
Journal of Computer Science 4 (6): 437-446, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author:Ravi Lourdusamy, Department of Computer Science, Sacred Heart College, Tirupattur, Vellore 635 601
437

Feature Analysis of Ontology Mediation Tools

1Ravi Lourdusamy and 2Gopinath Ganapathy

1Department of Computer Science, Sacred Heart College, Tirupattur, Vellore, Tamil Nadu, India
2Department of Computer Science, Bharathidasan University, Trichirapalli, Tamil Nadu, India

Abstract: Ontology mediation is enabled through interoperability of semantic data sources. It helps
data sharing between heterogeneous knowledgebase and reuse by semantic applications. Ontology
mediation includes operations such as, mapping, alignment, matching, merging and integration. After
briefly describing these operations, this study selectively discusses set of methods, tools and data
integration systems. It provides the researchers a comprehensive understanding of methods and tools
intended for ontology mediation.

Key words: Ontology Mapping, Ontology Alignment, Ontology Merging, Ontology Integration and
Ontology Mismatch

INTRODUCTION

 In any semantic solution, data is annotated using
ontologies. Ontologies are shared specifications and
therefore the same ontologies can be used for the
annotation of multiple data sources, like web pages,
XML documents, relational databases and so on. Their
shared terminologies enable a certain degree of
interoperability between the data sources using the
same ontologies. To enable such an interoperation,
mediation is required between the ontologies.

Terminologies: An ontology mapping M is a
declarative specification of the semantic overlap
between two ontologies OS and OT. The
correspondences between different entities of the two
ontologies are typically expressed using some axioms
formulated in a specific mapping language. Mapping
can be unidirectional or bi-directional. The different
phases in the generic mapping process as in[1] is shown
in Fig. 1.

Import of ontologies: Ontologies can be specified in
different languages, which indicate a need to convert
them to a common format so that the mapping can be
specified. Furthermore, the ontologies need to be
imported in the tool, which is used to specify the
mapping. Finding Similarities: Many systems use the
match operator to automatically find similarities
between ontologies. For any two-source ontology, the
match operator returns the similarities between
ontologies. Specifying Mapping: After similarities
between ontologies have been found, the mapping
between the ontologies needs to be specified.

Fig. 1: Mapping Process

 The automated or semi-automated discovery of
correspondences between two ontologies is called
ontology alignment. Ontology alignment is the task of
creating links between two original ontologies.
Ontology alignment is made, if the sources found to be
consistent with each other, but are kept separate or
when sources are from the complementary domains.
Ontology matching is the process of discovering
similarities between two source ontologies. The result
of matching operation is a specification of similarities
between two ontologies. Ontology matching is carried
out through the application of match operator[2].
 In ontology merging a new ontology is created
which is the union of source ontologies in order to
capture all the knowledge from the original ontologies.
There are two different approaches in ontology
merging. In the first approach, the input of the merging
process is a collection of ontologies and the outcome is,
one new merged ontology which captures the original
ontologies, as given in Fig. 2.
 In the second approach the original ontologies are
not replaced, but rather a view called bridge ontology is
created which imports the original ontologies and
specifies the correspondence using bridge axioms as in
Fig. 3.

J. Computer Sci., 4 (6): 437-446, 2008

 438

Fig. 2: Output of Merging Process (Approach 1)

Fig. 3: Output of Merging Process (Approach 2)

 Ontology integration is the process of generating a
single ontology in one subject from two or more
existing and different ontologies in different subjects.
The different subjects of the different ontologies may
be related. Some change is expected in a single
integrated ontology[3].

Ontology Mismatches: An important issue in the
approaches of ontology mediation is the location and
specification of the overlap and the mismatches
between concepts, relations, and instances in different
ontologies. Based on the work by Klein[4], the
mismatches that might occur between different
ontologies are Conceptualization mismatches and
Explication mismatches. The hierarchy of ontology
mismatch is given in Fig. 4.
 Conceptualization mismatches are mismatches of
different conceptualization of the same domain.
Conceptualization mismatches fall in two categories;
namely a scope mismatch and a mismatch in the model
coverage and granularity. A scope mismatch occurs
when two classes have some overlap in their extensions
(the set of instances), but the extensions are not exactly
the same. There is a mismatch in the model coverage
and granularity, if there is a difference in (a) the part of
the domain that is covered by both ontologies (for
example, the ontologies of university employees and
the students), or (b) the level of detail with which the
model is covered (for example, one ontology might
have one concept ‘person’, whereas another ontology
distinguishes between young person, middle-aged
person and old person).
 Explication mismatches are mismatches in the way
of specifying a conceptualization. Explication

Fig. 4: Hierarchy of Ontology Mismatch

mismatches fall in three categories namely mismatch in
the style of modeling, terminological mismatch and
encoding mismatch. A mismatch in the style of
modeling occurs if either (a) the paradigm used to
specify a certain concept is different (for example, time
specified in intervals is different from the time specified
in points in time), or (b) the way the concept is
described differs (for example, using subclasses versus
attributes to distinguish groups of instances). A
terminological mismatch occurs when two concepts are
equivalent, but they are represented using different
names (Synonyms) or when the same name is used for
different concepts (Homonyms). An encoding
mismatch occurs when values in different ontologies
are encoded in a different way (for example, distance
measure specified in kilometers and miles).

A comparison on ontology mediation tools and
systems: A specific framework does not exist for
comparison of ontology mediation tools[5] nor direct
comparison of ontology mediation tools be possible[6].
But set of criteria to compare the ontology mediation
tools is proposed as in[1,3]. The comparison of tools on
ontology mediation is made on the following criteria,
namely input and output requirements, level of user
interaction, ontology language, mapping concept,
automation support, and the level of implementation.

 The ontology mediation approaches are grouped
into three categories as in[1], namely methods and tools,
data integration systems and specific techniques.
Methods and tools approach describes the special
purpose methods and tools. In this approach the tools
from ontology matching (GLUE)[7] to ontology merging
(PROMPT)[8] and ontology mapping (MAFRA)[9] are
discussed. Data integration systems approach describes
the tools ONION[10] and OBSERVER[11]. These
integration systems are all comprehensive in the sense
that they typically have different types of functionality.
Specific techniques approach describes a specific
technique. In this approach, FCA Merge[12],

J. Computer Sci., 4 (6): 437-446, 2008

 439

Ontomorph[13] and QOM[14] are discussed in this
research.

MATERIALS AND METHODS

PROMPT: The PROMPT[8] suite contains of a set of
tools that have had an important impact in the area of
merging, aligning and versioning of ontologies. The
different tasks in multiple ontology management are
closely interrelated and share several components and
heuristics. Thus, tools for supporting some of the tasks
in the context of multiple ontology management can
benefit greatly from their integration with others. The
key components of the PROMPT suite have been
developed as extensions (plug-ins) of the Protégé 2000
ontology development environment. The following
components are distinguished in PROMPT suite as in
Fig. 5. The suite includes an ontology merging tool
(iPROMPT, formerly known as PROMPT), an ontology
tool for finding additional points of similarity between
ontologies for other tools like iPROMPT (Anchor
PROMPT), an ontology versioning tool (PROMPT
Diff) and a tool for factoring out semantically complete
subontologies (PROMPTFactor).
 iPROMPT is an interactive ontology merging tool,
which helps users in the ontology merging task by
providing suggestions about which elements can be
merged, by identifying inconsistencies and potential
problems and suggesting possible strategies to resolve
these problems and inconsistencies. Anchor PROMPT
extends the performances of tools like iPROMPT
determining additional points of similarities between
ontologies that are not identified by iPROMPT.
PROMPTDiff compares two versions of ontology and
identifies structural differences between different
versions of the same ontology. PROMPTFactor is a tool
that enables users to create a new ontology, factoring
out part of an existing ontology.
 One of the major contributions to the developments
of PROMPT suite was the identification of an important
overlap in the functionality of its tools and the
implementation of an integrated approach where all
these tools benefit from each other. The PROMPT
knowledge model is frame-based and it is designed to
be compatible with OKBC[15]. Since this knowledge
model is extremely general, and many existing
knowledge representation systems have knowledge
models compatible with it, the solutions to merging and
alignment produced by PROMPT can be applied over a
variety of knowledge representation systems.
 Figure 6 illustrates the PROMPT ontology merging
and ontology alignment algorithm. PROMPT takes two

ontologies as input and guides the user in the creation
of a merged ontology as output. The gray boxes
indicate the actions performed by PROMPT. The white
box indicates the actions performed by the user. First,

Fig. 5: The PROMPT suite infrastructure and

interactions between tools

Fig 6: The flow of the iPROMPT Algorithm

PROMPT creates an initial list of matches based on
class names. Then the following iterative cycle
happens: The user triggers an operation by either
selecting one of PROMPT’s suggestions from the list or
by using an ontology-editing environment to specify the
desired operation directly, and PROMPT automatically
executes additional changes based on the type of the
operation, generates a list of suggestions for the user
based on the structure of the ontology around the
arguments to the last operation, and determines
conflicts that the last operation introduced in the
ontology and finds possible solutions for those
conflicts. The important features of PROMPT are
setting the preferred ontology, maintaining the user’s
focus, providing feedback to the user, logging and
reapplying the operations.

J. Computer Sci., 4 (6): 437-446, 2008

 440

 The goal of AnchorPROMPT is to augment the
results of methods that analyze only local context in
ontology structures, such as Chimaera and iPROMPT,
by finding additional possible points of similarity
between ontologies. To do this, AnchorPROMPT
requires that the other tool or the user provide an initial
set of related terms. Following a graph perspective, the
tool establishes a set of paths that connects the terms of
ontology that are related with the terms of the other
one. The third element of the suite is PROMPTDiff,
which is used to compare the structure of two versions
of a particular ontology and which identifies the frames
(classes, slots or instances) that have no changes,
frames with only changes in their properties, and
frames that have also changed in other parts of their
definitions. Tools like CVS influence the name of the
tool, PROMPTDiff, which is a version control system
that is used to maintain the history of program source
code files. This tool includes facilities to discover
changes between versions of a document.
 The last element of the PROMPT suite is the tool
PROMPTFactor that allows users to extract from the
larger ontology the elements that the user is interested
in, in a way that also copies all the terms required for
preserving the semantics of the description. The authors
of the tool call this process “factoring subontologies”.
During the analysis of the PROMPT suite, it is found
that the tool has some limitations in the area of
ontology evolution and versioning. PROMPTDiff only
detects differences between two versions using a
structural difference and the description of the
differences between two versions of an ontology that
PROMPTDiff offers is limited.

MAFRA: MAFRA (MApping FRAmework for
distributed ontologies)[9] is a framework defined for
mapping distributed ontologies on the semantic web.
MAFRA has been implemented as a plug-in of
KAON[16] and introduces two new concepts namely,
semantic bridges and service-centric approaches.
 A semantic bridge is defined as a declarative
representation of a semantic relation between source
and target ontologies entities[17]. A semantic bridge
provides the necessary mechanisms to transform
instances and property fillers of source ontology into
instances and property fillers of target ontology.
Semantic bridges are similar to the notion of
articulation structures (the point of linkage between two
aligned ontologies) in[4] and articulation ontologies in
ONION[18,19]. Each semantic bridge has an associated
transformation service that determines the
transformation procedure and the information the user
must provide to the transformation engine. Each service

Fig. 7: MAFRA Conceptual Architecture

is characterized by a set of arguments, which in turn are
characterized by name, type, optionality and location.
Services are not only responsible for the transformation
capabilities but also for the validation of argument
values and semi-automatic mapping. The service-
oriented approach complements the semantic bridges
mechanisms providing the transformation services
necessary to perform the mapping transformations.
 Figure 7 outlines the conceptual architecture of
MAFRA system. In this architecture, a set of modules
is organized along horizontal and vertical dimensions.
Horizontal modules correspond to five fundamental
phases namely, lift and normalization, similarity,
semantic bridging, execution and post-processing. The
vertical modules correspond to four phases; namely,
evolution, domain knowledge and constraints,
cooperative consensual building and GUI. The vertical
modules interact with the horizontal modules during the
entire ontology mapping process. In the lift and
normalization phase, lifting refers to the process of
importing the ontologies in a formal uniform
representation (RDF-Schema) for facilitating later
operations. The next step after lifting is the
normalization of the vocabulary of the ontologies by
eliminating lexical and semantic differences (like
special characters, uppercase letters and acronyms). In
similarity phase, similarities between ontology entities
are calculated as a support for mapping discovery. In
semantic bridging phase after identifying the
similarities between entities from different ontologies,
the similar entities are semantically bridged; i.e.
correspondences are established between them for
enabling the transformation of instances of one source
entity to instances of one target entity. MAFRA
includes a formal representation to specify the
mappings. The formalism that is used to describe the
semantic bridges is based on DAML+OIL ontology, the
so called, Semantic Bridging Ontology (SBO). The

J. Computer Sci., 4 (6): 437-446, 2008

 441

result is close to the notion of articulation ontology in
ONION. A mapping is a set of instances of the
semantic bridges described by this ontology.
 In the execution phase, when the mappings
(bridges) are specified, the next step is to exploit them
in a meaningful way. MAFRA addresses only the task
of instance transformation. The execution module
actually transforms instances from the source ontology
representation into the target ontology representation by
evaluating the transformation functions associated with
the bridges defined in the previous stage. In the post-
processing step based on the execution results, the
mapping specification is again analyzed in order to
improve the quality of the instance transformation task.
In the evolution step the changes in the source and
target ontologies are synchronized with the semantic
bridges defined by the semantic bridge module. In the
cooperative consensus-building phase from the multiple
alternative possible mappings, the tool helps to setup a
consensus between the various proposals of people
involved in the mapping task. In the domain constraints
and background knowledge phase, the tool allows users
to include extra information in order to improve the
quality of the mapping. In the GUI, visualization of the
elements of the source and target ontologies makes the
mapping task easier.

GLUE: GLUE[7] is a system, which employs machine-
learning technologies to semi-automatically create
mappings between heterogeneous ontologies, where an
ontology is seen as taxonomy of concepts. GLUE
focuses on finding 1-to-1 mappings between concepts
in taxonomies. The similarity of two concepts A and B
in the two taxonomies O1 and O2 is based on the sets of
instances that overlap between the two concepts. In
order to determine whether an instance of concept B is
also an instance of concept A, first a classifier is built
using the instances of concept A as the training set.
This classifier is now used to classify the instances of
concept B. The classifier then decides for each instance
of B, whether it is also an instance of A or not. Based
on these classifications, four probabilities are
computed. These four probabilities are used to compute
the joint probability distribution for the concepts A and
B, which is a user-supplied function. Two possible
functions for the joint probability distribution are
Jaccard Coefficient and Most Specific Parent (MSP). In
Jaccard Coefficient, the similarity measure is computed
by dividing the probability that an instance is in the
intersection of two concepts by the probabilit that an
instance is in the union of the concepts
(P (A⋂B)/P(A⋃B)), which intuitively corresponds to
the function of relevant instances, which are both in A
and B. In most-specific parent, the similarity
measure is positive for any parent B of A and it is

Fig. 8: The GLUE Architecture

the highest for the most specific parent, i.e., the concept
BMSP that represents the smallest superset of A. The
general architecture of GLUE system as in Fig. 8
consist of three phases namely the distribution
estimator, the similarity estimator and the relaxation
labeler.
 The distribution estimator takes as input the two
taxonomies O1 and O2 together with their instances and
applies machine learning to compute the four
probabilities. Currently, the distribution estimator uses
a content learner, which learns a classifier, based on the
textual context of the instances and a name learner,
which learns a classifier based on the name of the
instance.
 It is possible to plug in different learners for
different aspects using a meta-learner, which uses a
certain function to incorporate the predictions from all
learners into an overall prediction. The similarity
estimator applies a user-supplied function, such as the
Jaccard Coefficient or MSP and computes a similarity
value for each pair of concept (A∈O1, B∈O2). The
relaxation labeler takes as input the similarity values for
the concepts from the taxonomies and searches for the
best mapping configuration, exploiting user supplied
domain specific constraints and heuristics.

Data Integration Systems:
ONION: ONION (ONtology compositION)[18,19] is an
architecture based on a sound formalism to support a
scalable framework for ontology integration that uses a
graph-oriented model for the representation of
ontologies. The special feature of this system is that it
separates the logical inference engine from the
representation model (the graph representation) of the
ontologies. This allows for the accommodation of
different inference engines in the architecture.
 In ONION, there are two types of ontologies,
individual ontologies, referred as source ontologies and

J. Computer Sci., 4 (6): 437-446, 2008

 442

articulation ontologies, which contain the concepts and
relationships expressed as articulation rules (rules that
provide link across domains). Articulation rules are
established to enable knowledge interoperability, and to
bridge the semantic gap between heterogeneous
sources. They indicate which concepts individually or
in conjunction, are related in the source ontologies. The
SKAT (Semantic Knowledge Articulation Tool)[19] uses
the structure of these graphs together with term-
matching and other rules to propose articulation rules
for the articulation ontologies. The source ontologies
are reflected in the system by the use of wrappers. The
mapping between ontologies is executed by ontology
algebra[18,20]. Such algebra consists of three operations,
namely, intersection, union and difference. The
objective of ontology algebra is to provide the
capability for interrogating many largely semantically
disjoint knowledge resources, given the ontology
algebra as input.
 The intersection produces on ontology graph,
which is the intersection of the two source ontologies
with respect to a set of articulation rules, generated by
an articulation generator function. The intersection
determines the portion of knowledgebase that deal with
similar concepts. The union operator generates a unified
ontology graph comprising the two original ontology
graphs connected by the articulation. The union
presents a coherent connected and semantically sound
unified ontology, if the original ontologies are
consistent. The difference operator, to distinguish the
difference between two ontologies (O1-O2) is defined as
the concepts and relationships of the first ontology that
have not been determined to exist in the second. This
operation allows a local ontology maintainer to
determine the extent of one’s ontology that remains
independent of the articulation with other domain
ontologies so that it can be independently manipulated
without having to update the articulation.
 ONION tries to separate as much as possible the
logical inference engine from the representation model
of the ontologies, allowing the accommodation of
different inference engines. It also uses articulation of
ontologies to interoperate among ontologies. These
articulation ontologies can be organized in a
hierarchical fashion. The ontology mapping is based on
the graph mapping and at the same time, domain
experts can define a variety of fuzzy matching.
 The ONION architecture depicted in Fig. 9 consists
of four components namely data layers, viewer, query
system and articulation engine. The data layer
contains the wrappers for the external sources and the

Fig. 9: The Component of the ONION System

articulation ontologies that form the semantic bridges
between the sources. The viewer is the user interface,
which visualizes both the source and the articulation
ontologies. The query system translates queries
formulated in term of articulation ontology into a query
execution plan and executes the query. The articulation
engine takes articulation rules proposed by the SKAT
and generates sets of articulation rules, which are
forwarded to the expert for confirmation.

OBSERVER: OBSERVER (Ontology Based System
Enhanced with Relationships for Vocabulary
hEterogeneity Resolution)[11] is a system, which is
intended to overcome problems with heterogeneity
between distributed data repositories by using
component ontologies and the explicit relationships
between these components. OBSERVER presents on
architecture consisting of component nodes, each of
which has its own ontology and the Inter-ontology
Relationship Manager (IRM), which maintains
mappings between the ontologies at the different
component nodes. Besides the ontology, each
component node contains a number of data repositories
along with mappings to the ontology, to enable
semantic querying of data residing in these repositories.
When other components need to be queried, the IRM
provides mappings to ontologies of other component
nodes in order to enable querying. The user views the
data in the system through its own local ontology,
located at the user’s component node.
OBSERVER uses a component-based approach to
ontology mapping. It provides brokering capabilities
across domain ontologies to enhance distributed
ontology querying thus avoiding the need to have a

J. Computer Sci., 4 (6): 437-446, 2008

 443

global schema or collection of concepts. OBSERVER
uses multiple pre-existing ontologies to access
heterogeneous, distributed and independently
developed data repositories. Each repository is
described by means of one or more ontology expressed
using the Description Logic (DL) system CLASSIC.
The information requested from OBSERVER is
expressed according to the user’s domain ontology, also
expressed using DL. DL allows matching the query
with the available relevant data repositories, as well as
translating it to the ontologies used in the local
repositories.
 The system contains a number of component
nodes, one of which is the user node. Each node has an
ontology server that provides definitions for the terms
in the ontology and retrieves data underlying the
ontology in the component node. If the user wants to
expand his query over different ontology servers, the
original query needs to be translated from the
vocabulary of the user’s ontology into the vocabulary of
another’s component ontology. A method for
evaluating the information loss for the case of inexact
translations was developed, with the purpose of
enabling the system to choose the best among
alternative translations. The loss of information
threshold is used by the query processor, which
discards queries exceeding the threshold. The
information loss is computed based on the commonly
encountered metrics in information retrieval, precision
and recall.
 An IRM provides the translations between the
terms among the different component ontologies. The
IRM effectively contains a one-to-one mapping
between any two-component ontologies. This module is
able to deal with Synonym, Hyponym, Hypernym,
Overlap, Disjoint and Covering inter-ontology
relationships. Furthermore, the IRM is also able to deal
with extensional relationships between ontologies
through the use of transformer functions. The user
submits a query to the query processor in its own
component node. Each component node has a query
processor. The query processor first uses the local
ontology server to translate the query into queries on
the local data repositories and then execute them, after
which the user can choose to incrementally increase the
query to multiple ontologies. The query processor then
uses the IRM to translate the query into terms used by
the other component ontologies and retrieves the results
from the ontology servers at the other component
nodes.
 The ontology server can be queried in two ways.
Information about the ontology itself can be retrieved
and the ontology server can answer queries formulated

Fig 10: The general OBSERVER architecture

Fig 11: The Ontology Merging Method

over an ontology using the mappings to the different
data sources and the wrappers available for each data
source. The query capabilities of each data source are
consulted by the ontology server, which creates a query
plan and invokes the wrappers to retrieve the data from
the sources. In principle, only the local ontology server
is queried initially. The user can then choose to
incrementally expand the query over multiple
ontologies in order to retrieve more results for the
query. The OBSERVER architecture depicted in Fig.
10 consists of a number of component nodes and the
IRM node.

Specific Techniques:
FCA MERGE: FCA Merge[12] is a bottom up approach
for ontology merging. FCA Merge tool is based on
application specific instances of the two given
ontologies O1 and O2 that are to be merged. The overall
process of merging two ontologies is depicted in Fig 11.
The process of FCA Merge consists of three steps,
namely (i) instances extraction and computing of two
formal contexts K1 and K2, (ii) the FCA Merge core
algorithm that derives a common context and computes

J. Computer Sci., 4 (6): 437-446, 2008

 444

a concept lattice and (iii) the generation of the final
merged ontology based on the concept lattice.
 FCA Merge tool takes as input data the two
ontologies and a set D of natural language documents.
The documents have to be relevant to both ontologies,
so that the documents are described by the concepts
contained in the ontology. The documents may be taken
from the target application, which requires the final
merged ontology. Instances are extracted from the
document in D. This automatic knowledge acquisition
step returns, for each ontology, a formal context
indicating which ontology concept appear in which
documents. The extraction of the instances from
documents is necessary because there are usually no
instances, which are already classified by both
ontologies. However, if this situation is given one can
skip the first step and use the classification of the
instances directly as input for the two formal contexts.
The second step of ontology merging approach
comprises the FCA Merge core algorithm. The core
algorithm merges two contexts and computes a concept
lattice form the merged context using FCA techniques.
More precisely, it computes a pruned concept lattice,
which has same degree of detail as the two source
ontologies. Instance extraction and the FCA Merge core
algorithm are fully automatic.
 The final step of deriving the merged ontology
from the concept lattice requires human interaction.
Based on the pruned concept lattice and the sets of
relation names R1 and R2, the ontology engineer creates
the concepts and relations of the target ontology.
Graphical means of the ontology-engineering
environment is offered using OntoEdit for supporting
this process.

ONTOMORPH: The OntoMorph[13] system aims to
facilitate ontology merging and the rapid generation of
knowledge base translators. It combines two powerful
mechanisms to describe KB transformations. The first
of these mechanisms is syntactic rewriting via pattern-
directed rewrite rules that allow the concise
specification of sentence-level transformations based on
pattern matching, and the second mechanism involves
semantic rewriting which modulates syntactic rewriting
via semantic models and logical inference. The
integration of ontologies can be used on any mixture of
syntactic and semantic criteria. In the syntactic
rewriting process, input expressions are first tokenized
into lexemes and then represented as syntax trees,
which are represented internally as flat sequences of

tokens and their structure only exists logically.
OntoMorph’s pattern language and execution model is

Fig. 12: Mapping Procees

strongly influenced by PLISP. The pattern language can
match and de-structure arbitrarily nested syntax trees in
a direct and concise fashion. Rewrite rules are applied
to the execution model. For the semantic rewriting
process OntoMorph is built on top of the Power Loom
knowledge representation system which is a successor
to the Loom system. Using semantic import rules, the
precise image of the source KB semantics can be
established within power Loom.

QOM: The QOM (Quick Ontology Mapping) tool[14]
represents an approach that considers both the quality
of mapping results as well as the run-time complexity.
The hypothesis is that mapping algorithms may be
streamlined such that the loss of quality is marginal, but
the improvement of efficiency is so tremendous that it
allows for the ad-hoc mapping of large-size, light
weight ontologies. To substantiate the hypothesis a
number of practical experiments were performed. The
steps of process model is shown in Fig 12 define QOM.
The process starts with two ontologies which are going
to be mapped onto one another, as its input. Feature
Engineering transforms the initial representation of
ontologies into a format usable for the similarity
calculations. For instance, the subsequent mapping
process may only work on a subset of RDFS primitives.
Selection of Next Search steps: The derivation of
ontology mappings takes place in a search space of
candidate mappings. This step may choose, to compute
the similarity of a restricted subset of candidate
concepts pairs {(e, f)|e∈O1, f∈O2} and to ignore others.
Similarity computation determines similarity values
between candidate mappings (e, f) based on their
definitions in O1 and O2 respectively. Similarity
Aggregation: In general there may be several similarity
values for a candidate pair of entities (e, f) from two
ontologies O1 and O2. These different similarity values
for one candidate pair must be aggregated into a single

J. Computer Sci., 4 (6): 437-446, 2008

 445

Table 1 Comparative Matrix of Ontology Mediation Tools and Systems
Tool / criteria PROMPT MAFRA GLUE ONION OBSERVER FCA-Merge
Input Two ontologies Two ontologies Two taxonomies Terms in two Two Two input ontologies
 with their data ontologies ontologies and a set of
 instances in documents of
 ontologies concepts

Output Merged ontology Mappings of A set of pairs of Sets of Inter Merged ontology
 the two similar concepts articulation Relationships
 ontologies rules Manager

User The user accepts The domain User defined A human expert Query based The domain expert
Interaction or rejects or expert interface mappings for chooses or interface interface with
 adjusts system’s with the similarity training data, deletes or background
 suggestion and semantic Similarity modifies knowledge
 bridging modules measure, suggested
 and it has graphical Setting up the matches using
 interface learner weight, and a GUI tool
 analyzing system’s
 match suggestion

Ontology RDFS, OWL RDFS Taxonomies Directed labeled Description -
language graphs and Horn logics
 Clauses (CLASSIC)

Mapping Heuristic Semantic Bridging Similarity measures Articulation rules Extended Linguistic analysis
Concept based analyzer Ontologies(SBO) relational algebra and algorithm for
 for mapping computation for
 ontology DB and pruned concept
 DL and transformer lattice
 functions for
 mapping
Automation Name and Lexical and structural Multi-strategy Term and Query Processing
Supports structural matching and semi- machine learning structural
 Matching automatic creation approach matching using
 of mappings Semantic
 (SKAT)
 Annotation
 Tool (SKAT)

Implement Version 2.1.1 Two prototypes have Research prototype Research prototype Research prototype Research prototype
Status been implemented for the unification for the access of
 of heterogeneous distributed
 ontologies heterogeneous data
 source in the area of
 bibliographic data

aggregated similarity value. Interpretation uses the
individual or aggregated similarity values to derive
mappings between entities from O1 and O2. Some
mechanisms here are to use thresholds for similarity
mappings to perform relaxation labeling or to
combine structural and similarity criteria. Iteration:
Several algorithms perform iteration over the whole
process in order to bootstrap the amount of structural
knowledge.

Iteration may stop when no new mappings are
proposed. Eventually, the output returned is a

mapping table representing the relation map of O1
and O2.

CONCLUSION

The comparison matrix presented in table 1 captures
the important features of the tools as per the
framework that is discussed in this research. Through
this survey and analysis, the research provides a
comprehensive understanding of ontology mediation
and points to various research aspects specific to the
roles on ontology mediation.

REFERENCES
1. Livia, P., F. Cristina, S. Francois and

Jos de Bruijn, Francisco Martin-Recuerda,
Dimitar Manov, Marc Ehrig, D4.2.2 State-of-

J. Computer Sci., 4 (6): 437-446, 2008

 446

the-art survey on Ontology Merging and
Aligning V2, 2006, Digital Enterprise Research
Institute, University of Innsbruck, pp: 1-121.

2. Erhard, R. and A.B. Philip. 2001. A survey of
approaches to automatic schema matching,
VLDB J. Very Large Databases, 10: 334-350.

3. Namyoun, C., I.I. Yeol Song and H. Hyoil, 2006.
A Survey on Ontology Mapping, SIGMOD
Record, Vol 35, No 3, Sep 2006 , pp : 34-41

4. Klein, M., Combining and relating Ontologies:
An Analysis of Problems and Solutions, In
workshop on Ontologies and information
sharing, IJCAI’01, August 4-5, 2001, Seattle,
USA.

5. Yannis, K. and S. Marco, 2003. Ontology
mapping: The state of the art, The knowledge
Engineering Review, 18: 1-31

6. Natalya, F. N. and A. M. Mark, 2002. Evaluating
Ontology-mapping tools: Requirements and
experience, Proceedings of the workshop on
evaluation of ontology at EKAW’02(EOEN
2002), Siguenza, Spain.

7. Doan, A., J. Madhavan, P. Domingos and A.
Halevy, 2002. Learning to map between
Ontologies on the Semantic Web, Proceedings of
the 11th International WWW Conference [WWW
2002], May 7-11, 2002, Honolulu, Hawaii, USA.

8. Noy N.F. and M.A. Muser, 2003. The PROMPT
suite: Interactive tools for Ontology merging and
mapping, Int. J. Human Comput. Stud, 59: 983–
1024

9. Alexander, M., M. Boris, S. Nuno and V.
Raphael , 2002. MAFRA A Mapping Framework
for Distributed Ontologies, Proceedings of 13th

European conference on knowledge Engineering
and knowledge management EKAW-2002,
Madrid, Spain.

10. Mitra, P., G. Wiederhold and M. Kersten, 2000.
A Graph Oriented Model for Articulation of
Ontology Interdependencies, In proceedings
Conference on Extending Database Technology
(EDBT 2000), Konstanz, Germany.

11. Mena, E., A. Illarramendi, V. Kashyapand and

A. Sheth, 2000. Observer: An approach for query
processing in global information systems based
on inter operation across pre-existing Ontologies,
Distributed and parallel Databases, An int. J, 8:
223-271.

12. Stumme, G. and A. Maedche, FCA-Merge:
Bottom-up Merging of Ontologies, In seventh
international Conference on Artificial
Intelligence (IJCAI’01), seattle, WA, USA, 200,
pp: 225-230

13. Hans, C. 2000. OntoMorph : A translation
system for symbolic knowledge, Proceedings of
the 7th international conference on Principles of
Knowledge Representation and Reasoning,
Brecknridge, Colorado, USA, Pp: 471-482,

14. March E. and S. Steffen, 2004. Quick ontology
mapping, Hiroshima, Japan

15. Chaudhri, V.K., A. Farquhar, R. Fikes, P.D.
Karp and J.P. Rice, 1998. OKBC: A
Programmatic Foundation for knowledge Base
Interoperability, Proceedings of the 15th National
conference on AI(AAAI-98), Madison,
Wisconsin, Pp: 600-607.

16. http://kaon.semanticweb.org, KAON ontology
management tool, university of karlsruhe.

17. Nuno S. and R. Joao, Ontology mapping for
interoperability in semantic web, Proceedings of
the IADIS International Conference
www/Internet(ISWI 2003), 2003, Portugal, USA

18. Prasenjit M. and Gio Wiederhold, An Algebra
For Semantic Interoperability Of Information
Sources. In IEEE International Conference on
Bio informatics and Biomedical Engineering,
2001, Pp: 174-182.

19. Prasenjit M, Gio wiederhold and J. Jan, Semi-
Automatic Integration of Knowledge Sources.
Proceedings of Fusion 99, California, USA, July
1999.

20. Gio wiederhold, An Algebra for Ontology
Composition, Proceedings Monterey workshop
on formal methods, US naval Post Grduate
School, Monterey, CA,1994 Pp: 56-61.

