Journal of Computer Science 5 (5): 380-387, 2009
ISSN 1549-3636
© 2009 Science Publications

System Evolving using Ant Colony Optimization Algoithm

Nada M.A. AL-Salami
Department of Management Information Systems, BacflEconomic and Business,
Al Zaytoonah University of Jordan, Jordan, Amman

Abstract: Problem statement: The goal of automatic programming system is toaterein an
automated way, a computer program that enablesnputer to solve a problem. It is difficult to build
an automatic programming system: They require odlyeflesigned specification languages and an
intimate knowledge base. Determine the relevanamathematical system theory to the problems of
automatic programming and find automatic prograngmmethodology, where a computer program
evolved to solve problem by using problem’s inputpait specifications onlyApproach: Problem
behavior was described as a finite state automagadon its meaning, also problem’s input-output
specifications were described in theoretical mantersed on its input and output trajectories
information, then a program was evolved to solwe phoblem. Different implementation languages
can be used without significantly affecting exigtiproblem specification. Evolutionary process aslapt
ant colony optimization algorithm to find good fimistate automata that efficiently satisfies input-
output specificationsResults: By moving from state to states, each ant increaigntonstructs sub-
solution in an iterative process. The algorithmwarged to the optimal final solution, by accumuigti
most effective sub-solutions; main problem will epped in solving problem with little input-output
specifications. Fixed and dynamic input-output #petions were used to mimic chaotic behavior of
real world. Conclusion: These results indicated that theoretical baseserdmance efficiency and
performance of automatic programming system, lgatbnan increase in the system productivity and
letting the concentrate to be done on problem §pation only. Also, the collective behavior
emerging from the interaction of the different anégl proved effective in solving problem; finalig,
dynamic input-output specification chaos theorypeesally “butterfly effect”, can be used to control
the sensitivity to initial configuration of trajext information.

Key words: Automatic programming, ACO, multi-agent

INTRODUCTION components. Ant Colony Optimization incrementally
generates solutions paths in the space of such
Ant Colony Optimization (ACO) is a population- components, adding new components to a state.
based approach for solving combinatorial optimaati Memory is kept of all the observed transitions lesw
problems that is inspired by the foraging behawbr pairs of solution components and a degree of
ants and their inherent ability to find the sharteath desirability is associated to each transition ddpen
from a food source to their nest. ACO is the resifilt on the quality of the solutions in which it occutrso
research on computational intelligence approacbes tfar. While a new solution is generated, a compowgést
combinatorial optimization originally conducted by. included in a state, with a probability that is
Marco Dorigo, in collaboration with Alberto Colorni proportional to the desirability of the transitibatween
and Vittorio Maniezzo. The fundamental approachthe last component included in the state and yfitse
underlying ACO is an iterative process in which aThe main idea is to use the self-organizing prilespo
population of simple agents repeatedly constructoordinate populations of artificial agents that
candidate solutions; this construction process igollaborate to solve computational problems. Self-
probabilistically guided by heuristic informatiom ¢he organization is a set of dynamical mechanisms wiere
given problem instance as well as by a shared mgmoistructures appear at the global level of a systemm f
containing experience gathered by the ants in pusvi interactions among its lower-level components. The
iteration. ACO has been applied to a broad range afules specifying the interactions among the system’
hard combinatorial problems. Problems are defimed i constituent units are executed on the basis oflypure
terms of components and states, which are sequeficeslocal information, without reference to the global

380

J. Computer i, 5 (5): 380-387, 2009

pattern, which is an emergent property of the syste problem-solving strategies, the technology haswmiit
rather than a property imposed upon the systemnby dess success in systems and real time programming.
external ordering influence. For example, the eiingrg This research is an attempt to find general anudstal
structures in the case of foraging in ants includeAutomatic Programming methodology, where a
spatiotemporally organized networks of pheromonecomputer program is evolved to solve problem bygisi
trails®®. Self-organization relies on four basic it's input output specifications. Problems are de in
ingredients: terms of states and transition between them, whaieh
sequences of transformation. Ant Colony Optimizatio
« Positive feedback (amplification) is constituted byincrementally generates solutions paths in the espdic
simple behavioral rules that promote the creation osuch transformation, adding new components tota.sta
structures Convergence to the optimal final solution is ocedrr
« Negative feedback counterbalances positivddy accumulating most effective sub-solutions. Fixed
feedback and helps to stabilize the collectiveand dynamic input-output specifications are used to
pattern: It may take the form of saturation, mimic chaotic behavior of real world.
exhaustion, or competition

+ Self-organization relies on the amplification of MATERIALS AND METHODS
fluctuations (random walks, errors, random task-
switching) Theoretical model is proposed to describe the

« Al cases of self-organization rely on multiple Pehavior of a program in terms of input (s), stated
interactions. They should be able to make use ofUtput (s). It equates what a program means witatwh

the results of their own activities as well as athe it does. The word “System” in our presentation mean
activities “Program”. The meaning of system P can be specified

by set of functions from states to states; heneffdets

When a given phenomenon is self-organized, it caf ransformation:
usually be characterized by a few key propértiés
(P) Xiitial — Xfinal

e« The creation of spatiotemporal structures in an . . .
- . on a state vector X, which consists of an assaciatf
initially homogeneous medium. Such structures

include nest architectures, foraging trails, oriaoc the variable manipulated by the system and thét
' ging ' A system P can be defined as 9- tuples, called Béena

organization L .
. . Finite State Automata (SFSA):
 The possible coexistence of several stable states ()

(multi stability). Because structures emerge by P=(xXT,F ZI 0y Xnia)
amplification of random deviations, any such P T TR e
deviation can be amplified and the systemyypere:

converges to one among several possible stablg = The set of system variables
states, depending on the initial conditions X = The set of system states X =i{¥u.,..., Xgnal}
» The existence of bifurcations when some parametersg = The time scale, T = [6g)
are varied. The behavior of a self-organized systeng = The set of primitive functions
changes dramatically at bifurcations z = The state transition function, Z = {(f, X, ff,
X, 1) € FxXxT, z (f, X, t) = (=X, «t)}
Automatic Programming is the area in which | = The set of inputs
Artificial Intelligent and programming come the nhos O = The set of outputs
closely together: it refers both to the fully cortgriced vy = The readout function

generation of programs from initial problem Xiia = The initial state of the system;x € X
specifications and to automated improvement of

program efficiency. In particular, it is desiralhat the The sets involved in the definition of P are
user not be required to pre specify the architechfr arbitrary, except T and F. Time scale T must beesom
the ultimate solution of his problem. Problem subset of the set [63) of nonnegative integer numbers,
specification might take the form of an interactive while the set of primitive function F must be a setbof
dialogue, or they might appear in graphical formjto the set ¢ (F) of all computable functions in the
may be written in a specific language. Althoughlanguage L and sufficient to generate the remainder
automatic programming holds much promise forfunctions. To execute system P, transition functiare

381

J. Computer i, 5 (5): 380-387, 2009

firing starting from, t = 0. Execution terminate evh 10S = (T, I, O, Ti, Top)
t>T. Two features characterize state transitiorctiom:

Where:
o z(- -1t =Knitia» 1),ift=0 T = The time scale of 10S, | is the set of inputs
o z(f, X, t) =z (f, z (f(t-1), X, t-1)) if £ O o = A set of outputs
Ti = A set of input trajectories defined over T,
The concepts of reusable parameterized subsystems with values in
can be implemented by restricting the transition], To = A set of output trajectories defined over T
functions of the main system, so that it has thEtyalo with values in
call and pass parameters to one or more such sul® andn = A function defined over Ti whose values are
systems. Suppose we have sub-systBrmand main- subset of To
system P, then they can be defined by the folloving
tuples: That is,n matches with each given input trajectories
the set of all output trajectories that might, ould be, or
PX X, T,F Z 1,0, ¥a, 7) eligible to be produced by some systems as output,
. e . experiencing the given input trajectorx system P
P (x,’X, 'T,’F,"Z,"1, "O, Kinitial, Y) satisfies 10S if there is a state X of P and soufesat U

not empty of the time scale T of P, such that feerg
input trajectory g in Ti, there is an output tragey h in
To matched with g by, such that the output trajectory
generated by P, started in the state X is:

where, *X1X, X iniia € X, then there exit *E F, z€ Z,
‘f, € F and «z€ *Z and h is a function defined ov&t
with value in'X is defined as follows:

h="2 (f Xinwar, 1) = X & Y(Z (f(g), X,) =n(h() For every T
(', X,) =2(h, X,) = X, t Ant colony algorithm for system induction: A
combinatorial optimization problem is a problem

distinguish it from other primitive functions indtset F. defined over a set C 5.¢..., G of basic components. A
Also, we call the sub-systeniS, sub-SFSA, to subset S of components represents a solution of the

distinguish it from the main SFSA. Formally, a gyat problem; FOJ 2° is the subset of feasible solutions, thus

'S is a sub-system of a system S, iffxx TOT, ‘10l a sol_ution S is fe_asible if and only if.[S F. A cost
"O0I0, *y must be the restriction of to "0 andFON, fucnctlon zis .defl.ned over the_ squuoq QOma|n, z
where N is the set of restrictions of FToIf (f, X, t)is 2 —R. the objective being to find a minimum cost
an element o x'Xx'T, then there exists@ F, such that feasible solution S* ie. to find S* SF and
the restriction of ftT is‘fand'z (f, X, sz (f, X, t). 2(S%)<z(S), OSUF®L They move by applying a
The idea of recursive function could be simplyStochastic local decision policy based on two
applied with the proposed method using mathematicaparameters, called traiend attractiveness. By moving,
induction. The principle of mathematical inductioan ~ €ach ant incrementally constructs a solution to the
be used to construct system as well as proofs.i@ems Problem. The ACO system contains two rules:
the following definition of the recursion functiof,
which is highly reminiscent of proofs by mathematic

*f is a special function we call it sub-SFSA furctito

Local pheromone update rule, which applied whilst
constructing solutions

induction: i)]
e Global pheromone updating rule, which applied
f. (X) = X, t = thact1 if X = 0 (base of induction) after all ants construct a solution
fr (X) = X i = X, t = O otherwise (induction step) Furthermore, an ACO algorithm includes two more
mechanisms: Trail evaporation and, optionally, daem
where, T = [0, ad- actions. Trail evaporation decreases all trail @alaver

time, in order to avoid unlimited accumulation cdils
Input-Output ~ Specification (I0S): An IOS over some component. Daemon actions can be used to
establishing input-output boundaries of the systém. implement centralized actions which cannot be
describes inputs those the system is designedridldia performed by single ants, such as the invocatioa of
and outputs those the system is designed to produrce local optimization procedure, or the update of glob
IOS is not a system, but it determines the setllof ainformation to be used to decide whether to bias th
systems that satisfy the 10S. It is a 6-tuples: search process from a non-local perspettitee

382

J. Computer i, 5 (5): 380-387, 2009

At each step, each ant computes a set of feasibla Fig. 2 and 3, red line denote the currently cielé
expansions to its current state and moves to otleest transition, blue lines denote the most efficienthpa
in probability. The probability distribution is sgified previously stored in the memory of system, whilackl

as follows. For ant k, the probability of movingpfin lines denote unselected poor transitions. Thugaah
state t to state n depends on the combination of twiteration, an ant select only one transition (radyl try
value$112 to append it with previously constructed path. The

) algorithm is defined as follow:
e The attractiveness of the move, as computed by
some heuristic indicating the priori desirability o Aco algorithm: An ACO algorithm consists of two

that move o main parts: initialization and a main loop.
» The trail level of the move, indicating how

proficient it has been in the past to make thatI T
X) nitialize:
particular move: It represents therefore an a

posteriori indication of the desirability of thabve L i
e Set initial parameters of the system: Variable,

In the proposed algorithm a colony of ants moves states, function, input, output, input trajectory,
through system states X = {}a,.--, Xfna}- They move output trajectory
by applying the transition function Z, which is bdon « Set initial pheromone trails value
two parameters: d trails values and input-outpub The current state of each ant isj, With empty
specifications of the problem. By moving from sttie memory
state, each ant incrementally constructs a solutidhe
problem, in other words construct the transfornmatio

(S) Xinitial — Xfinal

In the initial iteration of ACO algorithm, all ant
begin from Xi.ia and use input-output specification
only to move to each possible system states, asrsho
in Fig. 1. The number of system states in ACO ddpen
on the number of system variables. 2n the rest
iterations, each ant use, it's memory as well g&itin
output specifications to move to next state(magive
of 2 states including itself, i.e., loop state, as shaom
Fig. 2 and 3). System states change by applyifg,z
where: z (f, X, t) = (+X, «t). These mean when ant
move, system’s state and time are changed and tsutpu
are produced (as the type of readout functionany. Fig_ 2: After n iterations of ACO algorithm
During ants’ movements, trails are always modified
toward satisfying input-output specifications. Wham

ant complete a solution, or during the construction ; ¢ L]
phase, it evaluate the solution and modify the waue] 5
on the components used in its solution. This pheran
information will direct the search of thetdte ants.
X,
] _ N L]
/ , >
> &
- s \"\ Kintial
2 “‘ (-
Xiuiiia; X D\h =
k|
Fig. 1: Initial iteration ACO algorithm Fig. 3: Final solution of ACO algorithm

383

J. Computer i, 5 (5): 380-387, 2009

While termination conditions not meet do:

Construct ant solution: Each ant constructs a path
by successively applying the transition function
z€Z. The probability of moving from state to state
depend on: Data trajectory sets (as thee
attractiveness of the move) and the trail levehef
move.

Apply local search.

Best tour check: For each ant, construct data
trajectory sets tour and compare to the best
trajectory sets, by using the function;

v (Z (F(9), X, 1) =n(h(D)

If there is an improvement, update it. .
Update trails:
« Evaporate a fixed proportion of the pheromones
on each road
» For each ant
pheromone update
* Reinforce the best tour with a set number of*
“elitist ants” performing the “ant-cycle

perform the “ant-cycle”

End while: .

The ACO meta-heuristic can be applied to discrete

optimization problems characterized as follows:

« L={lgqg]|(c; 6) € ~ C} |LEN:is a finite set
of possible connections/transitions among the
elements of ~ C, where ~ C is a subset of the
Cartesian product CxC .
i = J(kig; t) is a connection cost function
associated to each] € L, possibly parameterized
by some time measure t

s, can be reached from sl in one logical step (that
is, if ¢; is the last component in the sequence
determining the state s1, it must exists c2 2 Gisuc
that Ly € L and s = <s, ¢,>). The neighborhood
of a state s is denoted by N

Y is a solution if it is an element of ~S and s&sf
all the problem’s requirements. A multi-dimensional
solution is a solution defined in terms of multiple
distinct sequences over the elements of C

Jy (L, t) is a cost associated to each solutibn
Jy(L, t) is a function of all the costgy) of all the
connections belonging to the soluti¥n

Ants of the colony have the following properties:

An ant searches for minimum cost feasible
solutions™¥ = miny"J W (L, t)

An ant k has a memory 'Mhat it can use to store
information on the path it followed so far. Memory
can be used to build feasible solutions, to evaluat
the solution found and to retrace the path backward
An ant k in state,s= <s.;, i> can move to any node

j in its feasible neighborhood/N defined as
N = {il (€ N)(<s,j> € ~S)}

An ant k can be assigned a start stitarsd one or
more termination conditions‘.eUsually, the start
state is expressed as a unit length sequencesthat
a single component

Ants start from the start state and move to feasibl
neighbor states, building the solution in an
incremental way. The construction procedure stops
when for at least one of the termination conditions
" is satisfied

An ant k located on node i can move to a node j
chosen in . The move is selected applying a
probabilistic decision rule

Q=Q(C; L; t) is a finite set of constraints assigned The ants’ probabilistic decision rule is a functionof:

over the elements of C and L

S = <G Gyovvry Gyovenns > is a sequence over the °®
elements of C (or, equivalently, of L). A sequence

s is also called a state of the problem. If S ésgt

of all possible sequences, the set ~ S of all the
(sub) sequences that are feasible with respebeto t *
constraintsQ(C; L; t), is a subset of S. The *
elements in ~ S define the problem’s feasibles
states. The length of a sequence s, that is, the
number of components in the sequence, is
expressed by |s|

Given two states;sand s a neighborhood structure

is defined as follows: the state is said to be a

The values stored in a node local data structure
A = [g] called ant-routing table, obtained by a
functional composition of node locally available
pheromone trails and heuristic values

The ant’s private memory storing its past history
The problem constraints

When moving from node i to neighbor node j the
ant can update the pheromone traibn the arc (i,

j). This is called online step-by-step pheromone
update

Once built a solution, the ant can retrace theesam

neighbor of sif both § and s are in S and the state path backward and update the pheromone trails ®n th

384

J. Computer i, 5 (5): 380-387, 2009

traverse arcs. This is called online delayed pheren The State Minimization Algorithm:

update.
RESULT

System behavior can be represented as transition
graphs because it is easier to understand graphical
notations; also ant colony algorithm is clearlye

Construct a subsdi of the state vector X = 0
(for j = 0, X = Xinita). I Consist of all entries in
the state vector Xwhich occurs as arguments in
the current executed functionit = 1, thudI0X;
Construct a new subsHt ., it will consists of all

understood. Such graph is a collection of fourdhin entries in the state vectorjXwhich occurs as
arguments in the next executed function, f
IT,esX j11. Note that each subset is either an empty
set or consists only of program variable

If TINTInews = €Mpty set, then deletg fom the set

X. All edges which have pas an end node are now
redirected to X, to reflect the change in states

If Xj +1= Xina, 9O to final step

IT =11 hews gO to second step

Repeat above steps until non-empty set are
produced from the intersection of step 3 for a

complete iteration.

» Afinite set of states X, to represent the graptisno

* The sets of inputs | and outputs O

* ThesetN = ((f, t): (ftf) € FxT) .

» A transition table that shows for each state X and
each pair (ft) € N. what output (if any) are
produced and what states are reached next .

Every state must have exactly one outgoing edg(:e
for each possible pair. Edge traveling is deterohibg
the transition table: While traveling on edges;tsys
outputs (if any) must be produced by applying tsadr
out functiony. To produce efficient systems the number
of it's states can be reduced and thus reducesnits T. Example: Assume we our system is defined as
To perform state minimization, assigns the same tim following:
to all consecutive transitions iff they all havensaeffect
on the state vector X. Only consecutive transitians X
taken into consideration, so as to keep systemvimka T
unchanged. Figure 5 shows the minimized State

Kinitiat, X1, X2, X3, x4},
[0, 7], F ={f;, 2, f3, fa}
= {i}, 0 = {01, 02, 03, 04}

Transition Graph of that showed in Fig. 4. Y = Mealy readout function
YA = {zo(-, -, 0) = Xnitial, 1
z (f1, Xinitial, 1) = %4, 2
Zy(f2, X1,2) =X, N
z3(f3, X4, 3) =X, 410,
24(f4, X1, 4) =%, 5
z5(f5, X2, 5) =X 6
Zs (fe, X3, 6) =X4,7
z7(f7, X4, 7) = X4, 810, 03 04}
Fig. 4. State Transition Graph of the example syste DISSCUSION
where T = [1,7] and No. of states =5
. It clear that the evolutionary process of our eyst

is highly depends on input-output specificationgren
precisely input and output trajectory sets and
function. Figure 6, specify clearly that systemhahiigh
trajectory information converge to the solutionl@ss
time than these populations with little trajectory
information. From the Fig. 6, little data trajegtor
information always may lead to un convergence state
(maximum iteration number allowed her is 10000)oTw
types of trajectory sets are used: Fixed and dynaets.
Work with fixed system specification is usually yas
since ACO algorithm is only focus on selecting
transitions which highly satisfy theseegfication.

385

Fig. 5: Minimized STG of graph in Fig. 2,here
T =[1,6] and No. of states = 4

J. Computer i, 5 (5): 380-387, 2009

15000 Sertaz 2

Sertes |

nnnnn
uuuuu

Ieration Mo,

N Y

i s m s R R mERERRR R R RRR RN

6 16 21 2% 3 6
6 11 16 21 26 31 30

Set size

Fig. 6: Converge time versus trajectory .informatad
the problem

uuuuu

lertion Mo,

=y
U

WTTTITIIT IO T T I o T T AT e A AT AT T A rrronl

6 21 26 31 36

Tnitiz] case

Fig. 7: Variant converge for the same problem, but
different initial trajectory sets .

Unfortunately, when we deal with complex systend an
real live problem, strong feedback (positive aslwsl
negative) and many interactions exist: i.e., cltaoti
behavior. Thus, we need to find a way to contr@ash

to understand and predict what may happen long.term
In these cases input and output specificationssalie
organized, which mean that trajectory data areectdd

and enhanced over time, when evolutionary process
runs again and again. The algorithm begins wittiaihni
version of input and output trajectory sets and
function. Then change them over time to reflectutrp
output characteristic of the required system. Tioeee
main problem will appear if the system has litibeetl
trajectory information, from experienced work weteno
that problems with self-modified trajectory infortiwa

are difficult and take more time to converge, se th
maximum iteration number was scaled up. Although2
trajectory data are changed over time,
experiment, it still sensitive to initial set. Thisone of
the most important characteristic of a chaotic esyst
(sensitivity to the initial conditions: “butterflgffect”).

As shown in Fig. 7, for the same problem, whenahit
configurations of data trajectory sets are chantfezte
are big changes in the behaviors of ACO algorithm,
even that they are small variations.

4.

CONCLUSION

» The collective behavior emerging from the
interaction of the different agents has proved

386

but by

effective in solving combinational optimization
problems. System induction by using such
interaction is more effect than induction based on
formal specifications

A colony of ants moves through system states X, by
applying the transition function Z. These movements
are based on two parameters: Trails and input-butpu
specifications of the problem, i.e., data trajector
sets. By moving, each ant incrementally constracts
solution to the problem. When an ant complete
solution, or during the construction phase, the ant
evaluates the solution and modifies the trail valne
the components used in its solution

An artificial ant builds a solution for system
induction by traversing the fully connected
construction graph, represented as STG, G (C, L),
where C is a set of vertices and L is a set of gdge
Since Ant colony algorithm may produce
redundant states in the graph, its better to maemi
such graphs to enhance the behavior of the
inducted system

The proposed algorithm works with fixed and
dynamic input-output specification. However, it
work better with fixed specification. Thus, main
problem will appeared in solving problem with &ttl
input-output specifications. More efficient leargin
algorithm, such as neural network, my be used to
enhance the work. Further more, chaos theory,
especially “butterfly effect”, can be used to cohtr
the sensitivity to initial configuration of trajecty
information (in dynamic specification cases)

REFERENCES

Dorigo, M., M. Birattari and T. Stitzle, 2006 nA

Colony optimization: Artificial ants as a
computational intelligence technique. IEEE.
Comput. Intell. Mag., 1 28-39.

http://www.citeulike.org/user/rizzoli/article/11458
Dorigo, M., G. Di Caro and L.M. Gambardella,
1999. Ant algorithm for discrete optimization.
Artifi. Life, 5: 137-172.
http://portal.acm.org/citation.cfm?id=338955
Holland, J.H., 1992. Adaptation in Natural and
Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial
Intelligence. 2nd Edn., The MIT Press, USA.,
ISBN: 10: 0262581116, pp: 228.

George Rzevski and Petr Skobelev, 2007.
Emergent intelligence in large scale multi- systems
Int. J. Educ. Inform. Technol.,, 1: 64-64.
http://www.naun.org/journals/educationinformatio
n/eit-11.pdf

J. Computer i, 5 (5): 380-387, 2009

Wooldridge, M.J., 2002. Multi Agent Systems. 10. Dorigo, M., V. Maniezzo and A. Colorni, 1996.

John Wiley Sons Ltd., USA., pp: 225-233.
Jennings, N.R. and Wooldeidge, M.J., 2002. Agent
Technology. UNICOM, pp: 139-203.

Odell, J., H.V.D. Parunak and B. Bauer, 2001.11.

Representing agent interaction protocols in ML.
Proceeding of the 1st International Workshop
Agent-Oriented Software Engineering, June 10-10,

Springer Berlin, Heidelberg, pp: 201-218. 12.

Nada, AL-salami, M.A. and S.G. Yaseen, 2008.
Ant colony optimization. Int. J. Comput. Sci.
Network Secur., 8: 351-357.
http://search.ijcsns.org/02_search/02_search_03.ph
p?number=200806049

Dorigo, M. and G. Di Caro, 1999. The Ant Colony
Optimization Meta-Heuristic. In: New Ideas in
Optimization, D. Cornet al. (Eds.). McGraw Hill,
London, UK., pp: 11-32.

387

The ant system: Optimization by a colony of
cooperating agents. IEEE. Trans. Syst. Man
Cybernet., 26: 29-41. DO10.1109/3477.484436
Stephen, G. and M. Dras, 2005. Understandiag th
pheromone system within ant colony optimization.
Lecture Notes Comput. Sci., 3809: 786-789. DOI:
10.1007/11589990_81

Dorigo, M. and T. Stiitzle, 2002. The Ant Colony
Optimization Metaheuristic: Algorithms,
Applications and Advances. In: Handbook of
Metaheuristics, Glover, F. and G. Kochenberger
(Eds.). Kluwer Academic Publishers, ISBN: 978-0-
306-48056-0, pp: 250-285.

