
Journal of Computer Science 4 (9): 744-751, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding author: Hamza A.Ali, Faculty of Computer Science and Information Technology, Al- Isra Private University,
P.O.Box 22, Code 11622, Amman, Jordan

744

Back Propagation Neural Network Arabic Characters
Classification Module Utilizing Microsoft Word

Hamza, Ali A.

Faculty of Computer Science and Information Technology,
Al- Isra Private University, P.O. Box 22, Code 11622, Amman, Jordan

Abstract: Problem statement: Arabic character recognition has been one of the last major languages
to receive attention. This may be attributed to the inherent complexity of both printed and handwritten
Arabic characters. The objectives of this study were to: (i) summarize the main characteristics of
Arabic language writing style. (ii) suggest a neural network recognition circuit. Approach: A Neural
network with back propagation training mechanism for classification was designed and trained to
recognize any set of character combinations, sizes or fonts used in Microsoft word. Results: The
proposed network recognition behaviours were compared with perceptron-like net that combines
perceptron with ADALINE features. These circuits were tested for three character sets combinations;
28 basic Arabic characters plus 10 numerals set, 52 Latin characters and 10 numerals only.
Conclusions: The method was robust and flexible and can be easily extended to any character set. The
network exhibited recognition rates approaching 100% with reasonable noise tolerance.

Key words: Pattern recognition, classification, Artificial Neural Networks, back propagation,

character recognition

INTRODUCTION

 Arabic script with its basic character shapes is
adapted for writing in many languages such as Persian,
Urdu, Malay, Kurdish and Sindhi. Considerable
research has been done recently on Arabic character
and text recognitions[1-3], however, Arabic script does
not lend itself easily to the automatic recognition based
on today’s technology.
 Arabic script consists of 28 basic characters; most
of them have different shapes for different instances.
Difficulties in Arabic character scripts are due to its
expressive richness as a language. The shapes are
slightly complicated and context-sensitive too;
character shapes changing with changes in place, the
preceding character or the succeeding one. At times
even the 3rd, 4th or 5th character may cause a similar
change as depicted in an n-gram model in a Markov
chain. The use of single, double or triple dots in various
position for many characters (initial, medial, final or
isolated), the centering of the letters in the text and
most difficult of all is the so many vowel signs attached
to most characters (if implemented). Besides, words
written from right to left (RTL)[4]. For these reasons,
Arabic script is considered to be a difficult one with a

much richer character set than Latin having features
that make direct application of algorithms for character
classification in other languages difficult to achieve[5].
A comprehensive summary of the Arabic script
characteristics and features is given by Perviz et al.[6].
 The Latin, Chinese and Japanese scripts which
have received ample research and work has been done
on the optical recognition of these scripts. Compared to
this, only few studies have specifically addressed the
recognition of Arabic text. This is due to the complexity
of the Arabic script itself while a lack of interest in this
regard accounts for another[7]. Khorsheed et al.[8]
presented an approach in which the system recognizes
an Arabic word as a single unit using a Hidden Markov
Model. The system depends greatly on a predefined
lexicon, which acts as a look-up dictionary. All the
segments in a word are extracted from its skeleton, and
each of the segments is transformed into a feature
vector. Then each of the feature vectors is mapped to
the closest symbol in the codebook. The resulting
sequence of observations is presented to a Hidden
Markov Model for recognition. Fanton[9] has discussed
the features that Arabic writing and identified the fact
that these features impose computational overload for
any Arabic software. He also noted that the way in

J. Computer Sci., 4 (9): 744-751, 2008

 745

which Arabic is printed imitates handwriting. He
pointed out that Finite State Automata give an efficient
solution for the translated problems, which can be
formalized as regular languages.
 Chen et al.[10] addressed the problem of automatic
recognition of an image pattern without any
consideration of its size, position and orientation. In this
regard, the extracted image features are made to have
properties that are invariant with image transformation
including scale, translation and rotation. They
approximated the transformation by affine
transformation to preserve co linearity and ratios of
distances.
 Optical Character Recognition (OCR) is one of the
most successful applications that have been proposed
for Artificial Neural Networks (ANN's)[11]. They lend
themselves to be highly applicable for OCR as
compared with statistical, syntactical or structural
approaches[12]. NN's have faster development times,
they have an ability to automatically take into account
the peculiarities of different writing/printing styles, and
they can be run on parallel processors. On the other
hand, introducing a new shape to the NN requires that
the network be retrained or even worse, that the
network be trained to a different architecture.
 ANN is a non-linear system which may be
characterized according to a particular network
topology[13]. This topology is decided by the
characteristics of the neurons and the learning
techniques. OCR utilizes the main advantages of
ANNs, i.e., their fast development times, ability to
automatically take into account the peculiarities of
different writing/printing styles, inherent ability of
parallel processing, retraining for new shapes or
different architecture. An intensive work can be found
in the subject of Arabic OCR using neural networks[14].
ANNs can simply cluster the feature vectors in the
feature space[15] or they can integrate feature extraction
and classification stages by classifying characters
directly from images[16]. NNs were also applied for
recognition of Arabic words on-line[17].
 ANN’s are simply processing structures having
many simple, highly connected processing elements
that can process information by its dynamic state
response to external inputs, which means that they have
certain characteristics with great similarities to those of
biological neural systems.
 Generally speaking, the common architecture of
ANNs used in Arabic OCR is a network with three
layers: input, hidden and output, as illustrated in Fig. 1.
The number of nodes in the input layer varies according
to the dimensionality of the feature vector or the
segment image size. The number of nodes in the hidden

layer governs the variance of samples that can be
correctly recognized by this ANN[18] and the number of
nodes in the output layer corresponds to the number of
samples to be recognized.
 Each node represents an ANN element may have
many input signals but it is limited to one output signal.
It may have a set of continuous or discrete inputs,
connected through links from previous neurons, x’s.
Each link has an adaptive coefficient called synaptic
weight, w assigned to it.
 ANN's can be classified into forward propagation
and back propagation networks. Forward propagation
(or feed-forward) networks are called "Non-Recurrent"
and they have no feedback connections that connect
through weights expended from the output layer to the
inputs of the same or previous layers, while back
propagation (or feed-back) networks are called
"Recurrent" and they contain feedback connections.
Recurrent networks recalculate previous outputs back to
inputs hence; output is determined both by their current
input and their previous outputs. For this reason,
recurrent network can be regarded very similar to short-
term memory in humans in that the state of the network
outputs depends: upon their previous input. The
Hopfield model is the simplest and most widely used
feedback neural architecture. Another example of
feedback network is Boltzman machine, which is close
to Hopfield model architecture.
 The learning ability of ANN's is the basic feature
of intelligence. It implies that the processing element
somehow changes its input/output behavior in response
to the environment. In a similar manner to the way that
a child learn to identify various things, ANN learns by
example[19], i.e., by repeatedly trying to match that set
of input data to the corresponding required output.
Therefore, after a sufficient number of learning
iterations, the network modifies the weights in order to
obtain the desirable behavior pattern for new input
conditions.

Fig 1: General structure of back propagation layered

neural network

J. Computer Sci., 4 (9): 744-751, 2008

 746

 Arabic Character Set Review: Arabic language is a
highly developed language with basic letter set consists
of 28 characters, they are
��������������������	��
��������
������������
��������������������������������������
 Arabic language can be written in so many
different font shapes, for example Simplified Arabic,
Kufi, Andalusi and Hejaz. Arabic characters are used in
writing many languages not only in Arabic countries,
but for Urdu and Farsi and other languages in countries
where Islam is the principal religion (such as Iran,
Pakistan and Malaysia). The special characteristics of
Arabic written words and characters do not allow the
direct application of algorithms of other languages.
They have so many interesting but complicated
features. A summary of the most important features
may contain the following:

• Cursive; it is cursive and written from left to right.
• Multiple shape; each character has 2-4 shapes

depending on its position within the word, initial,
median or final.

• It might be connected or not connected to the
previous or/and the next character in the word, for
example, the letter �, may come at the beginning

� , in between and connected
�!", at the end and
connected #$% and at the end and not connected
�&$'".

• Dots; Many letters of the Arabic alphabet have dot
(or dots), above or below the character body, such
as �
����������������� .

• Hamza; some letters may have a "Hamza" (zigzag
shape) on top or below its body, such as (,), * +,
and -.

• Madda; some letters have "Madda", to form a new
character, such as letter (�) to become (.), e.g.
/0..

• Vowels; Arabic language contain many vowel sub-
characters, (i.e., 1���2���3���4����5��6). Any letter may take
one of many vowels.

• Su-koon; a sign for cooling down the vowel, called
su-koon (7), that sits on the letters resulting in no
vowel effect.

• Overlapping; some Arabic’s characters become
over each other horizontally when they connected
with each other.

 In addition to the letters and their vowels, the
character set includes 10 numerals (i.e., 0 - 9) and a
long list of special characters, (e.g. * / + - [] !).

 When all characters, vowels, special symbols and
numerals are included, the combinations of expected
characters may go over one thousand shapes, which
makes recognition or classification task an extremely
complicated problem. However, one may starts with the
basic characters and numerals only, i.e., 38 characters,
as we did in this study. The objectives of this study
were to: (i) summarize the main characteristics of
Arabic language writing style. (ii) suggest a neural
network recognition circuit.

MATERIALS AND METHODS

 The design, training and testing of two networks
for recognition of hand written Arabic alphanumeric
characters namely Natsha net and BP-NN net are
described below. The training and testing is achieved
with the aid of Microsoft office.

Natsha net (perceptron-like net)[20]: This neural
network simply combines the perceptron principle for
pattern classification together with the ADALINE
circuit in single layer NN that consists of input and
output layers with a bias, as illustrated in Fig. 2.

(a)

(b)

Fig 2: Architecture of perceptron-like module. (a)

Neural network architecture, (b) Computation
representation

J. Computer Sci., 4 (9): 744-751, 2008

 747

 The input layer (corresponds to the retina in the
visual system) consists of 50x50 pixels matrix. This
size is found necessary to accommodate the input
Arabic characters. While the output layer consists of as
many neurons as the required number of characters to
be recognized. Each output neurons has a bias and
connected via weight matrix to the output layer. Bipolar
sigmoid (i.e., +1 or -1) activations are used for both
input and target signals. This network is a supervised
net that is a feed forward only.
The total input to the jth neuron output neuron is
calculated by:

i in ij i i

i in ij i i

n

y w X b

i 1

y W X b i 1

−

−

=� +

=
=� + =

 (1)

Where, bj is bias weight for the jth neuron.
 The weights are given initial zero values, then
adjusted by adding the weight difference ∆wij and ∆bj
to the previous values after each epoch. Where:

ijnew ijold j j in i

jnew jold j j in

W W (t y)X

b b (t y)

−

−

= +α −

= +α −

 (2)

Where:
α = Learning rate
tj and yj –in = Target and actual values for the jth output
 neuron, respectively.
 The values for xij, yj -in and tj are either +1 or -1.
 The activation output for the jth neuron Yj is
calculated, using bipolar sigmoid function as:

j j in j inY f (y) 1if y− −= =− <θ (3)
 = 0 elsewhere

Where, θ = threshold value. It is found that θ = 2 and α
= 0.1 were suitable choices.

Multilayer BP-NN: A multilayer neural network using
back propagation training policy that consists of an
input layer, one hidden layer and an output layer is
designed as shown in Fig. 3. The input layer consists of
50x50 pixels, hidden layer 20x20 neurons while the
output layer consists of as many neurons as the required
number of characters to be recognized. Each neuron in
the hidden layer and the output layer has a bias and
connected via weight matrix to the previous layer.
 Using training data (input-target pairs), the weights
of the neuron can be iteratively adjusted to give local or

global optima. Optimum weights in the sense of least
square errors were derived by Widrow and Hoff [21]. It
is called the LMS algorithm and is commonly known as
the Widrow-Hoff rule. In the LMS algorithm, the
network weights are moved along the negative of the
gradient of the performance function. Specifically, after
each iteration or epoch the weights to the output layer
are adjusted using a delta signal that in terns is used to
adjust input connection weights to these neurons by
multiplying error by the derivative of the sigmoid
function evaluated as the net output value for that
neuron which can be expressed mathematically as:

k k k k in(t y).f (y)−′δ = − (4)

 Where, tk target output for the kth output neuron.
These values of deltas are used to adjust their input
connection weights according to the following formula:

ik new ik old k jW w . .Z= +α δ (5)

α is the learning rate, typically in the range of 0 to 1.

(a)

(b)

Fig. 3: The Multilayer BP-NN. (a) Neural Network

architecture, (b) Computation representation

J. Computer Sci., 4 (9): 744-751, 2008

 748

 The difficulty arises when training internal layer
weights as no targets is available. The solution lies in
propagating the error back, layer by layer, from the
output successively to backwards layers. The jth hidden
neuron receives an error signal as the weighted sum of
the following layer error signals, then multiplies this
summation by the derivative of the input to the neuron,
i.e.:

n

k 1

j f (Zk in) k.Wik
=

′δ = − δ� (6)

 This signal is used to adjust the input connection
weight Vij to the hidden neurons Zj, i.e.:

ij n ew ij o ld iV V .= + α δ (7)

 Thus neuron uses its error signal to train its
associated weights, and then passes it back to all
neurons to which it is connected in the previous layer.
This two-step process is repeated over the training set
elements until the network converges and produces the
desired response. It must be noted that all weights were
set to zero initially.

The Learning Tool: The BP-NN network was trained
and tested using a software system designed to work
according to the plan outlined in Fig. 4. It is a generic
design to be implemented for the use of any character
set combination available in MS office. The
implementation process of this tool can be summarized
as follows.

Fig. 4: Processes plan for the proposed networks

 To train the neural network, first a character set
font is selected together with the font size. It is interred
to the database by the letter state tool. Its characters are
then taken one by one to a drawing board that transfers
them to the input matrix. The weights Matrix is
iteratively computed and is then saved into a file called
"Simplified Arabic.Arabic.ann", to be then used at the
testing process.

RESULTS

Implementation: Implementing the selected module,
i.e., running either the perceprton-like module or the
back propagation module described above means
performing the required processes including five
functions, which are; learn net, view weights, test net
and find test rates. When learn net is selected, it gives a
screen that allows for selecting letter font, letter size,
start learn and stop learn. All character sets included in
Microsoft word are available to be used for network
training, and then calculated weights are saved in a
database. These weights can be viewed, and then finally
you can enter any character to test for recognition.
 Noise is also added to any character in order to see
its effect on the recognition for the selected character.
Figure 5 shows an example of one screen that illustrates
how noise at a certain rate can be added to the input and
recognition performance is checked and reported. This
screen includes selecting the character set, its font type,
size and the noise percentage required to be added to
each input character.
 Moreover, the programming tool used shows other
computation information, such as testing recognition
speed, number of epochs, number of patterns correctly
recognized, number of patterns wrongly recognized and
number of rejected patterns.

Fig. 5: Test screen for character recognition with noise

rate selection

J. Computer Sci., 4 (9): 744-751, 2008

 749

Table 1: Training and testing times for the network
 Measured time

 Perception net BP-NN
 ---------------------- --------------------
 Ave. Ave.
Font type Character set Training testing Training testing
Arial 38-arabic 824 0.041 1530 0.075
(Arabic) 52-latin 1251 0.043 2102 0.060
 10 Numerals 30 0.033 245 0.045
Andulus 38 Arabic 959 0.040 711 0.212
 10 Numerals 26 0.037 157 0.055
Simplified 38 Arabic 768 0.044 1357 0.077
Arabic 52 Latin 1615 0.041 2433 0.075
 10 Numerals 25 0.036 166 0.049
Tahoma 38 Arabic 1419 0.041 2433 0.075
 52 Latin 335 0.042 870 0.060
 10 Numerals 25 0.033 390 0.040

Table 2: Testing rates with no addition of noise
 Recognition rate %
 --
 Perception net BP-NN
 --------------------- --------------------
Font type Character set Correct Error Correct Error
Arial 38-arabic 100 0 100 0
(Arabic) 52 Latin 96 4 97 3
 10 numerals 100 0 100 0
Andulus 38 Arabic 100 0 100 0
 52-latin 100 0 100 0
 10-numerals 100 0 100 0
Simplified 38 Arabic 100 0 100 0
 52 Latin 96 4 98 2
 10 numerals 100 0 100 0
Tohama 38 Arabic 100 0 100 0
 52 Latin 100 0 100 0
 10 numerals 100 0 100 0

Table 3: Testing rates with addition of 10% noise
 Recognition rate %

 Perception net BP-NN
 ------------------- ------------------
Font type Character set Correct Error Correct Error
Arial 38-arabic 79 21 89 11
(Arabic) 52 Latin 81 19 94 6
 10 numerals 100 0 100 0
Andulus 38 Arabic 79 24 85 15
 52-Latin 88 10* 92 8
 10-numerals 100 0 100 0
Simplified 38 Arabic 82 18 93 7
 52 Latin 87 13 95 5
 10 numerals 100 0 100 0
Tohama 38 Arabic 79 18* 91 9
 52 Latin 83 17 94 6
 10 numerals 100 0 100 0
*: Note: There a rejected recognition is found in this case

 The programs written to implement the proposed
networks are designed to be trained for any character
set type, however only four different types of Arabic
character are involved in the experiment of this study,
namely Arial, Andalus, Simplified Arabic and Tuhama
fonts.

Table 4: Testing rates with addition of 20% noise
 Recognition rate %

 Perception net BP-NN
 -------------------- -------------------
Font type Character set Correct Error Correct Error
Arial 38-arabic 53 47 89 11
(Arabic) 52 Latin 62 38 93 7
 10 numerals 80 20 97 3
Andulus 38 Arabic 55 45 88 12
 52-Latin 77 23 90 10
 10-numerals 100 0 100 0
Simplified 38 Arabic 55 42* 86 14
 52 Latin 76 33 92 8
 10 numerals 100 0 100 0
Tohama 38 Arabic 79 21 95 5
 52 Latin 62 38 89 11
 10 numerals 100 0 100 0
*: Note: There a rejected recognition is found in this case

Fig. 6: Mean Square Error measurements for the basic

Arabic (Arial) Character set recognition

Besides, three character combinations only were
investigated, namely the basic Arabic alphanumeric set
(28 letters + 10 numerals), the Latin alphabetic set (52
lower case and upper case) and the 10 Arabic numerals
on their own.
 The time taken to train the networks for the
character sets as well as the time required to test the net
for the recognition of all the elements of the
corresponding sets are calculated and listed (Table 1).
These measurements are for the four chosen fonts for
both the perceptron-like net and the BP-NN.
 Observed training and testing times for the
proposed perceptron and BP-NN networks varies for
various fonts. This may be attributed to the different
features found in each set font type. Simplified Arabic
type is found to be the fastest to train among the four
sets under study, while testing time has no considerable
differences. These results show that training the
numerals set only is the fastest. This speed can be
attributed to their small number as compared with other
sets. The BP-NN network needed more time for both
training and testing due to its size and complexity as
compared with the perceptron, however this time

J. Computer Sci., 4 (9): 744-751, 2008

 750

consumption can be considered as a price for their
improved recognition accuracy.
 In order to see how the network recognition
improves with increasing number of iterations, the
mean square error MSE is calculated and plotted in Fig.
6. It is measured for repeated training with increasing
number of epochs for both perceptron-like net and the
BP-NN, however it is only presented for the 38 Arabic
(Arial) alphanumeric set.
 Recognition rates for both perceptron-like and BP-
NN are computed for the four types of Arabic character
sets under consideration without introducing any noise
(Table 2). Then different levels of noise were added to
the character images in the range up to 20% for the
cases understudy and recognition efficiency in the form
of correct recognition and error recognition rates are
calculated and tabulated (Tables 2-4).

DISCUSSION

 For no noise calculations (Table 2), full recognition
was obtained for all Arabic fonts, while 96% correct
recognition is obtained for the Latin alphabetic set and
4% wrong recognition. Moreover, no rejection rate was
noticed.
 The addition of 10% noise level to the image is
investigated and listed (Table 3). This has resulted into
an increased recognition error of up to 24% for Arabic
(Andalus) alphanumeric set. However, it still gives full
recognition for the numerals. Few rejections are also
noticed as in the case of Andulus and Simplified Arabic
fonts when the Latin set is chosen.
 When the noise level increased to 20%, more error
recognition is observed (Table 4). Correct recognition
calculations for both Arabic and Latin letters show
drastic deterioration, but those for numerals look
unaffected for most fonts. It is noticed that some error
for Arabic (Arial) numerals set only still exist.
However, no rejection was noticed when BP-NN is
implemented for all tested font types.
 The recognition error or the mean square error
decreases exponentially with the increase in number of
training epochs (Fig. 6). It is found that the error is
extremely reduced after about 80 epochs, which can be
considered as good enough for a practical system. It is
found too that the MSE reduces for the BP-NN faster
and stabilizes at lower rate as compared with the
perceptron net.

CONCLUSION

 This study proposes feed forward neural network
that combines properties of perceptron and ADALINE
net as well as multilayer neural net with back

propagation training policy. They are trained and tested
for implementation of Arabic script classification. It
also included the design of a software tool suitable for
the training and testing NN for any character set
combinations, sizes or fonts utilizing MS word. The
effect of the presence of noise in the original script is
also investigated. The scheme takes the whole character
as one feature. The results have shown considerable
degree of confidence in recognition printed Arabic
characters with reasonable degree of reliability in a
noisy environment. It was evident that as the size of the
character sets increases, the required time for training is
increased considerably and the recognition rate
decreases especially when noise rate is increased.

ACKNOWLEDGMENT

 The researcher acknowledges the academic support
of Isra Private University. Also thanks are due to Mr.
Rajab Natsha for his assistance in programming efforts.

REFERENCES

1. Asiri, A. and M.S. Khorsheed, 2005. Automatic

processing of handwritten Arabic forms using
neural networks. Proceeding of the World
Academy of Science, Engineering and Technology,
Aug. 2005, pp: 313-317.
http://www.waset.org/pwaset/v7/v7-61.pdf.

 2. Sarhan A.M. and O. Helalat, 2007. Arabic
character recognition using ann networks and
statistical analysis. Proceeding of European and
Mediterranean Conference on Information
Systems, June 24-26, Polytechnic University of
Valencia, pp: 1-9.

 http://www.iseing.org/emcis/EMCIS2007/emcis07
cd/EMCIS07-PDFs/673.pdf.

3. Alnsour, A.J. and L.M. Alzoubady, 2006. Arabic
handwritten characters recognized by neocognitron
artificial neural network. J. Pure Appl. Sci., 3: 1-
17.

 https://www.sharjah.ac.ae/English/About_UOS/UO
SPublications/Appliedsciences/Issues/Documents/3
_2/AlNsour_1_e.pdf.

4. Hadjar, K. and R. Ingold, 2003. Arabic newspaper
segmentation. Proceeding of 7th International
Conference on Document Analysis and
Recognition, Aug. 3-6, IEEE Computer Society,
pp: 895-899.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1227789.

J. Computer Sci., 4 (9): 744-751, 2008

 751

5. Altuwaijri, M.M. and M. Bayoumi, 1994. Arabic
text recognition using neural networks.
International Symposium on Circuits and Systems,
May 30-June 2, IEEE Xplore, London, UK ., pp:
415-418.

 DOI: 10.1109/ISCAS.1994.409614.
6. Ahmed, P. and Y. Al-Ohali, 2000. Arabic character

recognition: Progress and challenges. J. King Saud
University, Comput. Inform. Sci., 12: 85-121.
http://digital.library.ksu.edu.sa/V12M152R682.pdf.

7. Syed, M. S., N. Nawaz and A. Al-Khuraidly, 2003.
Offline arabic text recognition system.
International Conference on Geometric Modeling
and Graphics, July 16-18 IEEE Xplore, London,
UK., pp: 30-35.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumbe
r=1219662.

8. Khorsheed M.S. and W.F. Clocksin, 1999.
Structural Features of Cursive Arabic Script.
Proceeding of the 10th British Machine Vision
Conference, Sept. 13-16, Nottingham, UK., pp:
422-431.

 http://www.bmva.ac.uk/bmvc/1999/papers/42.pdf
9. Fanton, M., 1998. Finite state automata and arabic

writing. Workshop on Computational Approaches
to Semitic Languages, Aug. 16-16, University of
Montreal, Canada, pp: 26-33.
http://www.aclweb.org/anthology-
new/W/W98/W98-1004.pdf

10. Chen, Q., E. Petriu and X. Yang, 2004. A
comparative study of fourier descriptors and hu’s
seven moment invariants for image recognition.
IEEE Canadian Conference on Electrical and
Computer Engineering, May 2-5, Niagara Falls,
Canada, pp: 103-106.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1344967.

11. Khorsheed, M.S., 2000. Off-line Arabic character
recognition-a review. Patt. Anal. Appl., 5: 31-45.
DOI: 10.1007/s100440200004.

12. Lucas, S., E. Vidal, A. Amiri, S. Hanlon and
J.C. Amengual, 1994. A comparison of syntactic
and statistical techniques for off-line OCR.
Lecture Note Comput. Sci., 862: 168-179. DOI:
10.1007/3-540-58473-0_146.

13. Pao, Y., 1989. Adaptive Pattern Recognition and
Neural Networks. Addison Wesley Pub., Company,
Inc.,�ISBN-10: 0201125846.

14. Hassibi, K., 1994. Machine-printed Arabic OCR
using neural networks. Proceeding of the 4th
International Conference and Exhibition on Multi-
Lingual Computing, April 1994, Cambridge
University Press, Cambridge, UK., pp: 2.3.1-
2.3.12.

15. Mowlaei, A., K. Fayez and A. Haghighat, 2002.
Feature extraction with wavelets transform for
recognition of isolated handwritten Farsi/Arabic
characters and numerals. Proceeding of the 14th
International Conference on Digital Signal
Processing, pp: 923-926. DOI:
10.1109/ICDSP.2002.1028240.

16. Mosfeq, R., 1996. Arabic character recognition
using integrated segmentation and recognition. The
5th International Conference and Exhibition on
Multi-Lingual Computing, April 1996, Cambridge
University Press, Cambridge, UK., pp: 2.1.1-
2.1.10.

17. Abdelazim, H. Y., 1996. A Hybrid Fuzzy-Neural
Approach to the Recognition of Arabic Script,
Proc. of 5th Int. Conf. and Exhibition on Multi-
Lingual Computing, April 1994, Cambridge
University Press, Cambridge, UK., pp: 2.3.1-
2.3.13.

18. Said, F., R. Yacoub and C. Suen, 1999. Recognition
of English and Arabic numerals sings a dynamic
number of hidden neurons. Proceeding of the 5th
International Conference on Document Analysis
and Recognition, Sept. 20-22, IEEE Computer
Society, Washington, DC,, USA,, pp: 237-241.

19. Ali, H.A. and M.A.B. Mahmood, 2002. A hybrid
neural network model for character recognition of
hand written numerals. J. Associ. Advance. Model.
Simulat. Tech. Enterprises45: 53-67.

20. Ali, H.A. and R.M. Natsha, 2003. Neural networks
tool for arabic script classification. Proceeding of
the Arab Conference on Information Technology,
Dec. pp: 285-297.

21. Canny, J.F., 1986. A computational approach to
edge detection. IEEE Trans. Patt. Anal. Mach.
Intell., 8: 679-698.
http://portal.acm.org/citation.cfm?id=11274.11275.

