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Abstract: Problem statement: Arabic character recognition has been one of the last major languages 
to receive attention. This may be attributed to the inherent complexity of both printed and handwritten 
Arabic characters. The objectives of this study were to: (i) summarize the main characteristics of 
Arabic language writing style. (ii) suggest a neural network recognition circuit. Approach: A Neural 
network with back propagation training mechanism for classification was designed and trained to 
recognize any set of character combinations, sizes or fonts used in Microsoft word. Results: The 
proposed network recognition behaviours were compared with perceptron-like net that combines 
perceptron with ADALINE features. These circuits were tested for three character sets combinations; 
28 basic Arabic characters plus 10 numerals set, 52 Latin characters and 10 numerals only. 
Conclusions: The method was robust and flexible and can be easily extended to any character set.  The 
network exhibited recognition rates approaching 100% with reasonable noise tolerance.  
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INTRODUCTION 
 

 Arabic script with its basic character shapes is 
adapted for writing in many languages such as Persian, 
Urdu, Malay, Kurdish and Sindhi. Considerable 
research has been done recently on Arabic character 
and text recognitions[1-3], however, Arabic script does 
not lend itself easily to the automatic recognition based 
on today’s technology. 
 Arabic script consists of 28 basic characters; most 
of them have different shapes for different instances. 
Difficulties in Arabic character scripts are due to its 
expressive richness as a language. The shapes are 
slightly complicated and context-sensitive too; 
character shapes changing with changes in place, the 
preceding character or the succeeding one. At times 
even the 3rd, 4th or 5th character may cause a similar 
change as depicted in an n-gram model in a Markov 
chain. The use of single, double or triple dots in various 
position for many characters (initial, medial, final or 
isolated), the centering of the letters in the text and 
most difficult of all is the so many vowel signs attached 
to most characters (if implemented). Besides, words 
written from right to left (RTL)[4]. For these reasons, 
Arabic script is considered to be a difficult one with a 

much richer character set than Latin having features 
that make direct application of algorithms for character 
classification in other languages difficult to achieve[5]. 
A comprehensive summary of the Arabic script 
characteristics and features is given by Perviz et al.[6]. 
 The Latin, Chinese and Japanese scripts which 
have received ample research and work has been done 
on the optical recognition of these scripts. Compared to 
this, only few studies have specifically addressed the 
recognition of Arabic text. This is due to the complexity 
of the Arabic script itself while a lack of interest in this 
regard accounts for another[7]. Khorsheed et al.[8] 
presented an approach in which the system recognizes 
an Arabic word as a single unit using a Hidden Markov 
Model. The system depends greatly on a predefined 
lexicon, which acts as a look-up dictionary. All the 
segments in a word are extracted from its skeleton, and 
each of the segments is transformed into a feature 
vector. Then each of the feature vectors is mapped to 
the closest symbol in the codebook. The resulting 
sequence of observations is presented to a Hidden 
Markov Model for recognition. Fanton[9] has discussed 
the features that Arabic writing and identified the fact 
that these features impose computational overload for 
any Arabic software. He also noted that the way in 
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which Arabic is printed imitates handwriting. He 
pointed out that Finite State Automata give an efficient 
solution for the translated problems, which can be 
formalized as regular languages. 
 Chen et al.[10] addressed the problem of automatic 
recognition of an image pattern without any 
consideration of its size, position and orientation. In this 
regard, the extracted image features are made to have 
properties that are invariant with image transformation 
including scale, translation and rotation. They 
approximated the transformation by affine 
transformation to preserve co linearity and ratios of 
distances. 
 Optical Character Recognition (OCR) is one of the 
most successful applications that have been proposed 
for Artificial Neural Networks (ANN's)[11]. They lend 
themselves to be highly applicable for OCR as 
compared with statistical, syntactical or structural 
approaches[12]. NN's have faster development times, 
they have an ability to automatically take into account 
the peculiarities of different writing/printing styles, and 
they can be run on parallel processors. On the other 
hand, introducing a new shape to the NN requires that 
the network be retrained or even worse, that the 
network be trained to a different architecture. 
 ANN is a non-linear system which may be 
characterized according to a particular network 
topology[13]. This topology is decided by the 
characteristics of the neurons and the learning 
techniques. OCR utilizes the main advantages of 
ANNs, i.e., their fast development times, ability to 
automatically take into account the peculiarities of 
different writing/printing styles, inherent ability of 
parallel processing, retraining for new shapes or 
different architecture. An intensive work can be found 
in the subject of Arabic OCR using neural networks[14]. 
ANNs can simply cluster the feature vectors in the 
feature space[15] or they can integrate feature extraction 
and classification stages by classifying characters 
directly from images[16]. NNs were also applied for 
recognition of Arabic words on-line[17].  
 ANN’s are simply processing structures having 
many simple, highly connected processing elements 
that can process information by its dynamic state 
response to external inputs, which means that they have 
certain characteristics with great similarities to those of 
biological neural systems. 
 Generally speaking, the common architecture of 
ANNs used in Arabic OCR is a network with three 
layers: input, hidden and output, as illustrated in Fig. 1. 
The number of nodes in the input layer varies according 
to the dimensionality of the feature vector or the 
segment image size. The number of nodes in the hidden 

layer governs the variance of samples that can be 
correctly recognized by this ANN[18] and the number of 
nodes in the output layer corresponds to the number of 
samples to be recognized.  
 Each node represents an ANN element may have 
many input signals but it is limited to one output signal. 
It may have a set of continuous or discrete inputs, 
connected through links from previous neurons, x’s. 
Each link has an adaptive coefficient called synaptic 
weight, w assigned to it. 
 ANN's can be classified into forward propagation 
and back propagation networks. Forward propagation 
(or feed-forward) networks are called "Non-Recurrent" 
and they have no feedback connections that connect 
through weights expended from the output layer to the 
inputs of the same or previous layers, while back 
propagation (or feed-back) networks are called 
"Recurrent" and they contain feedback connections. 
Recurrent networks recalculate previous outputs back to 
inputs hence; output is determined both by their current 
input and their previous outputs. For this reason, 
recurrent network can be regarded very similar to short- 
term memory in humans in that the state of the network 
outputs depends: upon their previous input. The 
Hopfield model is the simplest and most widely used 
feedback neural architecture. Another example of 
feedback network is Boltzman machine, which is close 
to Hopfield model architecture.  
 The learning ability of ANN's is the basic feature 
of intelligence. It implies that the processing element 
somehow changes its input/output behavior in response 
to the environment. In a similar manner to the way that 
a child learn to identify various things, ANN learns by 
example[19], i.e., by repeatedly trying to match that set 
of input data to the corresponding required output. 
Therefore, after a sufficient number of learning 
iterations, the network modifies the weights in order to 
obtain the desirable behavior pattern for new input 
conditions. 
 

 
 
Fig 1: General structure of back propagation layered 

neural network 
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 Arabic Character Set Review: Arabic language is a 
highly developed language with basic letter set consists 
of 28 characters, they are 
��������������������	��
��������
������������
�������������������������������������� 
 Arabic language can be written in so many 
different font shapes, for example Simplified Arabic, 
Kufi, Andalusi and Hejaz. Arabic characters are used in 
writing many languages not only in Arabic countries, 
but for Urdu and Farsi and other languages in countries 
where Islam is the principal religion (such as Iran, 
Pakistan and Malaysia). The special characteristics of 
Arabic written words and characters do not allow the 
direct application of algorithms of other languages. 
They have so many interesting but complicated 
features. A summary of the most important features 
may contain the following: 
 
• Cursive; it is cursive and written from left to right. 
• Multiple shape; each character has 2-4 shapes 

depending on its position within the word, initial, 
median or final.  

• It might be connected or not connected to the 
previous or/and the next character in the word, for 
example, the letter �, may come at the beginning 

� , in between and connected 
�!", at the end and 
connected #$% and at the end and not connected 
�&$'". 

• Dots; Many letters of the Arabic alphabet have dot 
(or dots), above or below the character body, such 
as �
����������������� . 

• Hamza; some letters may have a "Hamza" (zigzag 
shape) on top or below its body, such as (, ), *   +, 
and -. 

• Madda; some letters have "Madda", to form a new 
character, such as letter (�) to become (.), e.g. 
/0.. 

• Vowels; Arabic language contain many vowel sub-
characters, (i.e., 1���2���3���4����5��6 ).  Any letter may take 
one of many vowels.       

• Su-koon; a sign for cooling down the vowel, called 
su-koon (7 ), that sits on the letters resulting in no 
vowel effect. 

• Overlapping; some Arabic’s characters become 
over each other horizontally when they connected 
with each other. 

 
 In addition to the letters and their vowels, the 
character set includes 10 numerals (i.e., 0 - 9) and a 
long list of special characters, (e.g. * / + - [ ] ! ). 

 When all characters, vowels, special symbols and 
numerals are included, the combinations of expected 
characters may go over one thousand shapes, which 
makes recognition or classification task an extremely 
complicated problem. However, one may starts with the 
basic characters and numerals only, i.e., 38 characters, 
as we did in this study. The objectives of this study 
were to: (i) summarize the main characteristics of 
Arabic language writing style. (ii) suggest a neural 
network recognition circuit. 
 

MATERIALS AND METHODS 
  
 The design, training and testing of two networks 
for recognition of hand written Arabic alphanumeric 
characters namely Natsha net and BP-NN net are 
described below. The training and testing is achieved 
with the aid of Microsoft office.  
 
Natsha net (perceptron-like net)[20]: This neural 
network simply combines the perceptron principle for 
pattern classification together with the ADALINE 
circuit in single layer NN that consists of input and 
output layers with a bias, as illustrated in Fig. 2.  
 

 
(a) 

 

 
(b) 

 
Fig 2: Architecture of perceptron-like module.  (a) 

Neural network architecture, (b) Computation 
representation 
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 The input layer (corresponds to the retina in the 
visual system) consists of 50x50 pixels matrix. This 
size is found necessary to accommodate the input 
Arabic characters. While the output layer consists of as 
many neurons as the required number of characters to 
be recognized. Each output neurons has a bias and 
connected via weight matrix to the output layer. Bipolar 
sigmoid (i.e., +1 or -1) activations are used for both 
input and target signals. This network is a supervised 
net that is a feed forward only. 
The total input to the jth neuron output neuron is 
calculated by:  
 

i in ij i i

i in ij i i

n

y w X b

i 1

y W X b i 1

−

−

=� +

=
=� + =

   (1) 

 
Where, bj is bias weight for the jth neuron.  
 The weights are given initial zero values, then 
adjusted by adding the weight difference ∆wij and ∆bj 
to the previous values after each epoch. Where: 
 

ijnew ijold j j in i

jnew jold j j in

W W (t y )X

b b (t y )

−

−

= +α −

= +α −

  (2) 

 
Where: 
α  = Learning rate 
tj and yj –in = Target and actual values for the jth output  
   neuron, respectively. 
 The values for xij, yj -in and tj are either +1 or -1. 
 The activation output for the jth neuron Yj is 
calculated, using bipolar sigmoid function as:  
 

j j in j inY f (y ) 1if y− −= =− <θ   (3) 
 = 0 elsewhere   
 
Where, θ = threshold value. It is found that θ = 2 and α 
= 0.1 were suitable choices. 
 
Multilayer BP-NN: A multilayer neural network using 
back propagation training policy that consists of an 
input layer, one hidden layer and an output layer is 
designed as shown in Fig. 3. The input layer consists of 
50x50 pixels, hidden layer 20x20 neurons while the 
output layer consists of as many neurons as the required 
number of characters to be recognized. Each neuron in 
the hidden layer and the output layer has a bias and 
connected via weight matrix to the previous layer.  
 Using training data (input-target pairs), the weights 
of the neuron can be iteratively adjusted to give local or 

global optima. Optimum weights in the sense of least 
square errors were derived by Widrow and Hoff [21]. It 
is called the LMS algorithm and is commonly known as 
the Widrow-Hoff rule. In the LMS algorithm, the 
network weights are moved along the negative of the 
gradient of the performance function. Specifically, after 
each iteration or epoch the weights to the output layer 
are adjusted using a delta signal that in terns is used to 
adjust input connection weights to these neurons by 
multiplying error by the derivative of the sigmoid 
function evaluated as the net output value for that 
neuron which can be expressed mathematically as:  
 

k k k k in(t y ).f (y )−′δ = −   (4) 
 
 Where, tk target output for the kth output neuron. 
These values of deltas are used to adjust their input 
connection weights according to the following formula: 
  

ik new ik old k jW w . .Z= +α δ   (5) 
 
α is the learning rate, typically in the range of 0 to 1.  
 

 

 
(a) 

 

 
(b)  

 
Fig. 3: The Multilayer BP-NN. (a) Neural Network 

architecture, (b) Computation representation 
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 The difficulty arises when training internal layer 
weights as no targets is available. The solution lies in 
propagating the error back, layer by layer, from the 
output successively to backwards layers. The jth hidden 
neuron receives an error signal as the weighted sum of 
the following layer error signals, then multiplies this 
summation by the derivative of the input to the neuron, 
i.e.: 
 

n

k 1

j f (Zk in) k.Wik
=

′δ = − δ�  (6) 

 

       This signal is used to adjust the input connection 
weight Vij to the hidden neurons Zj, i.e.: 
 

ij n ew ij o ld iV V .= + α δ  (7) 

 
 Thus neuron uses its error signal to train its 
associated weights, and then passes it back to all 
neurons to which it is connected in the previous layer. 
This two-step process is repeated over the training set 
elements until the network converges and produces the 
desired response. It must be noted that all weights were 
set to zero initially. 
 
The Learning Tool: The BP-NN network was trained 
and tested using a software system designed to work 
according to the plan outlined in Fig. 4. It is a generic 
design to be implemented for the use of any character 
set combination available in MS office. The 
implementation process of this tool can be summarized 
as follows. 
 

 
 
Fig. 4: Processes plan for the proposed networks 

 To train the neural network, first a character set 
font is selected together with the font size. It is interred 
to the database by the letter state tool. Its characters are 
then taken one by one to a drawing board that transfers 
them to the input matrix. The weights Matrix is 
iteratively computed and is then saved into a file called 
"Simplified Arabic.Arabic.ann", to be then used at the 
testing process. 
 

RESULTS 
 
Implementation: Implementing the selected module, 
i.e., running either the perceprton-like module or the 
back propagation module described above means 
performing the required processes including five 
functions, which are; learn net, view weights, test net 
and find test rates. When learn net is selected, it gives a 
screen that allows for selecting letter font, letter size, 
start learn and stop learn. All character sets included in 
Microsoft word are available to be used for network 
training, and then calculated weights are saved in a 
database. These weights can be viewed, and then finally 
you can enter any character to test for recognition. 
 Noise is also added to any character in order to see 
its effect on the recognition for the selected character. 
Figure 5 shows an example of one screen that illustrates 
how noise at a certain rate can be added to the input and 
recognition performance is checked and reported. This 
screen includes selecting the character set, its font type, 
size and the noise percentage required to be added to 
each input character. 
 Moreover, the programming tool used shows other 
computation information, such as testing recognition 
speed, number of epochs, number of patterns correctly 
recognized, number of patterns wrongly recognized and 
number of rejected patterns.  
 

 
 
Fig. 5:  Test screen for character recognition with noise 

rate selection 
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Table 1: Training and testing times for the network 
  Measured time 
  ----------------------------------------------- 
  Perception net BP-NN 
  ---------------------- -------------------- 
   Ave.  Ave. 
Font type Character set Training testing Training testing 
Arial 38-arabic  824 0.041 1530 0.075 
(Arabic) 52-latin 1251 0.043 2102 0.060 
 10 Numerals 30 0.033 245 0.045 
Andulus  38 Arabic 959 0.040 711 0.212 
 10 Numerals 26 0.037 157 0.055 
Simplified 38 Arabic 768 0.044 1357 0.077 
Arabic 52 Latin 1615 0.041 2433 0.075 
 10 Numerals 25 0.036 166 0.049 
Tahoma 38 Arabic 1419 0.041 2433 0.075 
 52 Latin 335 0.042 870 0.060 
 10 Numerals 25 0.033 390 0.040 

 
Table 2: Testing rates with no addition of noise 
  Recognition rate % 
  -------------------------------------------- 
  Perception net BP-NN  
  --------------------- -------------------- 
Font type Character set Correct Error Correct Error 
Arial 38-arabic 100 0 100 0 
(Arabic) 52 Latin 96 4 97 3 
 10 numerals 100 0 100 0 
Andulus 38 Arabic 100 0 100 0 
 52-latin 100 0 100 0 
 10-numerals 100 0 100 0 
Simplified 38 Arabic 100 0 100 0 
 52 Latin 96 4 98 2 
 10 numerals 100 0 100 0 
Tohama 38 Arabic 100 0 100 0 
 52 Latin 100 0 100 0 
 10 numerals 100 0 100 0 
 
Table 3: Testing rates with addition of 10% noise 
  Recognition rate % 
  ------------------------------------------- 
  Perception net BP-NN  
  ------------------- ------------------ 
Font type Character set Correct Error Correct Error 
Arial 38-arabic 79 21 89 11 
(Arabic) 52 Latin 81 19 94 6 
 10 numerals 100 0 100 0 
Andulus 38 Arabic 79 24 85 15 
 52-Latin 88 10* 92 8 
 10-numerals 100 0 100 0 
Simplified 38 Arabic 82 18 93 7 
 52 Latin 87 13 95 5 
 10 numerals 100 0 100 0 
Tohama 38 Arabic 79 18* 91 9 
 52 Latin 83 17 94 6 
 10 numerals 100 0 100 0 
*: Note: There a rejected recognition is found in this case 

 
 The programs written to implement the proposed 
networks are designed to be trained for any character 
set type, however only four different types of Arabic 
character are involved in the experiment of this study, 
namely Arial, Andalus, Simplified Arabic and Tuhama 
fonts.  

Table 4: Testing rates with addition of 20% noise 
  Recognition rate % 
  --------------------------------------------- 
  Perception net BP-NN  
  -------------------- ------------------- 
Font type Character set Correct Error Correct Error 
Arial 38-arabic 53 47 89 11 
(Arabic) 52 Latin 62 38 93 7 
 10 numerals 80 20 97 3 
Andulus 38 Arabic 55 45 88 12 
 52-Latin 77 23 90 10 
 10-numerals 100 0 100 0 
Simplified 38 Arabic 55 42* 86 14 
 52 Latin 76 33 92 8 
 10 numerals 100 0 100 0 
Tohama 38 Arabic 79 21 95 5 
 52 Latin 62 38 89 11 
 10 numerals 100 0 100 0 
*: Note: There a rejected recognition is found in this case 

 

 
 
Fig. 6: Mean Square Error measurements for the basic 

Arabic (Arial) Character set recognition 
 
Besides, three character combinations only were 
investigated, namely the basic Arabic alphanumeric set 
(28 letters + 10 numerals), the Latin alphabetic set (52 
lower case and upper case) and the 10 Arabic numerals 
on their own. 
 The time taken to train the networks for the 
character sets as well as the time required to test the net 
for the recognition of all the elements of the 
corresponding sets are calculated and listed (Table 1). 
These measurements are for the four chosen fonts for 
both the perceptron-like net and the BP-NN. 
 Observed training and testing times for the 
proposed perceptron and BP-NN networks varies for 
various fonts. This may be attributed to the different 
features found in each set font type. Simplified Arabic 
type is found to be the fastest to train among the four 
sets under study, while testing time has no considerable 
differences. These results show that training the 
numerals set only is the fastest. This speed can be 
attributed to their small number as compared with other 
sets. The BP-NN network needed more time for both 
training and testing due to its size and complexity as 
compared with the perceptron, however this time 
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consumption can be considered as a price for their 
improved recognition accuracy. 
 In order to see how the network recognition 
improves with increasing number of iterations, the 
mean square error MSE is calculated and plotted in Fig. 
6. It is measured for repeated training with increasing 
number of epochs for both perceptron-like net and the 
BP-NN, however it is only presented for the 38 Arabic 
(Arial) alphanumeric set. 
 Recognition rates for both perceptron-like and BP-
NN are computed for the four types of Arabic character 
sets under consideration without introducing any noise 
(Table 2). Then different levels of noise were added to 
the character images in the range up to 20% for the 
cases understudy and recognition efficiency in the form 
of correct recognition and error recognition rates are 
calculated and tabulated (Tables 2-4).  
 

DISCUSSION 
 
 For no noise calculations (Table 2), full recognition 
was obtained for all Arabic fonts, while 96% correct 
recognition is obtained for the Latin alphabetic set and 
4% wrong recognition. Moreover, no rejection rate was 
noticed.  
 The addition of 10% noise level to the image is 
investigated and listed (Table 3). This has resulted into 
an increased recognition error of up to 24% for Arabic 
(Andalus) alphanumeric set. However, it still gives full 
recognition for the numerals. Few rejections are also 
noticed as in the case of Andulus and Simplified Arabic 
fonts when the Latin set is chosen. 
 When the noise level increased to 20%, more error 
recognition is observed (Table 4). Correct recognition 
calculations for both Arabic and Latin letters show 
drastic deterioration, but those for numerals look 
unaffected for most fonts. It is noticed that some error 
for Arabic (Arial) numerals set only still exist. 
However, no rejection was noticed when BP-NN is 
implemented for all tested font types. 
 The recognition error or the mean square error 
decreases exponentially with the increase in number of 
training epochs (Fig. 6). It is found that the error is 
extremely reduced after about 80 epochs, which can be 
considered as good enough for a practical system. It is 
found too that the MSE reduces for the BP-NN faster 
and stabilizes at lower rate as compared with the 
perceptron net. 
 

CONCLUSION 
 
 This study proposes feed forward neural network 
that combines properties of perceptron and ADALINE 
net as well as multilayer neural net with back 

propagation training policy. They are trained and tested 
for implementation of Arabic script classification. It 
also included the design of a software tool suitable for 
the training and testing NN for any character set 
combinations, sizes or fonts utilizing MS word. The 
effect of the presence of noise in the original script is 
also investigated. The scheme takes the whole character 
as one feature. The results have shown considerable 
degree of confidence in recognition printed Arabic 
characters with reasonable degree of reliability in a 
noisy environment. It was evident that as the size of the 
character sets increases, the required time for training is 
increased considerably and the recognition rate 
decreases especially when noise rate is increased. 
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