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Abstract: Problem statement: Data inconsistency is raised in actively replicated environment due to 
non-determinism in the applications that defeats the purpose of replication as a fault-tolerance strategy. 
Approach: We proposed an efficient framework RTC which ensured determinism among the replicas 
in fault tolerance middleware applications. This method exploits the technique of statically analyzing 
the application source code of client and identifies the variables and system calls which lead to non-
deterministic state in the replicas. The source code consists of non-deterministic variables and system 
calls which are identified and set the flag field. The client request consist of flag field and the service 
request, which is sent to all the servers through time stamp based replication protocol (TSP) that 
facilitate the multiple clients and the request is sent to the servers. The distributed coordination method 
was initiated if necessary; otherwise send any one response of the servers to the client by duplicate 
removal. Distributed coordination which involves, the selection of a primary replica based on the time 
stamp value. It is responsible for taking all non-deterministic decisions. The state of the primary 
replica was updated to all other replica connected asynchronously to maintain consistency. Results: 
We evaluated our technique by increasing the contamination percentage of non-determinism and 
increasing number of replicas. Conclusion: The method suggested by us reduces the communication 
and synchronization overhead which was proved through implementation. We evaluate our technique 
for the active replication of servers using micro benchmarks that contain various sources of non-
determinism. Multi-threading, system call, shared I/O and random ( ). 
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INTRODUCTION 
 
 Replication of components is a common technique 
for providing fault tolerance in distributed systems. The 
concept of replication is the creation and distribution of 
multiple identical copies (Replicas) of a component 
across a system so that the failure of a replica can be 
masked by the availability of other replicas. There are 
essentially four kinds of replication styles[8]-active 
replication, semi-active (leader-follower) replication, 
passive replication and coordinator-cohort replication. 
In active replication (state-machine approach[18]), each 
server replica processes every client invocation and 
returns the response to the client. With active 
replication the availability of system is more when 
comparing to any other replication technique. Care 
must be taken to ensure that only one of these duplicate 
responses is actually delivered to the client. The failure 
of a single active replica is masked by the presence of 

the other active replicas that also perform the operation 
and generate the desired result. Semi-active (or leader-
follower) replication is a hybrid replica organization 
technique which accommodate non-deterministic 
replicas with an availability nearly as high as in active 
replication. As in active replication, all replicas receive 
a request; however, one replica (the leader) plays a 
special role. Whenever the leader makes a non-
deterministic decision, it notifies the other replicas (its 
followers) of its choice. The followers are then forced 
to take the same decision. This guarantees that the state 
evolution in all replicas is the same. In semi-active 
replication, only the leader replica replies to clients. 
 With passive replication, only one of the server 
replicas designated the primary, processes the client’s 
invocations and returns response to the client. With 
warm passive replication, the remaining passive 
replicas, known as backups, are preloaded into memory 
and synchronized periodically with the primary replica 
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so that one of them can take over if the primary replica 
fails. With cold passive replication, however, the 
backup replicas are “cold,” i.e., not even running, as 
long as the primary replica is operational. To allow for 
recovery, the state of the primary replica is periodically 
check pointed and stored in a log. If the existing 
primary replica fails, a backup replica is launched, with 
its state initialized from the log, to take over as the new 
primary. Both active and passive replication styles 
require mechanisms to support state transfer. For 
passive replication, the transfer of state occurs 
periodically from the primary to the backups, from the 
existing primary to a log, or from the log to a new 
primary; for active replication, the transfer of state 
occurs when a new active replica is launched and needs 
its state synchronized with the operational active 
replicas. Also note that passive replication cannot be 
used to mask byzantine failures as there is only one 
single replica executing, the backups serve only as 
warm stand-bys.  
 Coordinator-cohort replication is another hybrid 
replica organization, very similar to semi-active 
replication. It has been developed in the context of the 
Isis toolkit[4]. From the point of view of the 
communication pattern, it is very similar to passive 
replication, the only difference being that all replicas 
receive a request. This makes it possible to mask even 
failures of the primary replica; the client does not have 
to re-send a request. However, only the coordinator 
handles the request and updates the cohort replicas by 
means of checkpoints. The result is therefore 
determined by the execution on the coordinator, which 
may be non-deterministic. If the coordinator fails, one 
of the cohorts becomes the new coordinator and 
proceeds with execution from the last checkpoint. 
Checkpoints therefore must be coordinated with respect 
to output 
 Determinism[13] is an important property that 
requires the replication to work consistently. A 
component is said to be deterministic if it contains no 
characteristics that could cause replicas to become 
inconsistent with each other. A Component is said to be 
deterministic, when started from the same initial state 
and supplied the same ordered sequence of input 
messages, should reach the same final state and produce 
the same output. But in real time application, while 
executing some system calls and variables, replicas 
enter in to non-deterministic state. 
 One simplistic approach to avoid non-determinism 
that forbids the use of multithreading, shared memory, 
local I/O, system calls, random numbers and timers. In 
fact this approach is adopted by the industrial standards 
such as Fault-Tolerant CORBA[15]. In real world 

application we wish to use all these non-deterministic 
functions. Application state can be in any one of the 
three mutually exclusive categories: pure non-
determinism, contaminated non-determinism and pure 
determinism.  
 In a Pure non-determinism, any functions are the 
originating source of non-determinism and affect the 
server’s state. Examples include system calls such as 
gettimeofday or random, change the server’s state non-
deterministically. For example the variable det is 
nondeterministic: 
 
for (int j = 0; j < 100; j++)  
det [j] = random ( ) 
 
 Shared state among threads also falls within this 
category. However, we treat shared state in a special 
way each access of shared state by a thread is 
considered to be a separate source of non-determinism. 
For example, consider a single shared variable between 
two threads; if each thread accesses this variable four 
times, then, there exist eight separate instances of pure 
non-determinism. It is immaterial that these eight 
instances happen to involve the same variable. The 
Contaminated non-determinism covers the state that has 
any dependency, direct or indirect, on an instance of 
pure non-determinism. Contaminated state captures the 
effect of pure non-determinism when it is executed and 
it is propagated to the rest of the application. An 
example is the contaminated variable bar that depends 
on the purely nondeterministic variable det: 
 
for (int j = 0; j < 100; j++)  
{det [j] = random ( ); bar [j+100] = det [j] ;} 
 
 Pure determinism indicates the state that has no 
dependency or whatsoever on the identified pure non-
determinism. This category of state will always be 
consistent across all server replicas. An example is: 
 
int x = random ( ); b = 5; return b 
 
 Here the variable x is nondeterministic, but its 
value does not affect the server state.  
 The objective of the research is to permit the 
programmers to continue and create distributed 
applications and even they can use functions and 
variables that cause non-deterministic state across the 
replicas. To provide fault tolerance among the replicas, 
we are using CORBA fault tolerance middleware. With 
the active replication of servers, existing method[14] 
involves delay, synchronization over head of replicas 
(Use of Group Communication Protocol) and 
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communication overhead while transferring the state 
information (transfer-ckpt, transfer-contam) of any one 
of the server to client and again from the client it is 
communicated to all the servers actively connected in 
the network. In this study we have proposed a 
framework RTC (Real Time Compensation). To avoid 
synchronization over head of replicas, we are using the 
time stamp based replication (TSP approach[17]) instead 
of group communication protocol and reduce the 
communication overhead (Delay and Congestion) by 
sending the state of the primary replica directly to other 
secondary replicas (Leader-follower) actively 
connected and thus avoiding the state transfer to the 
client and maintain determinism in all the replicas.  
 

MATERIALS AND METHODS 
 
An overview: The following assumptions are made 
about the system. RTC relies on having complete 
access to the application’s source code, along with the 
ability to modify it prior to deployment. Specifically, 
we assume that we are allowed to modify the source 
codes of the client, the server and the IDL interfaces of 
all objects. Both the client and server source code must 
be available for analysis, although only the server is 
replicated. We also assume that all of the application 
state can be determined statically. The replicas are 
replicated in several sites and are communicate each 
other to reliable FIFO channels. 
 Our approach involves the static analysis of the 
source code in the client and set the flag field if non-
deterministic variables and system calls are found and it 
is sent to server together with client request. The 
program analysis also tracks all live variables and their 
dependencies that lead to non-deterministic state in the 
replica.  
 The server replicas are actively replicated. The 
client request is passed to all the server replicas through 
the time stamp based replication together with the flag 
field. It ensures that all the replicas execute the client’s 
request in the same order. Server replicas check the flag 
field, if it is true, the client request consists of non-
deterministic variables and execution this clearly leads 
to non-deterministic state in the replicas. The following 
activities are performed while handling non-
determinism in the replicas: 
 
• Server replicas receive the client request and check 

the flag field. If it is true, initiate the distributed 
coordination method 

• Distributed coordination method involves selection 
of primary replica based on the time stamp value, 
one replica is selected as primary and others are 

called secondary replicas. The flag is true; the 
request is processed by the primary replica 

• Then the state of the primary is propagated to other 
replicas connected actively and maintains 
consistent state in all the replicas. The replicas send 
responses to the client. Using duplicate removal, 
only one response is allowed to client 

• It is not necessary to connect all the replicas in lock 
step synchronizing state. All the server replicas 
allowed to be connected in asynchronous mode 

• Communication overhead is reduced, because there 
is no state transfer between the client and server 

• If the flag is false, allow the replicas to execute the 
client request. The server replicas send responses 
to the client. The same response received from 
different replicas leads to duplication of results. 
Our frame work (RTC) ensures to send only one 
response to the client 

 
 The client-server architecture is implemented using 
CORBA (JacORB)[20] and it will act as a vehicle 
between client and server. The replicas form a group 
called Replica Service Group and it is identified 
through the logical address G. Servers (Replicas) are 
replicated in several sites and each replica site consist 
of a frame work RTC and the server. The server 
provides all the service to the client. The RTC is 
residing between the client and the server. RTC is 
responsible for ensuring the consistency of the replicas. 
 A client sends a service request to the RTC. RTC 
verifies the flag field of the request and it is forwarded 
to their corresponding replica and also the other RTC in 
the different replica site. Replica executes the client 
request and the response is sent back to RTC. RTC is 
responsible to send the server response to the client. 
Verification of flag field may rise to two cases. Case 1-
Flag field is true, case 2-Flag field is false. We handle 
the non-determinism according to the flag status. 
 
Case 1: Flag field is true; it means the client request 
consisting of variables and system calls which may 
leads to non deterministic state, if they are executed in 
the server. It is necessary to initiate the distributed 
coordination method. 
 
Case 2: Flag field is false; it means the client request 
does not having any variables and system calls which 
may leads to non-deterministic state in the server and 
not necessary to invoke the distributed coordination 
method. The client request is executed by the server and 
the response in sent to the client through RTC.  
 
Source program analysis framework: To perform 
program analysis, the application source code is 
statically analyzed[19] and finds the variables and system 
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calls that will lead to non-deterministic state in the 
replicas if executed. For static program analysis, we 
have used the CC-RIDER[6] the free open source 
software. 
 
CC-RIDER: CC-RIDER, is a unique and powerful 
code visualization tool, promotes efficiency and 
productivity. This enables to understand source code 
quickly. CC-RIDER is not merely a class browser-it 
provides complete information on functions, variables, 
enum values and macros. It is uniquely designed to 
work with the tools already using and helps to easily 
penetrate the complexity of the source code. Figure 1 
shows the two main components of the CC-RIDER 
package, the Analyzer and the Visualizer and how they 
interact with the project’s source code to facilitate 
editing and documenting the code. 
 A database is created to store all the details of the 
source files like header files, functions, variables, 
dependency of the variables and system calls. The 
analyzer then processes the source modules and header 
files to the database, which contains detailed 
interrelationships between all symbols in the source 
code. Once a database is built, the Visualizer provides 
several ways to explore edit and document the code. 
 
 

Analyzer 

Visualizer 

Compiler definitions file 
(.DEF) 

Project file 
(.CPJ) 

CC-RIDER  
DATABASE 

(.CC) 

Tree charts 
Browsing/Editing Documentation 

Modules 
(.C.CPP) 

Header Files 
(.H.HPP) 

Compiler 
header files 
(.H.HPP) 

External  
editors 

 
 

Fig. 1: Components of CC-RIDER 

CC-RIDER reveals detailed information about the 
symbols, where and how they're used along with 
complex member inheritance relationships, macro 
expansions and template instantiations. The Class 
Hierarchy view is a graphical representation of the class 
inheritance structure of the program. Function calls and 
data references are represented as differently shaped 
nodes in the tree. These trees are extremely useful for 
examining the structure of C applications. The Project 
Statistics window shows statistics about the analyzed 
application, for example: the number of source code 
lines, number of comments, number of classes, macros, 
functions and enums. Using the statistics information, 
we have found the source code consist of system calls 
and functions which lead to non deterministic state in 
the server. A flag field is introduced and set to true if 
nondeterministic variables are found in the source code. 
Otherwise set the flag field to zero. This flag field is 
send to the server together with the client request. 
 
Design details of time stamp based replication 
protocol (TSP): To ensure that the states on the 
replicas are consistent, it is required that (a) the code 
running on the replicas be deterministic and, (b) the 
clients’ requests must be sent to the replicas in the same 
order. Since multiple clients might send requests to 
replicas simultaneously, a total order is needed when 
multicasting clients’ requests to the replicas. Total order 
means all requests are delivered to the replicas in the 
same order even if the senders of the requests are 
different. Group communication primitives[4] can be 
used to ensure the ordering of the clients’ requests in 
active replication. However, replication schemes using 
group communication primitives suffer from high 
overhead due to the high synchronization cost amongst 
the replicas[21]. To reduce the synchronization overhead, 
we are using time stamp based replication protocol to 
ensure total ordering of client request.  
 The TS Protocol, the system is based on the state 
machine approach[18]. The TS protocol allows the 
replicas to reach an agreement on the order in which the 
clients’ requests are processed. In TSP, each client’s 
service request is given a unique timestamp. The 
replicas carry out the execution of the clients’ requests 
in their timestamps’ order. That is, a request with a 
smaller timestamp will be executed before a request 
with a larger timestamp. TSP assumes that it is rare that 
different clients send service requests to the replicas 
simultaneously.  
 The TS protocol is running a part of RTC Thus, 
when a client’s request is received by a RTC; the RTC 
sends the request to the RTC’s replica for immediate 
execution. Meanwhile, the RTC exchanges information 
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with the other RTCs to determine whether the request 
has been executed in the correct order.  
 Each replica keeps a logical clock defined in[11]. 
The logical clock is an integer counter which increases 
monotonically. It is initialized to 0. A timestamp is a 
pair (l_clock, ip) where ip is the IP address of a replica 
and l_clock is the logical clock value of the replica. The 
“>” relation between two timestamps, (l_clock1, ip1) 
and (l_clock2, ip2), is defined: 
 
(l_clock1, ip1)> (l_clock2, ip2) ⇔  (l_clock1>l_clock2) 

.
∨  ((l_clock1 = l_clock2) 

.
∧ (ip1 > ip2)) 

 
 The logical clock, l_clock, of a replica is updated 
according to the statements S1 and S2 described below: 
 
• S1 when a replica, say r, receives a service request 

from a client, the logical clock is updated as below: 
 
 l_clock ← l_clock+1 
 
• S2 when a replica, say r, receives a multicast 

request, say m, from another replica: 
 let (l_clock, ip) be the timestamp of m, l_clockr 

be the logical clock of r and, ipr be IP address of r 
  if (l_clock, ip) > (l_clockr, ipr) 
  then l_clockr ← l_clock+1 
  else l_clockr ← l_clockr+1 
 
 A MsgList on a replica holds received clients’ 
service requests before the requests are processed by 
the replica. A ProcessedList is used to record the 
requests that have been executed by the replica. op(m) 
denotes the operation that is invoked by the client’s 
service request m. l_clock is the logical clock value of 
the RTC and ip is the IP address of the RTC. ip is also 
used as the ID of the RTC. 
 S3 when receive a request, m, from a client: 
 
• m.init_receiver ← ip 
• update l_clock according to S1 
• m.timestamp ← (l_clock, ip) 
• multicast m to all the replicas (including itself) in 

the service group 
 
 When a RTC receives a client’s request, say m, the 
RTC sets the init_receiver attribute of m to indicate that 
the RTC will be responsible for returning the response 
to m to the client (line 1 of S3). m is given a timestamp 
(line 3 of S3). Since l_clock increases monotonically 
(S1 and S2), m’s timestamp is larger than the 
timestamps of any other requests on the RTC. Then, m 

is multicast to all the other RTCs. So that it can be 
executed on all the replicas. 
 S4 when receive a multicast request m: 
 
• update l_clock according to S2 
• generate an acknowledgment, ack and, 

ack.timestamp ← (l_clock, ip) 
• send ack to m.init_receiver 
• let wrong_set = {msg | (msg.timestamp > 

m.timestamp) 
.
∧  (msg is in ProcessedList)} 

• for each msg such that msg ∈ wrong_set do 
• (1) undo op(msg) 
• (2) remove msg from ProcessedList and add msg to 

MsgList 
• end-for 
• add m to MsgList and sort MsgList into ascending 

order according to the timestamps of the messages 
in MsgList 

 
 When a RTC, say r, receives a multicast request 
from another RTC, r generates an acknowledgment 
message, ack and assigns a timestamp to ack (line 2 of 
S4). According to line 1 of S4 and S2, the timestamp 
assigned to ack is greater than the timestamps of all the 
requests previously received by r. m’s sender is 
m.init_receiver (line 4 of S3). ack is sent back to m’s 
sender (line 3 of S4). ack helps m’s sender to decide 
whether m has been executed in the correct order. Since 
all replicas should execute the requests in the order 
determined by the timestamps of the requests (i.e., the 
requests with smaller timestamps should be executed 
before the requests with larger timestamps), r needs to 
check whether any requests have been executed in a 
wrong order. Set wrong_set contains all the requests 
that have been executed in a wrong order (i.e., the 
requests whose timestamps are greater than m’s 
timestamp and have been executed before m is 
received). For all the requests that have been executed 
in a wrong order, the operations triggered by these 
requests are undone (line 6 of S4) and these requests are 
added to MsgList for re-execution (line 7 of S4).After 
changes are made to MsgList, the requests in the list are 
re-sorted to ensure that they will be delivered to the 
replica in ascending timestamp order (line 9 of S4). 
 S5  when  receive an  acknowledgment  for 
message m: 
 
• m.ack ← m.ack+1 
• if (m.ack = total) and (m is in ProcessedList) 
• send the result of op(m) to the client that sends m 
• end 



J. Computer Sci., 5 (1): 11-22, 2009 
 

 16 

 m.ack (line 1 of S5) records the number of 
acknowledgments received for a multicast request m. 
total (line 2 of S5) represents the number of replicas in 
a service group. Assume that (a) a RTC, say p1, 
multicasts a request m to a RTC, say p2 and, (b) p2 
sends multicast messages m’1, …, m’n to p1 before 
sending the acknowledgment for m to p1. Since the 
communication channels between the replicas have the 
FIFO property, when p1 receives m’s acknowledge 
from p2, p1 must have received m’1, …, m’n sent by p2. 
According to line 4-8 of S4, when p1 receives m’1, …, 
m’n, p1 has carried out the operations to ensure that m 
and m’1, …, m’n are executed in the correct order on p1. 
In other words, if m’i.timestamp < m.timestamp where 
1 ≤  i ≤  n, p1 would have scheduled m’i to be processed 
before m. According to S1 and S2, it can be seen that if 
p2 multicasts a request msg after sending the 
acknowledgment for m, then msg’s timestamp must be 
greater than m’s acknowledgement’s timestamp.  
 Thus, if p1 has received the acknowledgments for 
m from all the replicas, p1 knows that it has scheduled 
to execute all the requests whose timestamps are less 
than m.timestamp before m. Hence, p1 knows that m’s 
execution order is correct. This is because clients’ 
requests are executed in their timestamps’ order. As a 
result, if the replica has completed the execution of m, 
p1 can return the result of the execution to the client 
(line 2-4 of S5). 
 S6 when receive the result of op(m) from the 
replica: 
 
• cache the result of op(m) and, add m to the end of 

ProcessedList 
• if ((m.ack = total) and (m.init_receiver = ip)) send 

the result of op(m) to the client 
 end-if 
• if MsgList is not empty 
• let fm be the first request in MsgList 
• remove fm from MsgList and send fm to the 

replica 
• end-if 
 
 When the replica completes the processing of a 
client’s request, the RTC stores the result of the 
processing to cope with possible failure of the RTC that 
receives the client’s request. If the RTC is responsible 
for sending the result back to the client (i.e., 
m.init_receiver = ip) and the RTC has received the 
acknowledgments for the request from all the replicas, 
as explained for S5, the result of the processing can be 
sent to the client (line 2 of S6). Then, the next message 
in MsgList is sent to the replica for processing (line 3-6 

of S6). After being processed by the replica, the request 
messages are added to the ProcessedList.  
 Thus, the list might grow infinitely. To avoid this 
problem, the RTCs periodically broadcast a list of 
messages that have been acknowledged by all the 
RTCs. For a message m, if m and all its predecessors in 
ProcessedList have been acknowledged, m and its 
predecessors can be removed from ProcessedList. 
 
Design details of distributed coordination method: 
The client request together with the flag field is passed 
to the RTC of the one replica. The RTC receiving the 
client request is responsible to multicast the request to 
all the server replicas actively in the group. Let us 
consider the client request r1, together with the flag 
field. (Client _ req1+Flag+Receiving time of the request 
in the RTC, IPc) Where IPc is the IP address of the 
client. The time stamp[17] of the incoming request is 
calculated using the value of the Time scheduler of the 
respective RTC. The Time Scheduler preserve the 
incoming time of the last client request (Lr). 
 For example, the time stamp value of RTCi is Ti. Ti 
= Incoming time of the last request (Lr) ~ Incoming 
time of the recent client request. This is the way the 
time stamp value is calculated in each RTC and 
compared with the time stamp values of other RTCs. 
The time stamp value of client request1 for the different 
RTCs 
 Ti < Ti+1 < T i+2 < T i+3 ….. then Ti is selected. The 
time stamp value of the RTC is least, it will act as a 
primary RTC. The client request is executed by the 
primary RTC-server replica and the value is updated to 
the other replicas actively connected.  
 As shown in Fig. 2a and b, the replicas update the 
value according to primary, thus consistency is 
maintained in all the replicas. This method avoids the 
time delay raised by sending the state information from 
client to server.  
 
The implementation of the system: Requests sent by 
clients are included with the flag field. Each client 
request has a unique ID. The ID is used for detecting 
possible duplicated clients’ requests in the event of 
replica failure. Each RTC consists of two modules, i.e., 
a Message Handler (MH) and a Failure Detector (FD) 
as shown in Fig. 3. A client application program 
interacts with an MH to exchange requests and 
responses. The MH is responsible for (a) handling the 
request messages received from clients, (b) recording 
the IDs of the messages received from clients, (c) 
holding copies of the responses to clients’ requests and 
sending responses back to the clients (if necessary), (d) 
running the TS protocol to interact with the MHs of 
other  RTCs  and, (e)  handling  failure  of  the  replicas. 
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 (a) (b) 
 
Fig. 2: (a): Nodes R1, R2 and R3 form a coordination 

group; (b): The state of primary replica is 
propagated to other replicas 

 

 
 
Fig. 3: Middleware for replicated client server 

application 
 
The FD is responsible for monitoring the failure of the 
other replicas. The FD is implemented as a class � S 
failure detector[7]. The MH puts the received clients’ 
requests in the MsgList. The MH sends the request in 
the MsgList to its corresponding replica one at a time. 
That is, a request is not sent to the replica until the 
response to the previous request in the list is received 
from the replica. This ensures that the requests are 
executed by the replica in the order determined by the 
TS protocol. Only the service requests sent to the same 
operation need to be ordered. Requests sent to different 

operations do not need to be ordered. Thus, for each 
service operation offered by the replicas, the MHs run a 
TS protocol thread to multicast and order the requests 
sent to the operation. Each operation has its own 
MsgList set up on each of the MHs. Thus, requests for 
different operations can be sent to the replicas 
simultaneously as long as these requests are ordered in 
their respective MsgLists.  
 When an MH receives a response from its replica, 
it stores the response in its buffer in order to handle 
possible failure. An MH receives a client’s request 
either (a) directly from the client or (b) from another 
MH. Case (b) occurs if the client sends the request to a 
different MH in the service group; and, consequently, 
the request is multicast to all other MHs in the service 
group. As a result, each MH also receives requests that 
are not directly sent to it by clients. When a response to 
a client’s request is received, the MH that receives the 
client’s request directly is responsible for returning the 
response to the client. After delivering the response to 
the client, the MH asks the other RTCs to delete the 
response from their buffers. Clients need to handle the 
failure of a replica in the sense that the clients need to 
connect to another replica in the service group. If a 
replica fails before a client sends its request, the failure 
is discovered when the client attempts to connect to the 
replica’s RTC and fails in its attempt. In this case, the 
client will send its request to another replica’s RTC. If 
the RTC fails, the client loses the connection to the 
RTC. In this case, the client attempts to establish a 
connection with another replica’s RTC in the service 
group.  
 After a client connects to another RTC, the client 
resends its request. Re-sending the request is necessary. 
This is because the failed RTC might fail before it 
multicasts the client’s request to other RTCs. However, 
the resending of the request might result in duplicated 
request since the failed RTC might have multicast the 
client’s request to other RTCs before it fails. To cope 
with message duplication problem, when an MH 
receives a request, it uses the ID of the request to check 
whether the same request has been received previously. 
If the request has been received previously and been 
processed in the failure recovery phase, the MH does 
not multicast the request to the other replicas. In this 
case, the response to the request will be sent to the 
client when the response is available. The FDs monitor 
whether a replica fails by exchanging messages with 
each other. When a replica fails (i.e., the replica’s FD 
does not respond to other FDs’ messages), the RTCs 
enter the recovery phase. During the recovery phase, 
the replicas do not accept any client request. In the 
recovery phase, the MHs run the consensus protocol 
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in[4] to agree on the execution order of the clients’ 
requests that have been received by the MHs. These 
requests are marked as having been sorted. When the 
responses to these requests become available, the 
replicas that receive the requests from the clients 
directly can send the responses to the clients 
immediately. The recovery phase ends after the MHs 
reach agreement on the execution order of the clients’ 
requests. 
 
Re-execute contaminated non-determinism: Another 
technique to maintain consistency among the replicas 
by executing all the possibilities of compensation 
snippets. The divergence state of the replica is nullified 
by executing the compensation snippets. We insert 
prepared portions of code that can be executed to re-
generate the contaminated non-determinism, if provided 
the pure non-determinism (i.e., the origin of the 
contamination) as an input. Each of the replicas are 
requested to perform compensation, before processing 
the next request, by first setting the pure 
nondeterministic part of its state to the received 
nondeterministic struct and then re-executing the 
inserted code-snippets to regenerate the corresponding 
contaminated non-determinism. At the end of this 
compensation, each replica is consistent and is ready to 
process the current request. 
 Compared to transfer-contam (the state transfer 
between client to server), the reexec-contam technique 
should incur lower communication overheads due to the 
reduced amount of nondeterministic state being 
piggybacked back and forth; however, the tradeoff is 
that run-time latency is increased by the reexection of 
the compensation snippets at the server side. Also, 
reexec-contam requires more compile-time analysis and 
source-code modification to the server-side than 
transfer-contam. This is because additional control-flow 
passes are needed to isolate the code that encapsulates 
the contaminated nondeterministic state. The client-side 
code is the same as in transfer-contam. Obviously, 
reexection is justified when the compensation overhead 
is out-weighed by the communication overhead of the 
transfer techniques. 
 

RESULTS 
 
 Communication overhead is reduced in our method 
because; there is no state transfer between server replica 
and the client. The state transfer over head is directly 
proportional to the amount of actual non-determinism 
that exists within the application, e.g., if only 5% of the 
application is actually nondeterministic, our 
compensation overheads should be incurred only for 

that portion of the application. After the compensation 
is performed in the primary, its state is propagated to all 
the actively connected replicas. The total delay is the 
combination of actual delay incurred during the 
execution of compensation snippets and the delay 
involved while propagating the primary state to all 
other server replicas.  
 We conducted our experiments in the distributed 
environment, with homogeneous test-bed nodes. Each 
node run the Linux operating system on a 2.8 GHz-64 bit 
AMD processor, 256 KB cache and 512MB RAM over 
a 100Mbps LAN. In our experiments, we do not load 
the nodes with any other running programs other than 
RTC, our micro-benchmarks and the native OS utilities 
that typically run on each node. Each replica runs on 
separate node. We evaluate a number of metrics 
(communication overhead, compensation overhead, 
server-side processing time and round-trip time) under 
fault-free conditions. 
 
Methodology: In our experiments, we vary the 
following low-level parameters: 
 
• Replication style: 

• Active  
• Semi-active replication 

• Replication degree: 1, 2, 3 or 4 server replicas 
• Number of clients: Single client 
• Percentage of contamination. (10, 20, 30 and 40%) 
 
 Tested for the following bench marks: 
 
• Lotus (Base line bench mark) 
• Compensation technique 
(a) State propagation (Maintain the determinism 

among the replicas, the state of the primary replica 
is propagated to all the replicas actively 
connected.) 

(b) Reexection of compensation snippets 
 
Request arrival rate: The clients insert a pause of 0, 
0.5, 2, 8 or 32 ms. The lack of a pause (0 ms) represents 
bursty client activity. 
 
Micro-benchmarks: We have developed two micro-
benchmarks to compare our various compensation 
techniques. The two micro-benchmarks are identical in 
many way, they both constitute a two-tier application, 
i.e., with a single client and a single replicated server. 
Both micro-benchmarks use multi-threading with 
homogeneous threads, identical code at each of the 
server replicas (except for the fact that each replica 
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stores a unique, hard-coded server_id SID) and 
identical initial state to start out with. Each micro-
benchmark contains an array of 10,000 longs that 
represents its state. Pure non-determinism involves 
generating a random number and assigning it to one of 
the elements in the array. Contaminated state is 
subsequently created by performing arithmetic on the 
random number and assigning the result to another 
element in the array. 
 The server state is changed in different ways: 
Varying the pure non-determinism (contamination) to 
10, 20, 30 and 40%. For each value of pure non-
determinism, we vary the amount of contaminated non-
determinism to 10, 20, 30 and 40%. For each of the 
above state combinations, we evaluate each of our 
compensation techniques i.e., execution of propagation 
snippets and reexec-contamination and comparing with 
the existing technique. This is clearly depicted in the 
graphs. Note that we can compare all of the techniques 
for a given x% of non-determinism. The Lotus case 
simply serves as a baseline for performance 
comparison. We also vary other parameters, such as the 
number of replicas (1-4), amount of multithreading (2-6 
threads) and amount of state (100, 1000 and 10,000 
longs). 
 
Empirical observations: We observe the effects on the 
round-trip time when increasing the amount of 
contaminated non-determinism and increase the number 
of replicas within the micro-benchmark. The amount of 
contamination is gradually increased by 10, 20, 30 and 
40% and tested for all micro benchmarks. Second the 
non-determinism for these results is fixed at 30% and 
the number of replica is gradually increased. Note that 
the algorithm has a significant amount of processing 
time. This is readily visible when comparing these 
results with propagation technique and re-execution of 
compensation technique. 
 
Varying amount of contamination: Figure 4 shows 
the effect on the roundtrip time of increasing the 
amount of contaminated non-determinism within the 
micro-benchmark. The amount of pure non-
determinism for these results is varied based on the 
percentage of contamination and 3 replicas are used. 
Because pure nondeterministic state is handled 
identically across all of our various techniques, the 
graph demonstrates how each technique handles an 
increase in contaminated state. 
 
 The processing time increases slightly across all 
techniques because additional work is done due to the 
increased amount of contaminated state. However, in 

our approach the processing time is relatively small 
compared to the communication overhead of passing 
the entire state back and forth of client to server. We 
eliminate the communication overhead by avoiding the 
state transfer between client and servers and allow the 
servers to communicate with each others through 
distributed coordination method. 
 The most interesting observation here is due to the 
fact that communication overhead does not dominate 
processing time. For instance, with the following 
percentage of ex. 10, 20 and 30% contamination, our 
approach shows the lower overhead comparing to 
transfer-ckpt by transferring the state of any one replica 
to other replicas actively connected by invoking 
distributed coordination method. Transfer-ckpt appears 
to have higher overheads because of transferring the 
state between client and servers. Reexec-contam comes 
under next level of overheads. This is because the 
increased processing time outweighs the 
communication overhead for lower amounts of 
contaminated states.  
 
Varying degree of replication: As shown in the Fig. 5, 
the amount of pure and contaminated non-determinism 
is constant, but the number of replicas is varied. For 
every additional replica, the communication load 
increases because all of the replicas send their 
nondeterministic state, along with their responses, to 
the client in case of transfer-ckpt. But in the method we 
suggested, the communication over head is only due to 
the propagation of the state of one primary replica to 
other replicas. 
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Fig. 6: Cross-over between the propagation of state 

and the reexec-contam technique for increasing 
contamination percentage 

 
 We can observe from the Fig. 6, the Cross-over 
performance between the propagation of states to all the 
replicas and re-execution of snippets in each replica. 
Our technique propagation of state is dominated in all 
aspects when comparing to re-execution of snippets. 
 

DISCUSSION 
 
 Existing approach for handling non-determinism is 
mentioned as follows. Joseph Slember and Priya 

Narasimhan[14] perform the static analyzing of source 
code and list the variables and system calls (MEAD[12] 
approach) which lead to nondeterministic state in the 
server replicas. These variables and system calls are 
sent to the servers as a client request. By executing the 
client request, the server replica goes to non-
deterministic state. The state of any one of the server 
replica is piggybacked to client and it is send to all the 
actively connected replicas through group 
communication protocol. The replicas execute the 
dynamic snippets in order to reduce the divergence 
raised with the received replica state. After the 
execution of snippets the state of all replicas are 
identical and consistent (Deterministic state). In this 
method the snapshot (State information) of one replica 
is taken and it is spread to all the replicas. Based on the 
state information of one replica, all the replicas adjust 
their state.  
 The delay which the snapshot has taken in one 
server and it is piggybacked to the client, (transfer ckpt, 
transfer contam) from the client it is sent to all the 
servers. The delay is more when the percentage of 
contamination is more, because it will take more time to 
transfer the contamination state from server to client 
and from client to all the servers. Reexection of 
dynamic snippets are also used when the transfer of 
checkpoint, transfer of contamination dominate more 
communication delay. Gaifman[9] targets non-
determinism that arises in concurrent programs due to 
environmental interaction. This technique involves 
backup replicas lagging behind the primary to ensure 
consistency. The technique is transparent to the user, 
but the application is actually modified by 
transformations that handle multithreading.  
 The Multithreaded Deterministic Scheduling 
Algorithm[10] aims to handle multithreading 
transparently by providing internal and external queues 
that together enforce consistency. The external queue 
contains a sequence of ordered messages received via 
multicast, while each internal queue focuses on thread 
dispatching, with an internal queue for each process 
that spawns threads. Basile[2] addresses multithreading 
using a preemptive deterministic scheduler for active 
replication. The approach uses mutexes between 
threads and the execution is split into several rounds. 
Because the mutexes are known at each round, a 
deterministic schedule can be created. This approach 
does not require any communication between replicas. 
Hypervisor-based fault tolerance[5] involves a virtual 
machine that ensures that all non deterministic data is 
consistent across the replicas. 
 Delta-4 XPA’s semi-active replication[1] addresses 
non-determinism through a hybrid replication style that 
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employs primary-backup replication for all non-
deterministic operations and active replication for all 
other operations. In SCEPTRE 2[3], non-determinism 
arises from preemptive scheduling. Semi-active 
replication is used, with deterministic behavior 
enforced through the transmission of messages from a 
coordination entity to backup replicas for every non-
deterministic decision of the primaries. Similarly, 
Wolf’s piecewise deterministic approach handle non-
determinism by having a primary replica that actually 
executes all nondeterministic events, with the results 
being propagated to the backups at an observable, 
deterministic event. 
 TCP tapping[16] captures and forwards non-
deterministic execution information from a primary to 
other replicas. The backup replicas gain information 
from the primary after it has done the work. The 
approach is transparent, but involves setting up routing 
tables to snoop on the client-to-server TCP stream, with 
the aim of extracting the primary’s non-deterministic 
output. The solution involves the interception of I/O 
streams of replicas and the appropriate handling of 
input and output streams. In this study a new attempt is 
proposed to reduce the communication delay and 
improve the quality of service in replicated middleware 
applications. 
 

CONCLUSION 
 
 We present RTC; a new approach, handling non-
determinism in distributed, replicated applications using 
distributed coordination method by exploiting static 
program analysis on the application’s source code and 
identifies the sources of non-determinism within the 
application. We describe two different techniques; one 
that involves the state of the primary replica is 
propagated to all other server replicas. Another that 
involves reexection of contaminated non-deterministic 
code. We can support even the active replication of 
non-deterministic applications in this manner. Our 
empirical evaluation involves various performance-
sensitive techniques by varying amount of 
contamination and increasing number of replicas for 
distributed middle-ware micro-benchmarks that contain 
various sources (multi-threading, system calls and 
contamination) of non-determinism. We note that our 
current implementations of the propagation of state, 
multi-tier applications and nested end-to-end requests 
introduce increased complexity in handling non-
determinism, especially with actively replicated tiers.  
 The propagation of non-deterministic state is no 
longer contained at the client or at any one tier. We 
need to handle any non-deterministic state or execution 

that propagates to other tiers. This is especially evident 
when a failure occurs during an end-to-end request, 
resulting in some of the replicas at every tier becoming 
inconsistent. Multiple clients are complicate in back-
and-forth compensation technique. But the method 
described in this study has no complication because 
there is no transfer of back-and-forth compensation of 
non-determinism and we would then require 
coordination across clients or some alternative way of 
ensuring consistency across multiple clients. Both 
multi-tier and multi-client fault-tolerant architectures 
are part of our ongoing research on the scalable 
compensation of non-determinism, but remain outside 
the scope of this study. 
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