribute that 
the binary numbers are belong to. Since there is only one 
attribute exists in the datasets, all the encoded patterns 
produced are belong to index attribute “2”. 
 
Case 2: A non-target table with multiple attributes: 
Case 2 assumes that there is more than one attribute 
that describe the contents of the non-target table 
associated with the target table. All continuous values 
of the attributes  are discretized and the number of 
bins  is  taken as the cardinality of the attribute domain. 

Table 1: Number of attributes combined, p and the list of patterns 
produced 

p Patterns produced 
1 F1,a, F2,b, F3,c, F4,d, ..., Fk−1,b, Fk,n 
2 F1,aF2,b, F3,cF4,d , ..., Fk−1,bFk,n (with even number of attributes) 
2 F1,aF2,b, F3,cF4,d , ..., Fk,n (with odd number of attributes) 
k F1,aF2,bF3,cF4,d...Fk−1,bFk,n 

 
After encoding the patterns as binary numbers, the 
algorithm determines a subset of the attributes to be 
used to construct a new feature.  
 Here is an example of a simple algorithm to 
construct features without using feature scoring to 
generate the patterns that represent the input for the 
DARA algorithm. For each record stored in the non-
target table, we concatenate p number of columns’ 
values, where p is less than or equal to the total number 
of attributes. For example, let F = (F1, F2, F3, ..., Fk) 
denote k field columns or attributes in the non-target 
table. Let dom(Fi) = (Fi,1, Fi,2, Fi,3, ..., Fi,n) denote the 
domain of attribute Fi, with n different values. So, one 
may have an instance of a record stored in the non-
target table with these values (F1,a, F2,b, F3,c, F4,d, ..., 
Fk−1,b, Fk,n), where F1,a ∈ dom(F1), F2,b ∈ dom(F2), F3,c ∈ 

dom(F3), F4,d ∈ dom(F4), ..., Fk−1,b ∈ dom(Fk−1), Fk,n ∈ 
dom(Fk). Table 1 shows the list of patterns produced 
with different values of p. It is not natural to have 
concatenated features like F1,aF2,b but not F1,aF3,c, when 
we have p = 2, since the attributes do not have a natural 
order. However, a genetic algorithm can be applied to 
solve this problem[10]. 
 For each record, a bag of patterns is maintained to 
keep track of the patterns encountered and their 
frequencies. For each new pattern encoded, if the 
pattern exists in the bag, the counter for the 
corresponding pattern is increased, else the pattern is 
added to the bag and set the counter for this particular 
pattern to 1. The resulting bag of patterns can be used to 
describe the characteristics of a record associated with 
them. 
 In short, the encoding process described here 
transforms data stored in the non-target table that has 
many-to-one relations with the target table, to the 
representation of data in a vector-space model[4]. With 
this representation, the data can be conveniently 
clustered by using the hierarchical or partitioning 
clustering technique, as a means of summarizing them. 
 In short, the encoding process described here 
transforms data stored in the non-target table that has 
many-to-one relations with the target table, to the 
representation of data in a vector-space model[4]. With 
this representation, the data can be conveniently 
clustered by using the hierarchical or partitioning 
clustering technique, as a means of summarizing them. 
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Types of discretization: The motivation for the 
discretization of continuous features is based on the 
need to obtain higher accuracy rates in order to handle 
data with high cardinality attributes using the DARA 
algorithm, although this operation may affect the speed 
of any learning procedure that may subsequently use it. 
There are a few common methods used to discretize 
continuous attributes that include equal-width, equal-
height, equal-weight and entropy-based discretization 
methods. A new method of discretization, called 
entropy-instance-based discretization, will also be 
introduced later. In the DARA algorithm, all attributes 
with continuous values are discretized before they are 
transformed into vector space data representation. 
 Discretization methods can be categorized along 3 
axes[6]: (a) Supervised versus unsupervised (b) Global 
versus local and (c) Static versus dynamic. Supervised 
methods make use of the class label when partitioning 
the continuous features. On the other hand, 
unsupervised discretization methods do not require the 
class information to discretize continuous attributes. 
Next, the distinction between global and local methods 
is based on the stage when the discretization takes 
place. Global methods discretize features prior to 
induction. In contrast, local methods discretize features 
during the induction process. 
 Given k as the number of intervals or bins, some 
discretization methods discretize features independently 
of the other features-this is called static discretization. 
On the other hand, dynamic discretization methods 
search for the space of possible k values for all features 
at the same time and this allows inter-dependencies in 
feature discretization to be captured. In this study, the 
global discretization method is used to discretize 
continuous features. In addition to that, since there is no 
significant improvement in employing dynamic 
discretization over static methods[13], we employ the 
static method when discretizing the continuous features 
in this studies. 
 

MATERIALS AND METHODS 
 
Unsupervised discretization methods: 
Equal-width discretization method: The simplest 
discretization method is called equal-width interval 
discretization and this method has often been applied as 
a means for producing nominal values from continuous 
ones. This approach divides the range of observed 
values for a feature into k equal sized bins, where k is a 
parameter provided by the user. The process involves 
sorting the observed values of a continuous feature and 
finding the minimum, Vmin and maximum, Vmax, values. 
The interval (Eq. 1) can be computed by dividing the 

range of observed values for the variable into k equally 
sized bins, where k is a parameter supplied by the user: 
 

Interval = max min(V V )

k

−
 (1) 

 
Boundaries = Vmin+(i×interval)  (2) 
 
and then the boundaries then can be constructed using 
Eq. 2 where i = 1,..., k-1. This type of discretization 
does not depend on the multi-relational structure of the 
data. However, this method of discretization is sensitive 
to outliers that may drastically skew the range[6]. 
 
Equal-height discretization method: Another simple 
discretization method, called equal-height interval 
binning, discretizes data so that each bin will have 
approximately the same number of samples. This method 
involves sorting the observed values together with the 
record ID. If |R| refers to the size of the records and V 
[|R|] refers to the size of the array that stores the sorted 
values, then the boundaries can be constructed as: 
 

Boundaries = V 
R

( ) i
k

 
× 

  
 (3) 

 
where, i = 1, ..., k-1. The result is a collection of k bins 
of roughly equal size. This algorithm is class-blind and 
does not take into consideration the structure of the 
database, especially the one-to-many association 
problem. Since unsupervised methods do not make use 
of the class information in finding the interval 
boundaries, the classification information can be lost as 
a result of placing values that are strongly associated 
with different classes in the same interval[6]. 
 
Equal-weight discretization method: Another 
unsupervised discretization method called the equal-
weight interval binning, which was introduced by 
Knobbe and Ho[1]. The equal-weight discretization 
method considers not only the distribution of numeric 
values present, but also the groups they appear in. This 
method involves an idea proposed by Van Laer and De 
Raedt[16]. It is observed that larger groups have a bigger 
influence on the choice of boundaries because they 
have more contributing numeric values. In equal-weight 
interval binning, numeric values are weighted with the 
inverse of the size of the group they belong to and this 
weight is defined in Eq. 4: 
 

t

v

1
W (v)

group
=  (4) 
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Where: 
wt = The weight function  
v = The value being considered  
|groupv| = The size of the group that ϖ belongs to  
 
 Instead of producing bins of equal size, the 
boundaries are computed to obtain bins of equal-
weight. The algorithm starts by computing the size of 
each group, then it moves through the sorted arrays of 
values, keeping a running sum of weights wt. Whenever 

wt reaches a target boundary 
number of groups

( )
bins

− −
, the 

current numeric value is added as one of the boundaries 
and the process is repeated k-1 times (k is the number 
of bins). 
 
Supervised discretization methods: 
Entropy-based discretization method: One of the 
supervised discretization methods, introduced by 
Fayyad and Irani, is called the entropy-based 
discretization[17]. A lot of significant research in 
entropy-based discretization has been carried out and an 
early comparison of entropy-based methods for 
discretization of continuous features and multi-interval 
discretization methods can be found in the works 
conducted by Kohavi and Sahami[13]. Algorithms, such 
as C4.5, try to find a binary cut for each attribute and 
use a minimal entropy heuristic for the discretization of 
continuous attributes. The algorithm uses the class 
information entropy to select binary boundaries for 
discretization. In entropy-based discretization, given a 
set of instances S, a feature A and a partition boundary 
T, the class information entropy is: 
 

E(A,T,S) = 1 2
1 2

s s
Ent(S ) Ent(S )

s s
+  (5) 

 
where, S1 and S2 correspond to the samples in S 
satisfying the condition A<T and A≥T, respectively. 
The entropy function Ent for a given set is calculated 
based on the class distribution of the: 
 

c

i 2 ii 1
Ent(S) p9C ,S) log (p(C ,S))

=
=−∑  (6) 

 
where, p(Ci, S) is the probability of observing the ith 
class randomly in the subset S. This method can be 
applied recursively to both partitions induced by T until 
some stopping condition is achieved, thus creating 
multiple intervals of feature A. So, for k bins, the class 
information entropy for multi-interval entropy-based 
discretization is: 

 

k

b bb 2
s .Ent(s )

I(A,T,S,k)
s

== ∑  (7) 

 
 The stopping condition proposed by Fayyad and 
Irani[17] is based on the Minimum Description Length 
(MDL) principal[2]. The stopping condition prescribes 
accepting a partition induced by T if and only if the cost 
of encoding the partition and the classes of the 
instances in the intervals induced by T is less than the 
cost of encoding the classes of the instances before the 
split as shown in Eq. 8: 
 

2log (N 1) (A,T,S)
Gain(A,T,S)

N N

− ∆< +  (8) 

 
where, N is the number of instances in the set S and: 
 
Ent (A,T,S) = Ent(s)-E(A,T,S) (9) 
 
∆(A,T,S) = log2(3

c-2)-[cEnt(S)-c1End(S1)-c2End(S2)] (10) 
 
and in Eq. 10, c, c1 and c2 are the number of distinct 
classes present in S, S1 and S2 respectively. 
 
Equal-weight discretization method: This study 
introduces a new method of discretizing continuous 
attributes that takes into account the one-to-many 
association between records stored in the target and 
non-target tables. In this study, the entropy-based multi-
interval discretization method introduced by Fayyad 
and Irani[17] is modified. In the proposed entropy-
instance-based discretization method, besides the class 
information entropy, another measure that uses 
individual information entropy is added to select multi-
interval boundaries for the continuous attributes. Given 
n individuals taken from the target table, the individual 
information entropy of a subset S is: 
 

l

i 2 ii 1
IndEnt(S) p(l ,S)log (p(l ,S))

=
= −∑  (11) 

 
where, p(Ii, S) is the probability that a random record 
associated with individual i from this table is in the 
subset S. This is due to the fact that in a multi-relational 
environment in which an entity may have a one-to-
many relationship with another entity, an object stored 
in the target table may have more than one occurrence 
of its instances stored in the non-target table. For this 
reason, the total individual information entropy for all 
partitions is defined as: 
 

k

b bb 1
S .IndEnt(S )

Ind(A,T,S,k)
S

== ∑  (12) 
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 In other words, the Entropy-Instance-Based 
interval binning considers the distribution of numeric 
values present, the groups they appear in and is also 
based on all occurrences of each individual record. The 
individual information entropy (Eq. 12) is added to the 
existing entropy-based discretization formula in order 
to get better partitions in a multi-relational setting. For 
that reason, by minimizing the function IndInf (A, T, S, 
k) in Eq. 13, which consists of two base functions, I (A, 
T, S, k) and Ind(A, T, S, k), continuous attributes are 
discretized based on the class and individual 
information entropy: 
 

k k

b b b bb 1 b 1
S .IndEnt(S ) S .Ent(S )

IndInf (A,T,S,k)
S S

= == +∑ ∑  (13) 

 
k k

b b b bb 1 b 1
S .IndEnt(S ) S .Ent(S )

IndInf (A,T,S,k)
S

= =
+

=
∑ ∑

 (14) 

 
Feature construction for data summarization: These 
experiments are designed to investigate: 
 
• The effects of taking into account one-to-many 

relationships when discretizing continuous 
attributes in a multi-relational environment 

• Whether the choice of clustering techniques has 
any impacts on the data summarization results 

 
 In this experimental study, the discretization 
methods, described previously, are implemented in the 
DARA algorithm[11,12], in conjunction with the C4.5 
classifier (J48 in WEKA)[5], as an induction algorithm 
that is run on the discretized and transformed data by 
the DARA algorithm. Then, the effectiveness of each 
discretization method with respect to C4.5[7], is 
evaluated. Two datasets are chosen from the well-
known Mutagenesis dataset[3] and the Hepatitis dataset 
for Discovery Challenge PKDD 2005[15]. 
 There are four different values used for the number 
of bins, b = 2, 4, 6, 8, to evaluate different methods of 
discretization. For each dataset, the data summarization 
process is performed using both the Hierarchical (H) 
and Partitional (P) clustering techniques. After 
summarizing the datasets using the DARAsmall 
algorithm, the effectiveness of each discretization 
method with respect to C4.5[7] is evaluated using the 
10-fold cross-validation. 
 

RESULTS 
 
 Table 2 and 3 provide a detailed overview of the 
accuracy estimation from 10-fold cross-validation 
performance of C4.5 for different number of bins, b, 

tested on Mutagenesis datasets (B1, B2, B3) and 
Hepatitis datasets (H1, H2, H3), for each method of 
discretization. In these experiments, all five methods of 
discretization are evaluated, namely equal-width (EWD), 
Equal-Height (EH), Equal-Weight (EWG), Entropy-
Based (EB) and Entropy-Instance-Based (EIB).  
 Based on the experimental results, in most cases, 
the entropy-instance-based discretization method 
produced better data summarization results that lead to 
a better performance accuracy for the predictive tool 
(C4.5), compared to the other discretization methods. 
There is one exception, in the Mutagenesis dataset B3, 
where the improvement of the data summarization 
results produced by entropy-instance-based 
discretization method is not that obvious. 
 Table 2 and 3 also show the behaviors of each 
discretization method with different values of bins, b, 
performed  on  the  Mutagenesis and Hepatitis 
datasets. When b is big (b = 8), the entropy-instance-
based discretization method produced better data 
summarization results compared to the other 
discretization  methods,   in   the   mutagenesis   dataset. 
 
Table 2: Performance accuracy (%) of 10-fold cross-validation of 

C4.5 on Mutagenesis dataset with different methods of 
discretization 

     Mutagenesis dataset 
  ---------------------------------------------------------------------------------- 
  EWD  EH  EWG  EB  EIB 
  ------------- ------------ ------------- --------------- -------------- 
Data b H P H P H P H P H P 
B1 2 82.5 80.0 79.3 78.3 79.3 78.3 80.0 80.0 82.7 79.7 
 4 82.5 80.0 74.4 74.2 74.4 74.2 80.0 80.0 82.7 79.7 
 6 82.7 80.0 76.4 74.7 74.9 75.0 77.7 77.7 82.7 79.4 
 8 80.8 79.6 73.4 74.9 73.9 74.9 72.7 72.7 82.7 79.4 
B2 2 80.5 82.3 77.4 76.4 77.4 76.4 75.6 75.6 78.2 76.7 
 4 77.5 81.4 74.1 71.7 74.4 71.9 73.4 73.4 82.6 79.7 
 6 81.0 79.2 72.7 68.9 73.6 67.5 73.4 73.4 78.5 77.5 
 8 73.3 73.9 71.1 72.7 73.6 74.9 73.3 73.3 78.5 77.5 
B3 2 81.3 81.1 78.8 78.8 78.2 72.8 82.0 82.0 81.9 81.4 
 4 77.5 81.4 81.7 82.7 82.8 83.3 78.9 78.9 79.9 81.4 
 6 81.0 79.2 81.3 80.3 81.1 80.8 81.3 81.3 80.6 77.8 
 8 73.3 73.9 81.0 80.3 80.8 81.6 80.2 80.2 81.6 80.6 
 
Table 3: Performance accuracy (%) of 10-fold cross-validation of 

C4.5 on Hepatitis dataset with different methods of 
discretization 

   Hepatitis PKDD 2005 dataset 
  ----------------------------------------------------------------------------------- 
  EWD  EH  EWG  EB  EIB 
  --------------- ------------- -------------- ------------ --------------- 
Data b H P H P H P H P H P 
B1 2 71.9 72.3 68.3 71.1 70.1 70.9 72.1 74.2 74.1 75.4 
 4 71.2 71.5 71.4 71.5 71.4 71.0 70.2 71.8 74.3 75.5 
 6 71.6 72.3 69.4 69.4 69.9 69.9 69.2 72.9 74.3 75.5 
 8 70.8 69.6 69.4 69.4 69.9 69.9 70.1 71.9 74.3 75.6 
B2 2 71.8 73.8 70.7 71.8 70.9 71.8 70.3 73.4 73.6 74.3 
 4 72.6 74.5 71.0 72.5 72.0 72.0 69.8 73.4 74.1 75.1 
 6 70.6 74.7 68.6 69.2 68.8 69.8 72.6 73.7 74.2 75.5 
 8 70.8 71.7 70.0 69.5 70.3 69.8 69.6 72.7 73.7 75.4 
B3 2 72.3 74.3 72.2 72.8 71.9 72.8 70.4 73.1 74.4 74.9 
 4 73.1 75.6 72.2 72.9 71.8 72.4 70.1 73.7 74.7 75.1 
 6 71.5 74.8 69.0 69.3 69.4 69.6 72.3 73.4 74.3 74.9 
 8 71.6 70.9 70.4 69.7 70.4 69.9 70.3 71.9 74.2 74.9 
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 (c) (d) 
 

    
 (e) (f) 
 

Fig. 3: Comparison of the average performance (%) of 10-fold cross validation of C4.5 on mutagenesis 
and hepatitis datasets for hierarchical and partitional clustering 

 
For mutagenesis dataset, the optimal value for the 
number of discretization is relatively low: Between 2 
and 4. In contrast, for the hepatitis dataset, the entropy-
instance-based discretization method produced better 
data summarization results for all values of b, compared 
to the other discretization methods. The optimal value 
for the number of discretization for the hepatitis dataset 
is less clear. 
 Fig. 3 also shows that the Entropy-Instance-Based 
(EIB) discretization method produced higher average 
performance accuracy (%), for both hierarchical and 
partitional clustering techniques, compared to the 
Entropy-Based (EB), Equal-Height (EH), Equal-Weight 
(EWG) and finally Equal-Width (EWD) discretization 
methods, for datasets H1, H2, H3 and B3. However, for 
datasets B1 and B2, the equal-width discretization 
method produced comparable results with the one 
produced by entropy-instance-based discretization 
method. 

 The results of paired t-test (p = 0.05) to indicate the 
significant improvement of each discretization method 
over the other methods for mutagenesis and hepatitis 
datasets are also collected. Since there are three 
varieties of datasets for each hepatitis and mutagenesis 
databases, with four different values for the number of 
bins (b = 2, 4, 6, 8), there are 24 cases in which each 
discretization method is evaluated for each database. 
Table 4 and 5 show the number of cases in which the 
method of discretization in row indicates significant 
improvement over the other discretization methods in 
column. For hepatitis dataset, Table 4 shows that the 
entropy-instance-based discretization method has 
higher number of cases in which this discretization 
method indicates significant improvement over the rest 
of the discretization methods. For the mutagenesis 
dataset, Table 4 shows that both the equal-width and 
entropy-instance-based discretization methods have 
higher number of cases in which these discretization 
methods indicate significant improvement over the 
other discretization methods. 
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Table 4: The number of cases in which the method of discretization 
in row indicates significant improvement over the other 
discretization methods in column for the Hepatitis dataset 

Hepatitis PKDD 2005 
----------------------------------------------------------------------------------- 
Methods EWD EH EWG EB EIB 
EWD - 7 7 3 0 
EH 0 - 0 0 0 
EWG 0 0 - 0 0 
EB 5 10 10 - 0 
EIB 15 24 24 15 - 

 
Table 5: The number of cases in which the method of discretization in 

row indicates significant improvement over the other 
discretization methods in column for the Mutagenesis dataset 

  Hepatitis PKDD 2005 
----------------------------------------------------------------------------------- 
Methods EWD EH EWG EB EIB 
EWD - 12 14 9 3 
EH 3 - 1 0 0 
EWG 3 0 - 0 0 
EB 2 3 4 - 0 
EIB 4 11 11 8 - 

 
Table 6: Hepatitis Datasets: The percentage of significant improvement 

for  each  discretization  method  over  the other methods 
(Won = percentage of significant improvement of the 
discretization method in row over the method in column) 

Hepatitis 
------------------------------------------------------------------------------------ 
  EWD EH EWG EB EIB Average 
Discretizations:  
EWD Won  29.2 29.2 12.5 00.0 17.7 
 Ties  70.8 70.8 66.7 37.5 61.5 
 Loss  00.0 00.0 20.8 62.5 20.8 
EH Won 00.0  00.0 00.0 00.0 00.0 
 Ties 93.0  100.0 100.0 00.0 73.3 
 Loss 29.2  00.0 00.0 100.0 32.3 
EWG Won 00.0 00.0  00.0 00.0 00.0 
 Ties 70.8 100.0  100.0 00.0 67.7 
 Loss 29.2 00.0  00.0 100.0 32.3 
EB Won 20.8 41.7 41.7  00.0 26.1 
 Ties 66.7 58.3 58.3  37.5 55.2 
 Loss 12.5 00.0 00.0  62.5 18.8 
EIB Won 62.5 100.0 100.0 62.5  81.3 
 Ties 37.5 00.0 00.0 37.5  18.8 
 Loss 00.0 00.0 00.0 00.0  00.0 

 
 From Table 4 and 5, the percentages of significant 
improvement performed by each discretization method 
are computed in Table 6 and 7. For the hepatitis dataset, 
the entropy-instance-based discretization method has 
the highest average percentage of significant 
improvement. In contrast, for the mutagenesis dataset, 
both the equal-width interval discretization and the 
Entropy-Instance-Based (EIB) discretization methods 
show high average percentage of ties (no significant 
improvement). However, both methods show 
reasonable high average percentage of significant 
improvement over the other discretization methods, 
with EIB having the lowest percentage of loss. 

Table 7: Mutagenesis Datasets: The percentage of significant 
improvement for each discretization method over the other 
methods (Won = percentage of significant improvement of the 
discretization method in row over the method in column) 

   Hepatitis 
------------------------------------------------------------------------------------ 
 EWD EH EWG EB EIB Average 
Discretizations: 
EWD Won  50.0 58.2 37.5 12.5 39.6 
 Ties  37.5 29.3 54.2 70.8 48.0 
 Loss  12.5 12.5 8.3 16.7 12.5 
EH Won 12.5  4.2 00.0 00.0 4.2 
 Ties 37.5  95.8 87.5 54.2 68.8 
 Loss 00.0  00.0 12.5 45.8 27.1 
EWG Won 12.5 00.0  00.0 00.0 3.1 
 Ties 29.2 95.8  83.3 54.2 65.6 
 Loss 58.3 4.2  16.7 45.8 31.3 
EB Won 8.3 12.4 16.7  00.0 9.4 
 Ties 54.2 87.6 83.3  66.7 73.0 
 Loss 37.5 00.0 00.0  33.3 17.7 
EIB Won 16.7 45.8 45.8 33.3  35.4 
 Ties 70.8 54.2 54.2 66.7  61.5 
 Loss 12.5 00.0 00.0 00.0  3.1 

 
DISCUSSION 

 
 In general, based on these experiments we can 
conclude that the Entropy-Instance-Based (EIB) 
discretization method helps one to achieve higher 
percentage of accuracy. This should come as no 
surprise, as the EIB is more precise in choosing the 
optimal numeric cut points. In other words, EIB splits 
the data better based on the class information and also 
the individual information entropy. As a result, each 
object in the target table can be described more 
accurately since each object possesses more consistent 
patterns used for clustering.  
 It is also found that the partitional clustering 
technique often performs much better compared to the 
hierarchical clustering technique in summarizing data 
with multiple occurrences stored in the non-target 
relation. Fig. 3 shows the comparison of the average 
performance accuracy (%) for the hierarchical and 
partitional clustering techniques on both the 
mutagenesis and hepatitis datasets.  
 In clustering, the frequency of patterns is used to 
distinguish records of different classes. And most 
records may have only a subset of all patterns from the 
complete patterns used to cluster these records and any 
two records may share many of the same patterns. As a 
result, two records could often be nearest neighbors 
without belonging to the same classes. Since, the 
nearest neighbors of a record are of different classes, 
hierarchical clustering technique will often put records 
of different classes in the same cluster, even at the 
earliest stages of the clustering process. In cases where 
nearest neighbors are unreliable, partitioning clustering 
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technique (such as K-means) that relies on more global 
properties[14] is needed. In partitioning clustering 
technique, computing the cosine similarity of a record 
to a cluster centroid is the same as computing the 
average similarity of the record to all the clusters 
records[8], the partitioning clustering technique is 
implicitly making use of such a global property 
approach. For that reason, this explains why 
partitioning clustering technique does better compared 
to the hierarchical clustering technique in the 
categorical domain, although this is not the case in 
some other domains. 
 One of the main problems with Entropy-Based and 
Entropy-Instance-Based discretization criterion is that 
they are relatively expensive.  For instance, for 2 bins 
(k = 2), for a continuous attribute, the Eq. 7 and 12 
must be evaluated N-1 times for each attribute, where N 
is the number of attribute values. Therefore, one may 
use a genetic algorithm-based discretization[11], in order 
to obtain a multi-interval discretization for continuous 
attributes in a very large database, using Entropy-Based 
or Entropy-Instance-Based methods. 
 

CONCLUSION 
 
 This study has revealed, through experiments, that 
the entropy-instance-based discretization method, 
which is implemented in the DARA algorithm, helps 
one to achieve higher percentage of accuracy. The 
entropy-instance-based discretization method is 
recommended for discretization of attribute values in 
multi-relational datasets, in which the individual 
information entropy can be used to improve the 
discretization process, as it has been shown here. 
However, when the dataset is too large, one may apply 
the genetic algorithm-based for the entropy-instance-
based discretization method to find the best partitions. 
It is also found that, from this experiment, the 
partitional clustering technique produced better 
performance accuracy compared to the one produced by 
hierarchical clustering technique. 
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