
Journal of Computer Science 4 (6): 454-462, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Salmi Baharom, Faculty of Computer Science and Information Technology, University Putra Malaysia,
43400 UPM, Serdang, Selangor, Malaysia Tel: +6019-2728807 Fax: +603-89422534

454

The Conceptual Design of Module Documentation Based Testing Tool

1Salmi Baharom and 2Zarina Shukur

1Faculty of Computer Science and Information Technology, University Putra Malaysia, Malaysia
2Faculty of Science and Information Technology, University Kebangsaan Malaysia, Malaysia

Abstract: Software testing plays an important role to assure the quality of software and can be highly
effective if performed rigorously. Studies found that testing can benefit from formal specification as it
provides precise description of expected software behavior and most importantly, it is in a form that it
can be manipulated easily for automation purpose. Grey-box testing approach usually based on
knowledge obtains from specification and source code while seldom the design specification is
concerned. In this study, an approach was described with an example of circular queue for testing a
module with internal memory from its formal specification based on grey-box approach. However, in
this research, we proposed a grey-box testing approach that uses the knowledge of design specification
instead of source code. We utilized formal specifications that were documented using Parnas’s Module
Documentation (MD) method to generate test oracle and to execute the test. The MD provides the
information of external and internal view of a module that is useful in our testing approach.

Key words: Specification-based testing, grey-box testing, testing tool, test oracle generator

INTRODUCTION

 Software testing is a part of validation and
verification process that is performed to verify software
quality and reliability. The goal of software testing is to
reveal software faults by executing the program on
inputs and comparing the outputs of the execution with
expected outputs. If perform rigorously, testing can be
used to increase software engineer confidence towards
software correctness. However, testing is one of most
time-consuming and costly part of the software
development. Earlier studies indicated that software
testing can consume more than fifty percent of software
development cost[1]. Besides, the National Institute of
Standard and Technology reported that in the U.S alone
the annual costs of an inadequate infrastructure for
software testing is estimated to range from 22.2- 59.5$
billion[2].
 The use of mathematical development techniques
which is also so-called formal methods can provide
high assurance of correctness as mathematics has the
ability to give precise definition of problems. Thus,
ambiguity and inconsistency can be eliminated early in
software development process. Many researchers have
put particular emphasis on developing an effective
method to utilize mathematics for specifying and
designing software[3-5]. The use of formal specifications

provides significant opportunity to develop effective
testing techniques[6,7].
 This research addresses the problem of improving
the effectiveness of fault detection where the focus of
the work is on unit/module testing where each module
may consist of several programs. The aim is at
investigating the strategies and techniques to automate
module testing. In particular, we investigate the use of
Module Documentation (MD) that written using
standard mathematical notation in automating the
process of test oracle generation and test execution.

Theoretical background: This section discusses
theoretical issues that form an important background of
this research.

Software Testing: Testing is an important process in
software development which is employed to ensure that
the design and implementation of programs comply
with the specified requirements. The goal of testing is
failure detection whereby we observe differences
between the behaviors of implementation and expected
behavior as specified in the specification. IEEE[8]
defined software testing as: The process of analyzing a
software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate
the features of the software item.

J. Computer Sci., 4 (6): 454-462, 2008

 455

 In general, testing can be performed either by static
or dynamic technique. Static techniques are based on
documents examination either manually or
automatically and most importantly without need to
execute the Software Under Test (SUT). The examples
of static technique are software inspection, software
reviews, code reading and algorithm analysis and
tracing. Dynamic technique refers to testing that
requires the SUT to be executed.
 The process of software testing involves selecting
test cases, executing the software with the selected test
cases and evaluating the results produced by those
executions whether the results conform to its
specification, so-called test oracle[1,9,10]. In literatures,
software testing has mainly concentrated on the
problem of selecting test cases[1,11-13] but it does not
mean that test oracle problem is trivial. Instead all
software testing methods rely on the availability of test
oracle and test without able to differentiate success or
failure is a useless test even with good test cases.
 Generally, there are four types of test which are
unit testing, module testing, integration testing and
system testing. Unit testing is meant for checking
individual component independently. Module testing
checks the integration between all components in a
module. Integration testing checks the integrations
between collections of modules. System testing checks
the integration sub-system integration.
 The classical approaches to software testing are
black-box and white-box testing. IEEE[8] defines black-
box testing (functional testing) as testing that ignores
the internal mechanism of a system or component and
focuses solely on the output generated in response to
selected inputs and execution conditions. The white-
box testing (structural testing) is testing that takes into
account the internal mechanism of a system or
component i.e. it requires the internal structure of the
SUT completely exposed to the tester. Due to pervasive
web and internet application, grey-box testing approach
has gain increasing popularity in software testing. Grey-
box testing approach is testing with limited knowledge
of the internal workings of the SUT.

Specification-based testing: Specification is statement
of some of the properties required of a product, or a set
of products and a product is considered faulty if the
statements made in its specification are not true of that
product[14]. While specification-based testing refers to
testing that uses information obtained solely from
specification. Testing from specification gives several
advantages such as it allows test to be developed earlier
and it can be ready before the program is finished.
Besides, any inconsistencies and ambiguities in the

specification can be detected and removed during the
test development.
 In earlier studies, specification-based testing
looked at input/output relation which is seen as black-
box testing approach. Recently there are studies that
proposed the use of integrated approach in
specification-based testing which is also known as
grey-box testing approach. The grey-box approach
differs from black-box approach in that it takes into
consideration the internal structure of SUT. The internal
structure of SUT can be obtained from design
specification such as UML activity diagram[11].

Grey-box testing: Black box testing method generates
tests from specification and purely in terms of
observable input and output without the information of
internal structure. It does not require information on
how the system was implemented. Likewise, white-box
testing method does require internal structure of unit
being tested completely exposed to the tester.
 Many program faults can be overlooked by black-
box testing since a test primarily stresses the user
interface and does not consider the inner structure of
the test unit[15]. On the other hand, testing without
specification knowledge (white-box approach) may not
be effective to show if program have been properly
implemented as stated in its specifications.
Consequently, studies[11,13,16] suggested the use of
integrated approach which is known as grey-box testing
approach. Grey-box testing is a mixture of black-box
and white-box testing techniques, which considers both
the external view and the internal structure of SUT.

Test oracle: Test oracle is the important component in
testing in order to determine whether SUT behaved as
expected during the test execution. It may be done
either manually or automatically. As in[17], an ideal test
oracle should satisfy three characteristics which are
complete desirable properties, avoid over-specification
and efficiently checkable.
 In literatures, various types of test oracles are
found such as embedded assertion language and
executable specification. Embedded assertion language
is considered as explicit oracle whereby executable
assertions are embedded within the implementation. For
example Anna provides formal language for annotating
Ada implementations with assertions. Executable
specification language is language that provides two
versions of code such Paisley, OBJ and TRIO.
Alternatively for non-executable specification there are
studies to develop Test Oracle Generator (TOG) from
formal specification.

J. Computer Sci., 4 (6): 454-462, 2008

 456

Formal Specification: The following definition of
formal specification is obtained from[18]. A specification
is formal if it is expressed in a language made of three
components: rules for determining the grammatical
well-formedness of sentences (the syntax) rules for
interpreting sentences in a precise, meaningful way
within the domain considered (the semantics) and the
rules for inferring useful information from specification
(the proof theory). Testing can benefit from formal
specification as it provides precise description of
expected software behavior and most importantly, it is
in a form that it can be manipulated easily for
automation purpose.
 The use of formal specifications provides
significant opportunity to develop effective testing
techniques. It has been reported that the use of formal
methods in software testing can help to produce high
integrity systems in a cost-effective way and it offers a
simpler, structured and more rigorous approach to the
development of functional tests than standard testing
techniques[6,7]. Hence, efforts to develop effective
formal specifications such as pre/post-condition
approach, functional/relational approach and model-
based approach provide significant opportunity towards
software testing.

MATERIALS AND METHODS

 Software projects are usually organized as a
module. Parnas et al.[19,20] defines a module as work
assignments. A module has a private data structure and
one or more access-programs. As described by[20], for
each module there should be a Module Interface
Specification (MIS) that treat a module as a black-box.
The MIS identifies those programs that can be invoked
from outside the module, called access-programs and
describing the externally-visible effects of using them.
For each MIS implementation there should be an
internal documentation that is known as Module
Internal Design Document (MIDD) that gives
information on how a module should be implemented.
We named both MIS and MIDD as module
documentation (MD).
 The MIDD must be sufficiently precise that one
can use it, together with the MIS, to verify the
workability of the design. Both MIS and MIDD are
described as representations of one or more
mathematical relations i.e., functional/relational
approach[20]. The MIS is used by anyone who either
maintains or uses a component whereas the MIDD is
used only by those who design, build, review or
maintain the module. As described by[20], the MIDD
should contain three types of information:

• A description of the module’s data structure used
• A description of the effect of each access-program

on the value of the variable in the data structure
which is known as program function

• A description that describes the intended
interpretation of that data structure. It is known as
abstraction relation since it is a mapping from the
more concrete data structure to a more abstract
external view

Trace Function Method (TFM): MIS can be specified
using TFM[21]. The TFM is being developed by the
SQRL research group in the University of Limerick that
is the enhancement of Trace Assertion Method (TAM).
As in TAM, the TFM uses tabular expressions and the
concept of traces of events to produce complete
specifications and descriptions. TFM consists of:

• A list of the input and output variables, including

shared global variables and their types
• A set of output function definitions, specifying the

value of each of the output variables as a function
of the trace of the components history

• A set of auxiliary function definitions used in the
output function definitions

Relational specification: Parnas introduce the concept
of Limited Domain Relation or LD-relation in short, to
allow for non-deterministic program. In this approach, a
relation is supplemented with an additional set, a subset
of the relation’s domain called the competence set. The
competence set contains with the states in which
termination is guaranteed. The definition of LD-relation
and the meaning of domain and competence sets which
are adopted from[19] are as follows:

Definition 1: Let U be a set. An LD-relation on U is
ordered pair:

L = (RL, CL)
Where:
RL = Relational component of L, is a relation on U, i.e.
RL⊆ U X U
CL = Competence set of L, is a subset of the domain of
RL, i.e. CL Dom(RL)

Definition 2: Let P be a program, let U be a set of
states and let Lp = (Rp,Cp) be an LD-relation on U such,
that:
(x,y) ∈ Rp ⇔ (x,..., y)∈Exec(P, U), Cp = Sp
Lp, is called the LD-relation of P and the description of
P.

J. Computer Sci., 4 (6): 454-462, 2008

 457

Table 1: Meaning of domain and competence sets

Behavior of program P Competence set
LP

C Domain of
LP

R
LP

R

P terminates when started in x Include x Include x Includes (x,y) if P might terminate in y when started in x
P some terminates when started in x Does not include x Include x Includes (x,y) if P might terminate in y when started in x
P never terminates when started in x Does not include x Does no include x No pairs of the form (x,y)
P never terminates Empty Empty Empty
P is never guaranteed to terminate but may Empty Empty Includes (x,y) if P might terminate in y when started in x

If Cp = Dom(Rp), then (by convention) the competence
set need not be given explicitly. In other words, if Cp is
not given, then it is, by default, Dom(Rp).

Predicate logic: LD-relation uses predicate logic to
express the specification. It differs from traditional
logic in that it allows the use of partial functions,
functions whose value is not defined for certain value
of its input types. The use of partial function in writing
program specifications is useful when we want to
observe the behavior of software and only accept the
definite answer either true or false. The well-known
problem of partial function is usually illustrated using
square root function as an example. Details on the
mathematical concept of predicate logic can be found
in[3].

Before and after value: The following convention is
adopted from[19] to indicate before and after value.
 Let P be a program and xi,…,xk be the program
variables used in P. Then

• xi (to be read xi after) denotes the value of the

programming variable xi after execution of P
• xi (to be read xi before) denotes the value of the

programming variable xi before execution of P

MD example: The idea of module documentation
method is illustrated using an example of Circular
Queue class. A circular queue is designed using linear
model but wrap around from end to beginning of an
array. Let us consider a circular queue implemented
using an array of length QSIZE, which contains at most
QSIZE element of type integer. In the circular queue,
data is entered from the rear of a queue and data is
removed from front of a queue. Hence, two indexes are
required, which are front and rear to keep track of the
first and the last data in the queue, respectively. When a
data is removed from the queue, the value of front is
increased by 1. When the value of front reaches QSIZE
then the next value of front is set to 0. The value of
front is calculated using the following formula, where
% is modular operator:

front = (front+1)% QSIZE

 Similarly, when data is inserted in the queue, the
value of rear is increased by 1 and the value is set to 0
when it reaches QSIZE. The following formula is used
to calculate the value of rear.

rear = (rear+1)% QSIZE

 A counter variable named len is used to count the
number of data inserted in the queue. Initially, len is set
to 0 when the queue is empty and it increases each time
a data is inserted in the queue. Likewise, it decreases
each time a data is removed from the queue. Len
variable is an indicator to determine whether a queue is
full or empty. A queue is empty if len = 0 and full when
len = QSIZE. The following Fig. 1 and 2 shows the
MIS and MIDD respectively for a circular queue as
described above.
 The abstraction relation as shown in Fig. 2b
specifies the relation between state and the external
view of the circular queue. The external view is
described in terms of sequence of events (trace). We
explain the concept of abstraction relation based on the
above example of circular queue. For simplicity, let us
assume that the size of queue is 4. Based on the above
assumption and the example of MD described above, a
state DS where dataQ = [a,m,i], front = 1, rear = 3, len
= 3 and QSIZE = 4 can correspond to many traces such
as listed below.

• add(b).remove().add(a).add(m).add(i)
• add(a).add(a).remove().add(m).add(i)
• add(b).add(a).add(m).remove().add(i)
• add(a).add(a).add(m).add(i).remove()

RESULTS

Md-based testing tool: We propose module testing
approach known as MD-based Testing Tool that can be
done automatically by programmers. The MD-based
Testing Tool consists of five components which are
Test Oracle Generator, TFM Simulator, Test Harness,
Tested Data State Storage and MUT Driver. The
conceptual design of our testing tool is represented in
Fig. 3.

J. Computer Sci., 4 (6): 454-462, 2008

 458

(a)

(b)

(c)

Fig. 1: MIS of a circular queue, (a) Input and output

variables, (b) Output variable functions and (c)
Auxiliary Functions

Test Oracle Generator (TOG): The role of TOG is to
automatically generate oracle from MD. The task of

(a)

(b)

(c)

Fig. 2: MIDD of a circular queue, (a) A description of

queue data structure (b) Abstraction relation and
(c) Program functions

generated oracle is to check expected output that is
produced during the execution of Module under Test
(MUT) with a test case. The expected output is not only
the observable output of a module but also the value of
internal data state after the execution. The test oracle
generator will produce two test oracles based on two

J. Computer Sci., 4 (6): 454-462, 2008

 459

Tested Internal Data States

 Test Harness
 Test Oracles

- P ass/Fail
 - Repeat ed test - Inconsistent documents

 TOG
Access Program Input Parameter Before value of IDS After value of IDS Event History

 Pass/Fail

 Before value of IDS Access Program Input Parameter Pass/Fail

 Module Under Test (MUT)

 Initial value of IDS After value of IDS Output

 Access Program Input Parameter

Before value of IDS

 Module Documentation

Test Data (Traces)

Lege nd: IDS – Internal data state TOG – Test oracle generator
– Function
– Dataflow

Storage

MUT Driver

–

Fig. 3: The Conceptual design of MD-based testing tool

types of documents which are program function/relation
(PF/R oracle) and abstraction relation (AR oracle).

TFM simulator: The TFM Simulator is developed
based on MIS that is written in Trace Function Method
(TFM). We utilize the TFM simulator that is developed
by SQRL group. The TFM simulator acts as part of
oracles for checking whether the trace correspond the
output produced by the MUT.

Test harness: The test harness or test procedure serves
as a middleware for providing test case for test oracles
and MUT. First the test harness receives a test case in
the form of sequence of events or trace. Each time
before sending any trace to the test oracle, test harness
checks if the data state of that particular trace has been
tested before. If the data state has been tested, the test
harness then checks the result. The testing process stops
for if the result fails. Otherwise proceed with next
event. However, if the trace has not been tested, test
harness sends the trace for evaluation by the test
oracles. Then the tested data states with the test result
as well as the access program are kept in storage.

Tested data state storage: In order to detect previously
tested data state, storage is required. The storage stores
value of data state before execution, access program,
input parameter and result of the test.

MUT driver: As MD-based testing tool is not only
checking the observable output but also the value of
internal data state. Therefore, it requires some
mechanism to extract the value of internal data state of
the module. Insertion of codes into the MUT by
automated means is proposed.

Test data: The MD-based Testing Tool accepts test
data in terms of sequence of events or traces, such as
add(3). add(6). add(7). remove(). remove(). Each event
of the test case will be executed one by one. For each
event, it will be executed on the MUT and the internal
data states and output produced from the execution will
be checked. Finally the tested internal data states will
be stored together with the test result. The detail of the
algorithms is shown in Fig. 4 and 5 illustrates how the
test data flows using the proposed approach.

DISCUSSIONS

 Grey-box testing approach is usually based on the
knowledge of specification and code. However, in
specification-based testing where information is
obtained solely from specification, a complete and
precise design specification can replace the role of
code.
 The MIDD is the intermediate artifact between
MIS and final code, which preserve the essential

J. Computer Sci., 4 (6): 454-462, 2008

 460

Fig. 4: An algorithm for MD-based testing tool

information from the MIS and are the basis of the code
implementation. Apparently, the knowledge on how a
module should be implemented by the programmer is
observable. Thus, it gives tester the opportunity to test a
module using grey-box testing approach. The
knowledge of internal structure of the SUT that is
obtained from MIDD allows us to test analogous to
those used in white-box testing approach. Besides, it
provides basis in terms of coverage measure in terms of
data states.
 The MD-based Testing Tool benefits from
interface specification and design specification that is
provided in the MD. Generally, the MIS gives relation
between traces and output and the MIDD gives three
types of relation which are (1) relation between before
value and after value of data states, (2) relation between
after value of data states and output and (3) relation
between data state and traces. This information allows

Fig. 5: An illustration of test case execution

D ata State T race O utput
 D omain D omain D omain

Legend:

Progra m Function/R elation

A bstra ction R elation

T FM S imulator

Fig. 6: Relation of traces, states and output

the design to be verified and therefore can be useful to
test the implementation of module. We illustrate the
relation between states and traces as in Fig. 6.
 The essence of our approach is the use of
combination formal interface specification that gives
the input/output relation and formal design specification
that describes the effect on some concrete data
structure. Particularly, the use of abstraction relation
offers significant opportunity toward the effectiveness
of testing where it allows us to detect errors earlier in a
lengthy test sequences. For example, a test case for a
queue might include adding twenty items onto the
queue; remove two items, adding fifty more, removing
one and checking the result. Assume that the queue
program only has one defect. The defect is that the
element will be truncated when adding the 20th
element. As long as we treat the component as a black-
box, the problem will not be discovered until all
elements on top of the truncated element are removed.

J. Computer Sci., 4 (6): 454-462, 2008

 461

This makes testing expensive and relatively ineffective.
However, this problem can be detected much more
quickly because after each event, the abstraction
relation is checked to determine either it holds or not.
Besides, using MIDD allows for the detection of a
return to a previously detected state.

CONCLUSIONS

 We have presented the conceptual design of MD-
based testing tool. This research contributes to the
effectiveness of software testing by improving the
effectiveness of test execution process by automated
means. We proposed grey-box approach for testing a
module with internal memory. The idea of this research
is to use the knowledge of data structure instead of
program structure. We believe our grey-box testing
gives better coverage for black box testing with
memory and can avoid some duplication in test cases
by detecting return to the same state. Furthermore, the
use of precise design documents proposed by Parnas, in
particular the use of abstraction relation offers
significant opportunity toward the effectiveness of fault
detection.

ACKNOWLEDGEMENTS

 Many thanks due to Prof. David L. Parnas and Dr.
Xin Feng for their invaluable comments, questions and
suggestions. We also greatly appreciate the helpful and
invaluable discussions with Dr. Dennis K. Peters
particularly in clarifying the MIDD example.

REFERENCES

1. Beizer, B., 1990. Software Testing Techniques. Ist

Edn., Van Nostrand Reinhold Co, pp: 550. ISBN:0-
442-20672-0.

2. NIST, 2002. The Economic Impacts of Inadequate
Infrastructure for Software Testing.
http://www.nist.gov/director/prog-ofc/report02-
3.pdf.

3. Parnas, D.L., 1993. Predicate logic for software
engineering. IEEE Trans. Software Eng.,
19: 856-862. doi: 10.1109/32.241769.

4. Dijkstra, E.W., 1975. Guarded commands,
nondeterminacy and formal derivation of
programs. Commun. ACM, 18: 453-457. doi:
http://doi.acm.org/10.1145/360933.360975.

5. Hoare, C.A.R., 1969. An axiomatic basis for
computer programming. Commun. ACM,
12: 576-580. doi: http://doi.acm.org/10.1145/
363235.363259.

6. Bicarregui, J., J. Dick, B. Matthews and E. Woods,
1997. Making the most of formal specification
through animation, testing and proof. Sci. Comput.
Program., 29: 55-80. doi: 10.1016/S0167-
6423(96)00029-9.

7. Bowen, J.P. and M.G. Hinchey, 2005. Ten
commandments revisited: A ten-year perspective
on the industrial application of formal methods.
Proceedings of the 10th International Workshop on
Formal Methods for Industrial Critical Systems,
Lisbon, Portugal. DOI: http://doi.acm.org/10.1145/
1081180.1081183.

8. IEEE, 1994. Standard glossary of software
engineering terminology. In IEEE Software
Engineering Standards Collection. IEEE Std
610:12-190.

9. Tse, Francis C.M., Lau, W.K. Chan, Peter C.K. Liu
and C.K.F. Luk, 2007. Testing object-oriented
industrial software without precise oracles or
results. Commun. ACM, 50: 78-85. doi:
10.1145/1278201.1278210.

10. Harold, M.J., 2000. Improving software testing by
observing practice. In: Proceedings of the
Conference on the Future of Software Engineering,
Limerick, Ireland, June 4-11. ACM Press, New
York, pp: 61-72. doi: 10.1145/336512.336532.

11. Linzhang, W., Y. Jiesong, Y. Xiaofeng, H. Jun,
L. Xuandong and Z. Guoliang, 2004. Generating
test cases from UML activity diagram based on
gray-box method. Proceedings of the 11th Asia-
Pacific Software Engineering Conference
(APSEC'04), Nov. 30-Dec. 03 Busan, Korea.
Pp: 284-291. DOI 10.1109/APSEC.2004.55.

12. Vilkomir, S.A. and J.P. Bowen, 2006. From
MC/DC to RC/DC: Formalization and analysis of
control-flow testing criteria. Formal Aspects
Comput., 18: 42-62. Doi: 10.1007/s00165-005-
0084-7.

13. Liu, S. and Y. Chen, 2008. A relation-based
method combining functional and structural testing
for test case generation. J. Syst. Software,
81: 234-248. Doi: 10.1016/j.jss.2007.05.036.

14. Hoffman, D.M. and D.M. Weiss, 2001. Software
Fundamentals. 1st Edn. Addison-Wesley Longman
Publishing Co., Inc. ISBN:0-201-70369-6.

15. Moller, K.H. and D.J. Paulish, 1993. An empirical
investigation of software fault distribution.
Proceeding of IEEE 1st International Software
Metrics Symposium, May 21-22. Baltimore, Md.,
pp: 82-90. Doi: 10.1109/METRIC.1993.263798.

J. Computer Sci., 4 (6): 454-462, 2008

 462

16. Chen, H.Y., T.H. Tse, F.T. Chan and T.Y. Chen,
1998. In black and white: An integrated approach
to class-level testing of object-oriented programs.
ACM Trans. Software Eng. Methodol., 7: 250-295.
Doi: http://doi.acm.org/10.1145/287000.287004.

17. Baresi, L. and M. Young, 2001. Test oracles.
Technical Report CIS-TR-01-02, Dept. of
Computer and Info. Science, University of
Oregon, http://ix.cs.uoregon.edu/~michal/pubs/
oracles.html.

18. Lamsweerde, A.V., 2000. Formal specification: A
roadmap. Proceedings of the Conference on the
Future of Software Engineering, June 04-11.
Limerick, Ireland. Doi: 10.1145/336512.336546.

19. Parnas, D.L., J. Madey and M. Iglewski, 1994.
Precise documentation of well-structured
programs. IEEE Trans. Software Eng.,
20: 948-976. Doi: 10.1109/32.368133.

20. Parnas, D.L. and Madey, J., 1995. Functional
documentation for computer systems engineering.
Sci. Comput. Program., 25: 41-61. Doi:
10.1016/0167-6423(95)96871-J.

21. Baber, R., D.L. Parnas, S. Vilkomir, P. Harrison,
and T. O’Connor, 2005. Disciplined methods of
software specifications: A case study. Proceeding
of the International Conference on Information
Technology Coding and Computing, April 2005.
Doi: 10.1109/ITCC.2005.132.

