
Journal of Computer Science 3 (12): 956-964, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Rakesh Kumar Katare, Department of Computer Science, A.P.S. University, Rewa (M.P.) 486003 India
956

Some P-RAM Algorithms for Sparse Linear Systems

1Rakesh Kumar Katare and 2N.S. Chaudhari

1Department of Computer Science, A.P.S. University, Rewa (M.P.) 486003, India
2Nanyang Technological University, Singapore

Abstract: PRAM algorithms for Symmetric Gaussian elimination is presented. We showed actual
testing operations that will be performed during Symmetric Gaussian elimination, which caused
symbolic factorization to occur for sparse linear systems. The array pattern of processing elements
(PE) in row major order for the specialized sparse matrix in formulated. We showed that the access
function in2+jn+k contains topological properties. We also proved that cost of storage and cost of
retrieval of a matrix are proportional to each other in polylogarithmic parallel time using P-RAM with
a polynomial numbers of processor. We use symbolic factorization that produces a data structure,
which is used to exploit the sparsity of the triangular factors. In these parallel algorithms number of
multiplication/division in O(log3n), number of addition/subtraction in O(log3n) and the storage in
O(log2n) may be achieved.

Key words: Parallel algorithms, sparse linear systems, cholesky method, hypercubes, symbolic

factorization

INTRODUCTION

 In this research we will explain the method of
representing a sparse matrix in parallel by using P-
RAM model. P-RAM model is a shared memory model.
According to Gibbons and Rytter[6], the PRAM model
will survive as a theoretically convenient model of
parallel computation and as a starting point for a
methodology. There are number of processors working
synchronously and communicating through a common
random access memory. The processors are indexed by
the natural number and they synchronously execute the
same program (through the central main control).
Although performing the same instructions, the
processors can be working on different data (located in
a different storage location). Such a model is also called
a single-instruction, multiple-data stream (SIMD)
model. The symmetric factorization is in logarithmic
time of the hypercube SIMD model[2,10].
 To develop these algorithms we use method of
symbolic factorization on sparse symmetric
factorization. Symbolic factorization procedures a data
structure that exploits the sparsity of the triangular
factors. We will represent an array pattern of processing
elements (PE) for sparse matrix on hypercube. We have
already developed P-RAM algorithms for linear system
(dense case)[7,8,9]. These algorithms are implemented on
Hypercube architecture.

BACKGROUND

 We consider symmetric Gaussian elimination for
the solution of the system of linear Eq.

 A x = b

 Where A is an n×n symmetric, positive definite
matrix. Symmetric Gaussian elimination is equivalent
to the square root free Cholesky method, i.e., first
factoring A into the product UTDU and then forward
and back solving to obtain x and we often talk
interchangeably about these two methods of solving
A x = b. Furthermore, since almost the entire of A, we
restrict most of our attention to that portion of the
solution process.
 Sherman[13] developed a row-oriented UTDU
factorization algorithm for dense matrices A and
considers two modifications of it which take advantage
of sparseness in A and U. We also discuss the type of
information about A and U which is required to allow
sparse symmetric factorization to be implemented
efficiently.
 Here we will present a parallel algorithm for sparse
symmetric matrix and will be implemented to
hypercube.
Previously we have already developed matrix
multiplication algorithm on P-RAM model[7] and
implementation of back-substitution in Gauss-

J. Computer Sci., 3 (12): 956-964, 2007

 957

elimination on P-RAM model[8]. Now we further extend
this idea for sparse linear systems of Eq.s.

ANALYSIS OF SYMMETRIC GAUSS
ELIMINATION

 In this section we suggest the actual testing
operations that will be performed during Symmetric
Gaussian elimination. Basically the Gaussian
elimination is applied to transform matrices of linear
Eq. to triangular form. This process may be performed
in general by creating zeros in the first column, then the
second and so forth. For k = 1,2,...,n-1 we use the
formulae

(k)

(k 1) (k) (k)ik
ij ij kj(k)

kk

a
a a a , i, j k

a
+ � �

= − >� �
� �

 (1)

and

(k)

(k 1) (k) (k)ik
i i k(k)

kk

a
b b b , i k

a
+ � �

= − >� �
� �

 (2)

where, (1)

ij ija a= , i, j = 1, 2,…,n. The only assumption

required is that the inequalities (k)
kka 0≠ , k = 1,2,..., n

hold. These entries are called pivot in Gaussian
elimination. It is convenient to use the notation,

 (k) (k)A x b=

 For the system obtained after (k-1) steps, k = 1,
2,..., n with A(1) = A and b(1) = b. The final matrix A(n) is
upper triangular matrix[3]

As we know that in
(k)

(k 1) (k) (k)ik
ij ij jk(k)

ik

a
a a a

a
+ � �

= −� �
� �

 we are

eliminating position (k)
ika

Case 1: If i j≠ then the above expression can be
written as follows:

 ()
(k)

(k) (k 1) (k)ik
ij ij jk(k)

kk

a
a a a

a
+ � �

− = � �
� �

 (3)

Lemma 1: if (k) (k 1)

ij ij(a a) 0+− < then (k)
ika or (k)

jka is
negative

Proof: (k) (k 1)

ij ij(a a) 0+− <

(k)
(k)ik
jk(k)

kk

(k) (k)
ik jk

(k)
(k 1) (k) (k)ik
ij ij jk(k)

kk

a
a 0

a

a or a is negative

a
a a a

a
+

� �
� <� �

� �

�

� �
� = + � �

� �

Lemma 2: If (k) (k 1)

ij ij(a a) 0+− > then (k)
jka or (k)

ika both

negative or both positive and for pivot element (k)
ija is

always positive.

Proof: -

()

(k)
(k) (k 1) (k)ik
ij ij jk(k)

kk

(k) (k 1) (k 1)
ij ij ij

a
a a 0 a 0

a

a a then a is positive

+

+ +

� �
− > � >� �

� �

� >

 (k)
jka� or (k)

ika both negative or both positive and

for pivot element (k)
ija is always positive.

Lemma 3: If (k) (k 1)

ij ij(a a) 0+− = then no elimination will
take place and one of the following condition will be
satisfied.
 (i) (k)

ika = 0 or (ii) (k)
jka = 0 or both (i) and (ii) are

zero.

Proof:
 if (aij

(k)-aij
(k+1)) = 0 then

(k)
ij(k) (k 1) (k)

ij ij jk(k)
kk

a
a a and a 0

a
+ � �

= =� �� �
� �

 � (aik
(k).ajk

(k)) = 0
 � aik

(k) = 0 or ajk
(k) = 0 or both are zero.

 �aik
(k) will remain same after elimination i.e. no

elimination is required

Case 2: if i = j then

 ()

(k)
(k 1) (k) (k)ik
ii ii ik(k)

kk

2(k)
ik(k 1) (k)

ii ii (k)
kk

a
a a a

a

a
a a

a

+

+

� �
= −� �

� �

� �
� �� = −
� �
� �

Lemma 4: If (k 1)

iia 0+ = then (k) (k) (k)
ik ii kka a .a=

Proof: If (k 1)
iia 0+ = then

()2(k)
ik(k)

ii (k)
kk

a
a

a

� �
� �=
� �
� �

 �aii
(k).akk

(k) =

()2(k)
ika � (k) (k) (k)

ik ii kka a .a=

J. Computer Sci., 3 (12): 956-964, 2007

 958

Lemma 5: If aik
(k) = 0 then aii

(k+1) = aii
(k) no iteration

will take place.

Proof: The result is obvious.

Lemma 6: If ()(k) (k 1)

ii iia a 0+− > then aik > 0

Proof:

() () ()

()

2(k)
2ik(k) (k 1) (k) (k)

ii ii ik kk(k)
kk

2(k)
ik

a
a a 0 0 a a

a

a 0

+
� �
� �− > � > � >
� �
� �

� >

Lemma 7: If (aii

(k)-aii
(k+1)) = 0 then aik = 0

Proof: (aii

(k)-aii
(k+1)) = 0 � aii

(k) = aii
(k+1)

 ()2(k)
ik

(k)
kk

a
0

a
� =

 � aii
(k) = 0

Lemma 8: if (aii

(k)-aii
(k+1)) < 0 then (k)

kka will be
eliminated.

Proof:
(aii

(k)-aii
(k+1)) < 0 � aii

(k) > aii
(k+1) � aii

(k+1) =

()2(k)
ik(k)

ii (k)
kk

a
a

a

� �
� �−
� �
� �

 In Gauss elimination, a nonzero position in
position jk, implied that there was also a nonzero
position in kj, which would cause fill to occur in
position i, j, when row k is used to eliminate the
element in position ik[4].
 Here we present the following analysis when the
matrix is symmetric and positive definite.
 When i ≠ j in Eq. 3 and ()(k) (k 1)

ij ija a +− is less than 0

then the elements aik
(k) or ajk

k is negative before
elimination and when in Eq. 3 ()(k) (k 1)

ij ija a +− is greater

than 0 then ajk
(k) or aik

(k) both are negative or both are
positive and for pivot element aij

(k) is always positive
and when in Eq. 3 ()(k) (k 1)

ij ija a +− is equal to zero then no

elimination will take place and one of the following
condition will be satisfied
 (a) aik

(k) = 0 or (b) ajk
(k) = 0 or both (a) and (b)

will be zero.
 When i = j in the above explanation of Eq. 3 then
for the first case the pivot element will be eliminated

and for the second case the element which is to be
eliminated will be greater than zero and for the third
case elimination will not take place.
 We suggested testing operation for variation
occurring in the elements of Symmetric Gaussian
elimination. There are more testing operations rather
than arithmetic operations, so that the running time of
the algorithms could be proportional to the amount of
testing rather than amount of arithmetic operation,
which will cause symbolic factorization to occur. To
avoid this problem Sherman pre computed the sets rak,
ruk, cuk and showed that in implementation of this
scheme, the total storage required is proportional to the
number of non zeroes in A and U and that the total
running time is proportional to the number of arithmetic
operations on nonzero. In addition to this the
preprocessing required to compute the sets { rak} { ruk}
and {cuk} can be performed in time proportional to the
total storage. To see how to avoid these problems, let us
assume that for each k, 1≤ k ≤ N, we have pre-
computed:

• The set rak of columns j ≥ k for which akj ≠ 0;
• The set ruk of columns j > k for which ukj ≠ 0;
• The set cuk of columns i < k for which uik ≠ 0;

Line

1. For k ← 1 to N do
2. [mkk ←1;
3. dkk ← akk;
4. For j � ruk do
5. [mkj← 0];
6. For j � {n � rak : n > k} do
7. [mkj ← akj];
8. For i � cuk do
9. [t ← mik;
10. mik ← mik / dii;
11. dkk ← dkk-t. mik;
12. For j � {n � rui : n >k} do
13. [mkj � mkj-mik. mij]]];

Comment: Now M = U
 Row-oriented Sparse UTDU Factorization (with
pre-processing) [Source 13].

Algorithm 1
 In Algorithm 1 only entries of M, which are used
are those corresponding to nonzeroes in A or U. An
implementation for Algorithm 1, it is already shown
that the total storage required is proportional to the
number of nonzeroes in A and U and that the total

J. Computer Sci., 3 (12): 956-964, 2007

 959

running time is proportional to the number of arithmetic
operations on nonzeroes. In addition, A.H. Sherman[13]
showed that the pre-processing required to compute the
sets {rak}, {ruk}, {cuk} can be performed in time
proportional to the total storage.

SYMBOLIC FACTORIZATION

 The sets {rak}, which describe the structure of A,
are input parameters and the symbolic factorization
algorithm, computes the sets {ruk} from them. The sets
{cuk} could be computed from the sets {ruk}, at the k-th
step of the symbolic factorization algorithm, ruk is
computed from rak and the sets rui for i < k. An
examination of Algorithm 1 shows that for j > k, ukj � 0
if and only if either

i. akj � 0 or
ii. uik � 0 for some i ∈cuk.

Thus letting
 ruk

i = {j ∈ rui : j> k},
we have j ∈ ruk if and only if either

iii. j ∈ rak or
iv. j ∈ ruk

i for some i ∈ cuk.

 Algorithm 2, 3 are a symbolic factorization
algorithm based directly on Algorithm 1. At the k-th
step, ruk is formed by combining rak with sets { ruk

i} for
i∈cuk. However, it is not necessary to examine ruk

i for
all rows i∈cuk. Let lk be the set of rows i∈cuk for which
k is the minimum column index in rui. Then we have
the following result, which expresses a type of
transitivity condition for the fill-in in symmetric
Gaussian elimination.
 There are some important reasons why it is
desirable to perform such a symbolic factorization.

• Since a symbolic factorization produce a data

structure that exploits the sparsity of the triangular
factors, the numerical decomposition can be
performed using a static storage scheme. There is
no need to perform storage allocations for the fill-
in during the numerical computations. This reduces
both storage and execution time overheads for the
numerical phase[4,5].

• We obtained from the symbolic factorization a
bound on the amount of sparse we need in order to
solve the linear system. This immediately tells us if
the numerical computation is feasible. (of course,
this is important only if the symbolic factorization
can be performed both in terms of storage and
execution time and if the bound on space is

reasonably light)[4,5]
1. For k ← 1 to N do

 2. [ruk ←0];
 3. For k ← 1 to N-1 do
 Comment: Form ruk by set Unions
 4. [For j ∈ {n ∈ rak : n > k} do
 5. [ruk ← ruk ∪ {j}];
 6. For i ∈ cuk do
 7. [For j ∈ rui

k do
 8. [if j ∉ ruk then
 9. ruk ← ruk ∪ {j}]]]];

 O(θA) symbolic factorization [Source 13]

Algorithm 2

 1. For k ← 1 to N do
 2. [ruk ← 0;
 3. lk ← 0];
 4. For k ← 1 to N-1 do
 Comment: Form ruk by set Unions
 5. [For j ∈ {n ∈ rak : n > k} do
 6. [ruk ← ruk ∪ {j}];
 7. For i ∈ lk do
 8. [For j ∈ rui

k do
 9. [if j ∉ ruk then
 10. [ruk ← ruk ∪ {j}]]];
 11. m ← min {j: j∈ ruk ∪ {N+1}}
 12. If m < N+1 then
 13. [lm ← lm ∪ {k}]];

 O(θs) symbolic factorization Algorithm[Source 13]

Algorithm 3

PARALLEL MATRIX ALGORITHM

 By an efficient parallel algorithm we mean one that
takes polylogarithmic time using a polynomial number
of processors. In practical terms, at most a polynomial
number of processors is reckoned to be feasible[6]. A
polylogarithmic time algorithm takes O (logkn) parallel
time for some constant integer k, where n is the
problem size. Problems which can be solved within
these constraints are universally regarded as having
efficient parallel solutions and are said to belong to the
class NC(Nick Pippenger's Class).

Representation of Array Pattern of Processing
Elements (P.Es.): Consider a case of three dimensional
array pattern with n3 = 23q (Processing Elements) PEs.

J. Computer Sci., 3 (12): 956-964, 2007

 960

 Conceptually these PEs may be regarded as
arranged, in n×n×n array pattern. If we assume that the
PEs are row major order, the PE (i,j,k) in position (i,j,k)
of this array has index in2+jn+k (note that array indices
are in the range[0, (n-1)]. Hence, if r3q-1,.....,r0 is the
binary representation of the PE position (i,j,k) then i =
r3q-1,....,r2q, j = r2q-1,...,rq, k = rq-1,....,r0 using A(i,j,k),
B(i,j,k) and C(i,j,k) to represent memory locations in
P(i,j,k), we can describe the initial condition for matrix
multiplication as:

 A(0,j,k) = Ajk
 B(0,j,k) = Bjk, 0 < = j < k, 0 < = k < n

 Ajk and Bjk are the elements of the two matrices to
be multiplied. The desired final configuration is

 C(0,j,k) = C(j,k), 0 < = j < n, 0 < = k < n

Where,

n 1

jk jl lk
l 0

C A B
−

=

=� (4)

 This algorithm computes the product matrix C by
directly making use of (4). The algorithm has three
distinct phases. In the first, element of A and B are
distributed over the n3 PEs so that we have A(l,j,k) = Ajl
and B(l,j,k) = Blk. In the second phase the products
C(l,j,k) = A(l,j,k) * B(l,j,k) = AjlBlk are computed.

Finally, in third phase the sum
n 1

l 0

C(l, j,k)
−

=
� are

computed.
 The details are spelled out in Dekel, Nassimi and
Sahni 1981. In this procedure all PE references are by
PE index (Recall that the index of PE(i,j,k) as
in2+jn+k). The key to the algorithm of Dekel, Nassimi
and Sahni[2] in the data routing strategy 5q = 5 log n
routing steps are sufficient to broadcast the initial value
through the processor array and to confine the results.
 The array pattern of processing elements (PE) in
row-major order for the specialized sparse matrix
(symmetric)[12] can be formulated in the following
manner.

• Representation of lower-triangular matrix:

Index of (aij) = Total Number of elements in first
i-1 rows + Number of elements up to jth

 column in
the ith row

 = i (i+1) / 2 + j (1�i, j�n)

• Representation of upper-triangular matrix:
 Index of (aij) = Number of elements up to aij

element = (i-1)×(n-i/2)+j (1≤i, j≤n)

• Representation of diagonal matrix:
 In the sparse matrices having the elements only on

diagonal following points are evident:
 Number of elements in a n×n square diagonal

matrix = n
 Any element aij can be referred as processing

element using the formula
 Address (aij) = i[or j]

• Representation of tri-diagonal matrix:
 Index of (aij) = Total number of elements in first (i-

1) rows + Number of elements up to jth Column in
the ith Row = 2+2 x (i-2)+j (1≤i, j≤n) (1≤i, j≤n)

• Representation of αβαβαβαβ-band matrix:

Case 1: 1≤i≤β
 Index of (aij) = Number of elements in first (i -1)th

row + Number of element in ith row up to jth
column

 = α × (i-1) + ((i-1) (i-2)) / 2 + j

Case 2: β < i ≤ (n-α+1)
 Index of (aij) = Number of elements in first β row +

Number of elements between (β+1)th row and (i-
1)th row + Number of elements in ith Row

 = αβ + (β(β-1))/2+(α+β-1)(i-β-1)+j-i+β

Case 3: n-α+1<i
 Index of (aij) =
 Number of elements in first (n-α+1) rows +

Number of elements after (n-α+1)th row and up to
(i-1)th row + Number of elements in ith Row and
unto jth column

= αβ+(β(β-1))/2+(α+β-1) (n-α-β+1)+(α+β) (i-n+α−1)-
((i-n+α-1)×(i-n+α-2)) / 2+ 1

 Representation of array pattern of processing
elements (PE) for lower triangular matrix is presented
on a hypercube model. Hypercubes are loosely coupled
parallel processors based on the binary n-cube network.
A n-cube parallel processor consists of 2n identical
processors, each provided with its own sizable memory
and inter connected with n neighbors[1,14,15]. This
architecture consists of a large number of identical

J. Computer Sci., 3 (12): 956-964, 2007

 961

processors inter connected to one another according to
some convenient pattern. In a shared memory system,
processors operate on the data from the common
memory, each processor reads the data it needs,
performs some processing and writes the results back in
memory. In a distributed memory system inter
processor communication is achieved by message
passing and computation of data driven (although some
designs incorporate a global bus, this does not
constitute the main way of inter communication). By
message passing it is meant that data or possibly code
are transferred from processor A to processor B by
traveling across a sequence of nearest neighbor nodes
starting with node A and ending with B,
synchronization is driven by data in the sense that
computation in some node is performed only when its
necessary data are available. The main advantage of
such architectures, often referred to as ensemble
architectures, is the simplicity of their design. The
nodes are identical, or are of a few different kinds and
can therefore be fabricated at relatively low cost. The
model can easily be made fault tolerant by shutting
down failing nodes.
 The most important advantages of this class of
design is the ability to exploit particular topologies of
problem or algorithms in order to minimize
communication costs. A hypercube is a
multidimensional mesh of nodes with exactly two
nodes in each dimension. A d-dimensional hypercube
consists of K nodes, where K = 2n.

• A hypercube has n special dimensions, where n can

be any positive integer (including zero) [1],[15].
• A hypercube has 2n vertices [11].
• There are n connections (lines) that meet at each

vertex of a hypercube [11].
• All connections at a hypercube vertex meet at right

angles with respect to each other[1],[14].
• The Hypercube can be constructed recursively

from lower dimensional cubes.
• An architecture where the degree and diameter of

the graph is same than they will achieve a good
balance between, the communication speed and the
complexity of the topology network. Hypercube
achieve this equality, which explains why they are
one of the today's most popular design (e.g. i psc of
intel corp., T-series of FPS, n-cube, connection
machine of thinking machines corp.)[11,15].

 When the lower triangular matrix is presented in
three dimension then the PE’s are indexed in the
following manner.

Fig. 1: Mapping of lower triangular matrix on

hypercube

 2
(i, j,k)

i(i 1)
a n jn k

2
+= + +

 For different values of i and j we can map
Hypercube. Here we are representing mapping of
Hypercube for a single value of i and j by using
functions BIT and BIT- COMPLIMENT. (Fig. 1).

A. i = 0, j = 0 a(i,j) = 0,k = 0

BIT (0000, 0) = 0, BIT-COMPLEMENT (0000, 0) = 0001 = (1)
BIT (0000, 1) = 0, BIT-COMPLEMENT (0000, 1) = 0010 = (2)
BIT (0000, 2) = 0, BIT-COMPLEMENT (0000, 2) = 0100 = (4)
BIT (0000, 3) = 0, BIT-COMPLEMENT (0000, 3) = 1000 = (8)

Now we conclude the following results

Lemma 9: The routing or access function in2+jn+k
contains topological properties.

Proof: This access function is a polynomial of 3
dimensional discrete space. Where i, j, k are 3
dimensions and n is fixed. It gives a relationship of
processing elements (i.e. there are 23 connections) that
meet at each vertex of a hypercube means that the
algorithm can be evaluated in polylogarithmic time
using a polynomial (in2+jn+k) of three dimensional
discrete space. We can easily construct hypercube
successively from lower dimensional cubes by using
polynomial in2+jn+k. A discrete space is a topological
space in which all sets are isolated. We conclude that
the access function by which we are mapping matrix
elements will be pairwise continuous. It is shown in the
implementation that because of the hamming distance
between the processes the hypercube is modeled as a
discrete space with discrete time. This access function
is also used to map a matrix of three dimensions into
RAM sequentially.

Lemma 10: Cost of storage and cost of retrieval of a
matrix are proportional to each other in polylogarithmic
parallel time using P-RAM with a polynomial number

J. Computer Sci., 3 (12): 956-964, 2007

 962

of processor.

Proof: For storage and retrieval of a matrix we use
parallel iteration. Parallel iteration has the property of
convergence in log n in parallel. It converge
geometrically or at the rate of geometric progression
therefore they are proportional to each other for a single
value. From the above fact we can write that cost of
retrieval is proportional to cost of storage

� cost of retrieval = k x cost of storage, (Where k is a
constant)

� if k ≥ 1 then it is a Dense matrix and if k < 1 then it
is a sparse matrix.

 Here we are representing PRAM-CREW
Algorithm.

Row oriented sparse UTDU factorization (With pre-
processing) PRAM-CREW Algorithm:
Begin
Repeat log n times do
For all (ordered) pair (i, j, k), 0< k ≤ n, 0<i = j = k ≤ n
And q = log n in parallel do
 m(22qi+2qj+k) = m(k, k)
 d(22qi+2qj+k) = d(k, k)
 a(22qi+2qj+k) = a(k, k)
 m(k, k) = 1
 d(k, k) � a(k, k)
end for
 For all (ordered) pair (i, j,. k) 0 < k ≤ n, i > 0
j ∈ u(k, j) and q = log n
in parallel do
 m(22qk+2qj+k) = m(k, j)
 m(k, j) � 0;
end for
 for all (ordered) pair (i, j, k), 0 <k≤ n
j ∈ (n ∈ a(k,j) : n > k) and q = log n in parallel do
 a(22qi+2qj+k) = a(k, j)
m(k, j) � a(k, j)
 end for
For all (ordered) pair (i, j, k) 0 <k≤ n
i ∈ (u(i, k)) do
 m(22qk+2qj+k) = m(i, k)
 m(22qk+2qj+k) = d(i, i)
m(22qk+2qj+k) = m(i, j)
t� m(i, k);
m(i, k) � m(i, k)/d(i, i);
d(k, k) � d(k, k)-t. m(i, k);
 for all (ordered) pair (i, j, k), 0 <k≤ n
j ∈ (n ∈ rui : n > k) and q = log n in parallel do
m(k, j) � m(k, j)-m(i, k). m(i, j)
 End for

 End for
 End
O(θθθθA) symbolic factorization PRAM-CREW
Algorithm:
Begin
Repeat log n times do
For all (ordered) pair (i, j, k), 0< k ≤ n, (j > k : uk,j ≠ 0)
and q = log n in parallel do
 u (k, j) � 0
End for
For all (ordered) pair (i, j, k), 0 < k < n and q = log n
in parallel do
For all (ordered) pair (i, j, k), 0< k < n,
j ∈ (n ∈ a(k, j): n > k) do
u(k, j) � u(k, j) ∪ {i}
end for
for all (ordered) pair (i,j, k), 0 <k≤ n
i ∈ cuk and q = log n in parallel do
For all (ordered) pair (i. j. k) 0 <k≤ n
 j ∈ rui and q = log n in parallel do
if j ∉ u(k, j) then
 u(k, j) � u(k, j) ∪ {i}
End if
 End for
 End for
 End.

 Since we have developed parallel algorithm for
sparse linear systems therefore it is not required to
discuss storage for sequential algorithms. Although the
storage requirements has been discussed in very short
here in this research. The storage schemes used for
sparse matrices consists of two facts, primary storage
used to hold the numerical values and overhead storage,
used for pointers, subscripts and other information
needed to record the structure of the matrix. The data
structures involved for these two different strategies
may be compared. The elements of the upper triangle
(excluding the diagonal) are stored row by row in a
single array with a parallel array holding their column
subscripts. A third array indicates the position of each
row and a fourth array contains the sophistication of the
storage scheme increases. Exploiting more and more
zeros, the primary storage decreases, but the overhead
usually increases. There is usually a point where it pays
to ignore some zeros, because the overhead storage
required to exploit them far more than the decrease in
primary storage[5].

CONCLUSION

 The above discussion proves the values of the
elements of the matrix. The Gauss elimination for

J. Computer Sci., 3 (12): 956-964, 2007

 963

symmetric, positive definite matrix for share memory
has been studied. The classical problem for sequential
algorithm for UTDU factorization of a matrix A was
computed by A. Sherman. The results are given as
follows: θS(A) ≈ O(n2),θM(A) ≈ O(n3),θA(A) ≈ O(n3)
where θS, θM and θA denote the storage, the number of
multiplication/division and addition/subtraction
respectively. The matrix multiplication (SIMD-
Hypercube) example of Dekel, Nassimi and Sahni 1981
is extended to sparse linear systems now. Consider a
cube connected computer with n3 PEs. Conceptually,
these PEs may be regarded as arranged in an n×n×n
array pattern. If it is assumed that the PEs are indexed
in row-major order, the PE, PE(i,j,k) in position (i,j,k)
of this array has index in2+jn+k (note that array indices
are in the range[0, n-1]). Hence, if r3q-1,...,r0 is the
binary representation of the PE position (i,j,k) then i =
r3q-1,...,r2q, j = r2q-1,...,rq and k = rq-1,...,r0. In mapping of
data into the hypercube it was indicated that the data is
mapped to its all possible neighbor processors in the n-
cube which has hamming distance exactly by one bit,
which makes like a tree structure of having leaf of all
its possible dimensions (i.e. for n-cube the tree has n
leaf). The complexity of these parallel algorithm is
OS(A) = O(log2n), OM(A) = O(log3n) and OA(A) =
O(log3n) and the number of PE are as shown in Fig. 2
for the case of lower triangular matrix (i.e. only
(i(i+1)/2) PE are required). Same way for upper
triangular matrix only (i-1) (n-i)/2) + j, processors for
diagonal matrix on i (or j) number of processors, for tri-
diagonal matrix only 2 + 2 x (i-2) + j no. of processors
and for αβ-band matrix only no of processors for Case
1 is α × (i-1) + ((i-1) (i-2)) / 2 + j for Case 2 is
αβ+(β(β-1))/2+(α+β-1)(i-β-1)+j-i+β and for Case
3isαβ+(β(β-1))/2+(α+β-1) (n-α-β+1)+(α+β) (i-n+α-1)-
((i-n+α-1)×(i-n+α-2))/2+1 is required to calculate
UTDU factors. Based on the above concept we
developed the following Algorithm. Row-oriented
dense UTDU factorization PRAM-CREW Algorithm,
Row oriented sparse UTDU factorization (with zero
testing). PRAM-CREW Algorithm, Row oriented
sparse UTDU factorization (with pre-processing
PRAM-CREW Algorithm and O(θA) symbolic
factorization PRAM-CREW Algorithm respectively. It
has been shown that the access function or routing
function to map data on hypercube contains topological
properties. This function is convergent in the finite

interval. The hypercube is modeled as a discrete space
with discrete time because the processor's are in
Hamming distances, where as hypercube is an
undirected graph consisting of n = 2k vertices, if and
only if the binary representation of their labels differ
by one and only one bit.

j
i

0 1 2 3

0 0
0000

1 1
0001

2
0010

2 3
0011

4
0100

5
0101

3 6
0110

7
0111

8
1000

9
1001

Fig. 2: Array view of a 16 PE for a lower triangular

matrix. Each square matrix represents a PE.
The number in a square is the PE index (both
decimal and binary representation are provided)

The most important property is that the degree of the
graph and the diameter are always equal, which will
achieve a good balance between the communication
speed and the complexity of the topology network.
These structures are restricted to having exactly 2k
nodes. Because structure sizes must be a power of 2,
there are large gaps in the sizes of the system that can
be built with the hypercubes. This severely restricts the
number of possible nodes. A hypercube architecture has
a delay time approximately equal to 2 log n and has a
skew, i.e. different delay times for different inter
connecting nodes[11].

REFERENCES

1. Ammon, J., Hypercube Connectivity within cc

NUMA architecture Silicon Graphics, 201LN.
Shoreline Blvd. Ms 565, Mountain View, CA
94043

2. Dekel E.D., Nassimi and Sahni, S. 1981. Parallel
matrix and graph algorithms. SIAM. J. Comput.,
10 (4): 657-675.

3. Duff, I., A. Erisman and Reid , J.K. 1987. Direct
Methods for Sparse Matrices. Oxford University
Press. Oxford, UK.

4. George, A. and Esmond, N.G. 1987. Symbolic
factorization for sparse guassion elimination with
partial pivoting. SIAM. J. Sci. Stat., Comput.,
8 (6) 877-898.

J. Computer Sci., 3 (12): 956-964, 2007

 964

5. George, A., J. Liu and Ng, E. 2003. Computer
solution of sparse positive definite systems,
unpublished Book. Department of Computer
Science, University of Waterloo.

6. Gibbons, A. and Rytter, W. 1988. Efficient Parallel
Algorithms. Cambridge University Press,
Cambridge.

7. Katare, R.K. and Chaudhari, N.S. 1999.
Formulation of matrix multiplication on P-RAM
model. N. Delhi, Proc. of International Conference
on Cognitive Systems.

8. Katare, R.K. and Chaudhari, N.S. 1999.
Implementation of back substitution in Gauss-
elimination on P-RAM model. Rewa, Indian
Mathematical Society, Proc of 65th Annual
Conference.

9. Katare, Rakesh Kumar 2000. Some P-RAM
algorithms for linear systems. M. Tech
Dissertation, Devi Ahilya University, Indore.

10. Quinn, M.J., 1994. Parallel computing. Mc Graw-
hill INC.

11. Saad, Y. and Schultz, M.H. 1988. Topological
properties of Hypercubes. IEEE Trans. Comput.,
37 (7): 867-872.

12. Samanta, D., 2001. Classic data structures. PHI,
New Delhi.

13. Sherman, A., 1975. On the efficient solution of
sparse systems of linear and nonlinear Eq.s. Ph.D.
Thesis, Yale University, New Haven, CT.

14. Tamiko, Teil, 1994. The design of the connection
machine. Design Issues, 10 (1).

15. YVES ROBERT, The Impact of Vector and
Elimination Algorithm. Halsted press, A division
of John Wiley and sons, New York.

