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Abstract:  The approach to error correction coding taken by modern digital communication systems 
started in the late 1940’s with the ground breaking work of Shannon, Hamming and Golay. Reed-
Muller (RM) codes were an important step beyond the Hamming and Golay codes because they 
allowed more flexibility in the size of the code word and the number of correctable errors per code 
word. Whereas the Hamming and Golay codes were specific codes with particular values for q; n; k; 
and t, the RM codes were a class of binary codes with a wide range of allowable design parameters. 
Binary Reed-Muller codes are among the most prominent families of codes in coding theory. They 
have been extensively studied and employed for practical applications. In this research, the 
performance simulation of Reed-Muller Codec was presented. An introduction on Reed-Muller codes, 
were introduced that consists of defining the key terms and operation used with the binary numbers. 
Reed-Muller codes were defined and encoding matrices were discussed. The decoding process was 
given and some examples were demonstrated to clarify the method. The results and the performance of 
Reed-Muller encoding were presented and the messages been encoded using the defined matrices were 
shown. The simulation of the decoding part also been shown. The performance of Reed-Muller codes 
were then analyzed in terms of its code rate, code length and minimum Hamming distance. The 
analysis that performed also successfully examines the relationship between the parameters of Reed-
Muller coding. The decoding part of the Reed-Muller codes can detect one error and correct it as 
shown in the examples. 
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INTRODUCTION 

 
 Reed-Muller (RM) Codes are a family of linear 
error-correcting codes used in communications and are 
one of the oldest error correcting codes. However, error 
correcting codes play an important role in 
computational complexity theory and are very useful in 
sending information over long distances in which errors 
might occur in the message.  
 These codes were discovered by D.E Muller and 
were provided with a decoding algorithm by Irving S. 
Reed in 1954. As telecommunication expanded, Reed-
Muller Codes become more prevalent as the needs for 
codes that can self-correct increased. Reed-Muller 
Codes has been widely used in many applications, as it 
is the most well known decomposable codes. In fact, 
Reed-Muller Code was used by Mariner 9 to transmit 
black and white photographs of Mars in 1972[1]. 
 The outline of this paper is as follows. The coding 
theory of Reed-Muller codes and its parameters were 
presented. The implementation of these codes was 

shown where Reed-Muller codes were introduced and 
the encoding and decoding matrices were constructed. 
The example of encoding and decoding a message 
using this code was shown. Apart from that, the 
encoding and decoding of Reed-Muller codes using 
MATLAB simulation was included under this part, in 
which the Reed-Muller codes were encoded in 
MATLAB and the output is compared with the 
theoretical one. The findings, discussion and analysis of 
the results were presented  
 

MATERIALS AND METHODS 
 
Coding theory of RM codes and its parameters: 
Reed-Muller can be defined as follow: r rank RM code 
R(r,m) is the code we get when the true table of a m 
elements Boolean function whose order is not larger 
than r is treated. In other words, an rth order of Reed-
Muller Code R(r, m) is the set of all binary string 
(vectors) of length n = 2m. 
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 RM codes consist of three theorems that could be 
deduced from the definition above[2, 3]. 
 
Theorem 1: Assume that the check matrix of Hamming 
Code is H and its column vectors equal to the 
correspondent column serial number and then the dual 
code of increased Hamming code is: 
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is a 1st order RM code R(1, m). 
 
Theorem 2: Generator matrix of (r+1) order RM 
codeR(r+1, m+1) order can be derived from the 
generator matrix (r+1) order of RM code R(r+1, m) and 
of rth order of RM code R(r, m) by equation below: 
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Theorem 3: For any 0� r � m-1, R(m-r-1, m) and R(r, 
m) are dual reciprocally. 
 From these theorem stated above, it is known that 
RM codes are linear nonsystematic codes on GF(2) 
field. For every integer m and r <m, there exist a rth 
order of 2m length RM code. The parameters of Reed-
Muller code are: 
 
  Block length: n = 2m (2) 
 

  Information length:  
r

m
i 0

k C
=

=
  (3) 

 
  Minimum distance: m rd 2 −=  (4) 
 
 As the definition stated before, an rth order of Reed-
Muller Code R(r,m) is the set of all binary string 
(vectors) of length n = 2m which associated with the 
Boolean polynomials p(x1, x2,…, xm) of degree at most 
r. The 0th-order of RM code, R(0, m) consists of the 
binary strings associates with the constant polynomial 0 
and 1, R(0, m) = {0, 1} = Rep (2m). Thus, R(0, m) is 
just a repetition of either zeroes or ones at length 2m. On 
the other hand, the mth order of the RM code consists of 
all binary string of length 2m[3]. 
 
Encoding and decoding matrices: 
Encoding matrix of R(r.m): Let the 1st row of the 
encoding matrix to be 1 and let the vector length 2m 
also equal to 1. There are several cases regarding this 
encoding matrix[4]: 

Case 1:  If r is equal to 0, there are only one row in the 
encoding matrix, i.e., this row. 
 
Case 2: If r is equal to 1, a m rows (corresponding to 
the vectors x1, x2…, xm) are added to the R (0, m) 
encoding matrix. 
 

Case 3: If r > 1, 
m
r
� �
	 

� �

 rows is added to the R(r-1, m) 

encoding matrix. These added rows consists of all 
possible reduced degree r monomials that can be 
formed using rows x1, x2,…, xm.  
 For example, let m = 3: 
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1 1 1 1 1 1 1 1 1
x 1 1 1 1 0 0 0 0

R(1,3)
x 1 1 0 0 1 1 0 0
x 1 0 1 0 1 0 1 0
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 The rows x1x2 = 11000000, x1x3 = 10100000 and 
x2x3 = 10001000 are added to form: 
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1 1 1 1 1 1 1 1 1
x 1 1 1 1 0 0 0 0
x 1 1 0 0 1 1 0 0

R(2,3) x 1 0 1 0 1 0 1 0
x x 1 1 0 0 0 0 0 0
x x 1 0 1 0 0 0 0 0
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 Then, the row x1x2x3 = 10000000 is added to form: 
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1 1 1 1 1 1 1 1 1
x 1 1 1 1 0 0 0 0
x 1 1 0 0 1 1 0 0
x 1 0 1 0 1 0 1 0

R(3,3)
x x 1 1 0 0 0 0 0 0
x x 1 0 1 0 0 0 0 0
x x 1 0 0 0 1 0 0 0

x x x 1 0 0 0 0 0 0 0
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
x 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0
x 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0
x 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0

Hence, R( 2, 4  x x 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
x x 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x x 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
x x 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
x x 1 0 1 0 0 0 0 1 0 1 0 0

=

3 4

0 0 0 0
x x 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0

� �
	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 
	 

� �

 



J. Computer Sci., 4 (10): 792-798, 2008 
 

794 

 To encode a message using Reed-Muller code R (r, 
m), the dimension is given as: 
 

  
m m m

k 1
1 2 r
� � � � � �
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 Consequently, the encoding matrix has k rows. 
 For code R (r, m), let m = (m1, m2,…, mk) be a 
block, the encoded message Mc will be: 
 

  
k

c i i
i 1

M m R
=

=
   (6) 

 
Where: 
Ri = Encoding matrix of R (r, m) 
 
 For example, using R (1, 3) to encode m = (0110) 
will gives: 
 
0*(11111111)+1*(11110000)+1*(11001100)+0*(1010
1010) = 00111100 

  00000000
  11110000
  11001100
+00000000
  00111100

 

 
 Similarly, using R(2, 3) to encode m = (1010110) 
gives (0011100100000101). 
 
1*(11111111)+0*(11110000)+1*(11001100)+0*(1010
1010)+1*(11000000)+1*(10000100) + 0*(100000000) 
= (01010011) 

  11111111
  00000000
  11001100

  00000000
  11000000
  10100000

+00000000
01010011

 

 
Decoding matrix of reed-muller code: Decoding 
Reed-Muller encoded messages is more complex 
compared to encoding process. The theory behind 
encoding and decoding is based on the distance 
between the vectors, i.e. the number of places in the 
two vectors that have different values. In R (r, m) code, 
the distance between any two codeword is 2m-r. 

 For decoding part, we must assume that the closest 
codeword in R(r, m) to the received message is the 
original encoded message[4]. Thus for errors (e) to be 
corrected in the received message, the distance between 
any two of the codeword in R(r, m) must be greater 
than 2e. 
 The decoding process will check each row of the 
encoding matrix and uses majority logic to determine 
whether that row was used in forming the encoding 
message. Hence, it is possible to determine what is the 
error-less encoded message and the original message 
itself. This method of decoding is given by the 
following algorithm: 
  
Step 1: Choose a row in the R(r, m) encoding matrix. 
Find 2m-r characteristic vectors for that row and take the 
dot product of each rows with the encoded message. 
 
Step 2: Take the majority values of the dot products 
and assign that value to the coefficient of the row. 
(Repeat Step 1 and 2 for each row except the top row 
from the bottom matrix up). 
 
Step 3: Multiply each coefficient by its corresponding 
row and add the resulting vectors to form My. Add this 
result to the received encoded message. If the resulting 
vectors are more ones than zeros, then the top row's 
coefficient is 1, otherwise it is 0. To get 
 the original encoded message, add the top row and 
multiply it by its coefficient My. 
 
Step 4: Identify the errors. The vector formed by the 
sequence of coefficients starting from the top row of the 
encoding matrix and ending with the bottom row is the 
original message. 
 To find the characteristic vectors of any row of the 
matrix, take the monomial r, which associated with the 
row of the encoding matrix. Then, take E to be the set 
of all xi that are not in the monomial r, but are in the 
encoding matrix. The characteristic vectors stated in 
Step 1 are the vectors corresponding to the monomials 
in xi and ix , such that exactly one of xi or ix  is in each 
monomial for all xi in E. For example, the last row of 
the encoding matrix R(2, 4) is associated with x2x4, so 
the characteristic vectors correspond to the following 
combinations of x1, x2, 1x  and 2 1 2 1 2 1 2 1 2x : x x , x x , x x , x x .  
 For example,  given   the    original    message    is 
m = (0110). Using R (1, 3), then the encoded message 
is Mc = (00111100). Because the distance in R (1, 3) is 
23-1 = 4, this code can correct one error. Let the encoded 



J. Computer Sci., 4 (10): 792-798, 2008 
 

795 

message after the error be Me = (10111100). Hence, the 
characteristic vectors of the last row x3 = (10101010) 
are 1 2x x , 1x 2x , 1x 2x  , 1x 2x . The vector associated 
with 1x  is (11110000), so 1x = (00001111). The vector 
associated with x2 is (11001100), so 2x = (00110011): 
 
x1= (11110000) → x = (00001111), 
x2 = (11001100) → 2x = (00110011). 
  
 Therefore, x1x2 = (11000000), x1 2x  = (00110000), 
x x2 = (00001100) and x 2x  = (00000011).  
 
 Taking the dot products of these vectors with Me 
will result in: 
 

(11000000).(10111100) = 1, (00110000). (10111100) = 0 
 

(00001100).(10111100) = 0, (00000011). (10111100) = 0 
 
 Thus, the coefficient of x3 is 0. 
 Repeating the same process as above to the 2nd to 
last row of the matrix, x2 = (11001100), will get the 
characteristic vectors: 
 

x1x2 = (10100000) 
1 3x x = (01010000) 

1 3x x  = (00001010 

1 3x x  = (00000101) 
 
 Taking the dot products of these vectors with Me, 
will result in: 
 

(10100000).(10111100) = 0, (01010000).(10111100) = 1 
 

(00001010).(10111100) = 1, (00000101).(10111100) = 1 
 Hence, it can be concluded that the coefficient of 
x2 is 1.  
 Repeating the same process as above for the 
second row of the matrix x1 = (11110000): 
 

(10001000).(10111100) = 0, (00100010).(10111100) = 1 
 

(01000100).(10111100) = 1, (00010001).(10111100) = 1 
 
 The coefficient for x1 is also 1. 
 To get My, add 0* (10101010)+1* (11001100)+1* 
(11110000) = (00111100): 
 

  00000000

  11001100
+11110000
  00111100

 

 The sum of My and Me is equal to 
(00111100)+(10111100) = (10000000): 
 

  00111100
+10111100
  10000000

 

 
 This message has more zeros than ones, so the 
coefficient of the 1st row of the encoding matrix is zero. 
Thus, putting all coefficients for the four rows of the 
matrix (0, 1, 1, 0) will get the original message of 
(0110). The error was in the 1st place of the error-free 
message Mc = (00111100). 
 

RESULTS 
 
 The results of coding simulation were analyzed. By 
taking  the   example   from   the   matrix  R01,   when 
m = 1, r = 0, the R01 code is the length-2 repetition 
code. We  can   see   from   the   results  that R01 yields 
R01 = [ 1 1]. It repeats the string 1 for length of 2. This 
is a simple verification. Let us see a more 
comprehensive   example. R13  means   that   we have 
m = 3, thus we will have 2^3 codeword length of first 
order. 
 

  This code has 4 rows since:
r

i 0

m
k

i=

� �
= 	 


� �

  (7) 

 
 We can illustrate the calculation of rows here i is 
from 0-1 since r = 1. m = 3. So: 
 

m

i 0

m 3 3 3!
k 1 3 4

i 0 1 0!(3 0!)=

� � � � � �
= = + = = + =	 
 	 
 	 
 −� � � � � �

  

  
 Thus, by comparing to the result, we can see that 
there are eight columns and four rows. As explained in 
the implementation section, we can then construct a 

R23 code by simply adding 
m 3 3!
r 2 2!(3 2!)

� � � �
= =	 
 	 
 −� � � �

 = 3 

rows to R(r-1, m) = R(1, 3) encoding matrix. Thus, we 
will have 4+3 rows in the R23 code. These added rows 
consist of all possible reduced degree monomials that 
can be formed using the rows[5]. This applies to the rest 
of the R(r, m) codes that are constructed using the 
MATLAB simulation.  
 If we compare the theoretical part of the encoding 
matrices with the simulated one, we can see the 
differences. One of them is the order of the rows is 
different and also the order at which the Boolean 
variables are applied also varies. This is according to[4] 
where it is stated that there is no specific order of 
preference to ordering the rows of the generator matrix 
of R(r,m). So, R(r,m) generator matrix is not unique.  
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Fig. 1: The graph of code length versus the m positive 

integers 
 

 
 
Fig. 2: The graph of minimum hamming distance, d 

versus the Rth order at different m values 
 
 We will now briefly analyze the encoded message. 
If the input message is p bits, thus, we have to choose 
the R(r,m) codes at which the size of the input message, 
i.e., p bits is equal to the number of rows of the 
encoding matrix. For instance, for the input message 
that is given in the MATLAB simulation, we have input 
message of, m = [0 1 1 0], which has 4 bits. By using 
R13, the yielded result is the encoded message having 
the size of 8. But by using R22 which also has the same 
number of rows compared to the input size, the encoded 
message has the size of 4. This is due to the difference 
in the Boolean variables for each of the encoding 
matrix. In the encoded message result (in the 
attachment), the encoded message may produce output 
which i s  no t  in  binary,  but  in teger  numbers.  

 
 
Fig. 3: The graph of code length versus the code rate 

when the Rth order is equal 2 
 

 
 
Fig. 4: The graph of code length versus the code rate 

when the Rth  order is equal 3 
 
This MATLAB simulation does not provide the 
mechanism to only produce output in the binary. Thus, 
we have to apply our basic knowledge on the modulo-2 
addition operation. We can say that if the encoded 
message, encode1 in the MATLAB simulation is, 
encode1 = [0 1 1 2 0 1 1 2], the number 2 is considered 
as 0. This is because we apply 1 ⊕ 1 and yields 0. If the 
number is odd, let say 3, then the binary equivalent is 1 
because 1⊕1⊕1 = 1.  
 Let us proceed to the analysis of the relationship 
between the parameters of the codes.  
 Figure 1 shows the relationship between the code 
length of the Reed-Muller codes and the m positive 
integer. As the m positive integer increases, we can see 
that the code length increases exponentially. This 
agrees with the given relation between code length and 
m that is code length = 2m. 
 Figure 2 shows the relationship between the 
minimum Hamming distance and the order of the Reed- 
Muller codes. 
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Fig. 5: Row versus column of the encoding matrices 

R(r, m) 
 
As shown, the minimum Hamming distance is plotted 
against the order of the Reed-Muller codes, Rth at 
different m values. If m is large, the minimum distance 
decreases as R increases. At a slightly lower value of m, 
the minimum distance is lower than that of larger m.  
 For more understanding on the minimum 
distance[4] gives a brief description on the subject. 
Generally, a code can contain a large number of code 
words depending on r and m. Each codeword consists 
of a binary number made up of ones and zeros. The 
minimum distance of a code corresponds to the 
codeword those posses the fewest number of ones (1’s). 
For an instance, in a code containing hundreds of code 
words, if a codeword, having the least number of ones 
compared to all the code words contained in the code, 
Fig. 3 and 4 both show the plot of code length against 
the code rate of the Reed-Muller codes. The code rate 
of Reed-Muller codes is defined as the number of rows 
divided by the number of columns, which  also  
signifies the code length. Comparing Fig. 3 and 4, the 
code rate is decreasing if we use larger r value since 
larger r value will result in smaller number of rows. 
Meaning that, the efficiency is reducing. This is  so  
because  if we have smaller number of rows, only these 
rows are used for the encoding of message compared to 
the whole code length has only four ones, then the 
minimum distance for that code is four.  
 Lastly, Fig. 5 shows the row of the Encoding 
matrices is plotted against its column at different values 
of r. As discussed in the previous paragraph, as r value 
is made larger, the number of rows seems to decrease 
given at the same code length. But  by  looking  at  each 
curve, we can see that the row expands as the column 
expands.  

DISCUSSION 
  
 RM codes are class of linear block codes were first 
discovered and described by Muller in 1954 and 

recognized to be a new class of error correcting codes. 
RM codes were an important step beyond the Hamming 
and Golay codes because they allowed more flexibility 
in the size of the code word and the number of 
correctable errors per code word. Whereas the 
Hamming and Golay codes were specific codes with 
particular values for q; n; k; and t, the RM codes were a 
class of binary codes with a wide range of allowable 
design parameters. After the Mariner mission, RM 
codes fell out of favor within the coding community 
due to the discovery of more powerful codes. Recently 
there has been a resurging interest in RM codes because 
the high speed decoding algorithms are suitable for 
optical communications. To compare the theoretical 
part of the encoding matrices with the simulated one, 
we can see the differences. One of them is the order of 
the rows is different and also the order at which the 
Boolean variables are applied also varies. This is 
according to[4] where it is stated that there is no specific 
order of preference to ordering the rows of the 
generator matrix of R(r,m). So, R(r,m) generator matrix 
is not unique. 
 

CONCLUSION 
 
 This study discussed the Reed-Muller Codec 
Simulation. Upon designing the coding using 
MATLAB, the theory behinds the codes were 
presented, such as its parameters and methodology.  
 Reed-Muller codes are one of the oldest error 
correcting codes. Some findings claimed that Reed-
Muller generalizes Reed-Solomon by considering 
multivariate polynomials instead of univariate 
polynomials[6]. Other claim that Reed-Muller falls 
under the important class of codes which includes the 
extended Hamming codes[5].  
 The conducted study shows that Reed- Muller 
codes are defined as R(r,m) where r is the rth order 
Reed_Muller code, that is the set of all binary strings 
(vectors) of length n = 2m associated with the Boolean 
polynomials p(x1, x2, ….xm) of degree at most r. The 
minimum Hamming distance is d = 2m-r and the code 
rate is defined as R = k/n where k is the number of rows 
of Reed-Muller codes defines as: 
 

    
r

i 0

m
k

i=

� �
= 	 


� �

  (8) 

  
 Reed-Muller codes algorithm is quite interesting 
because it manipulates the arithmetic operation on the 
matrices such as multiplication, modulo-2 addition and 
addition of the two matrices. The matrices are 
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considered as vectors. The analysis that performed also 
successfully examines the relationship between the 
parameters of Reed-Muller coding by plotting the 
graphs. The decoding part of the Reed-Muller codes 
can detect one error and correct it as shown in the 
examples. The conclusion is that this code is self-
correcting.  
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