
Journal of Computer Science 3 (10): 793-802, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Adel Alti, Department of Computer Science, Farhat Abbes University of Setif, Algeria
793

Integrating Software Architecture Concepts into the MDA

Platform with UML Profile

1Adel Alti, 2Tahar Khammaci and 2Adel Smeda
1Department of Computer Science, Farhat Abbes University of Setif, Algeria

2LINA, Université de Nantes, 2, Rue de la Houssinière, 44322, Nantes, France

Abstract: Architecture Description Languages (ADLs) provide an abstract representation of software
systems. Achieving a concrete mapping of such representation into the implementation is one of the
principal aspects of MDA (Model Driven Architecture). Integration of ADLs within MDA confers to
the MDA platform a higher level of abstraction and a degree of reuse of ADLs. Indeed they have
significantly different platform metamodels which make the definition of mapping rules complex. This
complexity is clearly noticeable when some software architecture concepts cannot be easily mapped to
MDA platform. In this research, we propose to integrate software architecture within MDA. We define
also strategy for direct transformation using a UML profile. It represents both software architecture
model (PIM) and MDA platform model (PSM) in UML meta-model then elaborates transformation
rules between results UML meta-models. The goal is to automate the process of deriving
implementation platform from software concepts.

Key words: Software architecture, COSA, MDA, UML profile, mapping rules

INTRODUCTION

 Software architecture description provides an
abstract representation of components and their
interactions of a software system by means of
Architecture Description Languages (ADLs)[7]. This
technique is called Component-Based Software
Architecture (CBSA). CBSA helps software architects
to abstract the details of implementation and facilitates
the manipulation and the reuse of components.
 Recent developments in software techniques, i.e.
Component-Based Software Development (CBSD), are
based on the assembling prefabricated components.
CBSD helps software developers to abstract the details
of implementation and to facilitate the manipulation
and reuse of components. Actually, there are several
middleware platforms (CORBA, J2EE, NET, etc.)
focus on developing component-based systems.
Middleware as an abstraction layer is completely
integrated in middleware platforms for resolving
heterogeneity and guaranteeing the transparency
communication of distributed components. The major
problems consist of:

• The complexity to control interactions of

distributed components

• The inter-connections among the components make
the architecture complex

• The reuse of components in the implementation
level is therefore limited

 During the last decade, UML becomes a standard
language for specifying, visualizing, constructing and
documenting architectural description concepts[10].
However, UML lacks the support for some architectural
concepts such as connectors, roles, etc., but it provides
a suitable base to define profiles for software
architecture and implementation platforms. The notion
of transformation is an essential element for Model
Driven Architecture (MDA)[8] aiming at automated
model transformations. Furthermore, UML profiles can
be integrated within an MDA context to define a chain
of model transformations, from architectures to
implementations[3,8].
 Given the central importance of integrating
Software Architecture (SA) concepts into MDA
platform, concepts of the ADL are considered as PIM
and explored in MDA platform as PSM. The different
metamodels with different architecture concepts make
the transformation rules complex. In this article, we try
integrate SA concepts into MDA platform. We also
discuss the usefulness and the importance of standard
UML profiles in the definition of mapping rules

J. Computer Sci., 3 (10): 793-802, 2007

 794

between software architecture elements and its
corresponding implementation elements for a given
MDA platform. Our strategy focuses on separation of
different abstraction levels, translates and integrates SA
concepts into MDA platform more easily and more
quickly.
 The principal contribution of our work is, on the
one hand to profit from the advantages of SA concepts
including the explicit definition and support of
connectors into MDA platform to treat the complex
dependences among components and on the other hand
to satisfy a higher level of abstraction for MDA
platform by adopting high abstraction level from ADL.

COSA SOFTWARE ARCHITECTURE

 Component-Object based Software Architecture
(COSA) describes systems as a collection of
components that interact with each other using
connectors.
 Components and connectors have the same level of
abstraction and are defined explicitly. COSA takes into
account most of operational mechanisms used in the
approach object-oriented such as instantiation,
inheritance, composition, etc.
 Figure 1 presents a meta-model of the COSA
approach. COSA supports number of architectural
elements including components, connectors and

Fig. 1: Meta model of the COSA approach

J. Computer Sci., 3 (10): 793-802, 2007

 795

configurations[13]. These architectural elements are
types that can be instantiated to construct several
architectures. An architectural element can have its own
properties and its own constraints.
 The key role of configurations in COSA is to
abstract the details of different components and
connectors. A configuration has a name and defined by
an interface (ports and services), which are the visible
parts of the configuration and support the interactions
among configurations and between a configuration and
its components.
 Components represent the computational elements
and data stores of a system. Each component may have
an interface with multiple ports and multiple services.
The interface consists of a set of points of interactions
between the component and the external world that
allow the invocation of the services. A component can
be primitive or composite[13].
 Connectors represent interactions among
components; they provide the link for architectural
designs. A COSA connector is mainly represented by
an interface and a glue specification[13]. In principle, the
interface shows the necessary information about the
connector, including the roles, service type that a
connector provides (communication, conversion,
coordination, facilitation). Connectors can be composite
or primitive.
 Interfaces in COSA are first-class entities.
They provide connection points among architecture
elements. Likewise, they define how the
communication between these elements can take place.
The interface of a component/configuration is called
port and the interface of a connector is called role. In
addition to ports and roles interfaces have services that
express the semantics of the element with which they
are associated.
 Properties represent additional information
(beyond structure) about the parts of an architectural
description. Typically they are used to represent
anticipated or required extra functional aspects of
architectural design. There are two types of properties:
functional properties and non-functional properties.
Functions that relate to the semantics of a system and
represent the requirements are called functional
properties. Meanwhile non-functional properties
represent additional requirements, such as safety,
security, performance and portability.
 Constraints are specific properties, they define
certain rules and regulations that should be met in order
to ensure adherence to intended component and
connector uses.

COSA UML PROFILE

 The goal of the COSA profile is to extend UML
2.0 in order to represent COSA architectural concepts.
This profile aims to provide a practical way for
integrating software architecture in the framework
MDA (Model Driven Architecture), which unifies all
modelling approaches[12].
 A high level profile model provides the basic
concepts to define COSA architecture. The meta-model
of COSA is described as a UML stereotype package
named «COSA». This package defines number of
stereotypes: «COSAComponent», «COSAConnector»,
etc. These stereotypes correspond to the metaclasses of
UML meta-model with all tagged values and its OCL
2.0 constraints[11]. Fig. 2 shows this meta-model. The
second level permits to describe a particular
architecture with the application of the profile. We can
also define the value of each tagged value related to
each stereotype. In this level the OCL constraints are
checked and the final mapped system must conform to
the UML profile. The third level presents a set of
instances for component, connector and configuration
types[12].

INTEGRATION OF COSA SOFTWARE
ARCHITECTURE CONCEPTS INTO MDA

 MDA (Model Driven Architecture) provides means
to separate preoccupations of architectural aspects from
implementation aspects by supporting the automation of
the transformation from modelling to implementation.
The main point is the independent of the model
definition from the implementation platforms (CORBA,
J2EE, etc.).
 MDA Platform provides simplicity of development
by assembling prefabricated components but it does not
support high levels of abstraction, especially composite
components and connector concept. Most software
architecture models such as COSA support composite
components and define connectors explicitly as abstract
concepts. Hence, it is very useful to define an
automatic transformation from SA model (as an MDA
PIM) to platform model (as an MDA PSM). The
primary interest is a rapid mapping and smooth
integration of software architecture concepts into MDA
platforms to achieve a higher level of abstraction and to
help solving the problems of interactions among
heterogeneous components. Comparing to SA model,
platform has concrete aspects and fully realizing
designs. MDA takes into account the architecture
description language as COSA; while integrating their
description in two abstraction levels, at the PIM

J. Computer Sci., 3 (10): 793-802, 2007

 796

Fig. 2: The COSA profile

(Platform Independent Model) and in the PIM
transformations toward PSM (Platform Specific
Model).

Software architecture at the PIM level: PIM meta-
model includes all architectural concepts relative to the
COSA model. Using the mechanisms provided by UML
profiles, we realize PIM transformations toward PSM
and integrates all software architecture concepts into
MDA platforms

Software architecture at the PSM level: the PIM
transformations into PSM specify the way of which the
MDA platforms (CORBA, J2EE, etc.) using models of

COSA architectures contains all intended architectural
concepts for exploitation

PROFILE TRANSFORMATION

 Let us transform the COSA architecture model as
PIM, which conforms to the COSA-metamodel, into
another model of specific MDA platform which
conforms to another metamodel (PSM). PIM and PSM
have not the same architecture concepts. That makes
the transformation rules between models more
complex. Consequently, we propose means of direct
profile transformations to facilitate the elaboration of
architectural concepts.

J. Computer Sci., 3 (10): 793-802, 2007

 797

 The mechanisms provided by UML profiles are
very well suited to describing any implementation
platform and the transformation rules between models.
The definition of transformation process starts with
defining a UML model conforms to the COSA meta-
model, next producing automatically an implementation
UML platform model as a target platform. After that,
the model is evaluated by the platform profile.
 We need to define the mapping rules from
elements of the PIM to elements of PSM that make up
the platform profile. The idea of elaborating these rules
is to take each UML element of a PIM and find its
corresponding PSM (the same semantically UML
elements of PIM). Each element of transformation
contains OCL expression [11], which permits
transformation between the elements of COSA UML
profile and platform UML profile and a filter to permit
distinction between them. In addition, if the UML
profile of the platform includes the specification of
element relationships, then the transformation may be
specified using operations deduced from theses
relationships.

ILLUSTRATED TRANSFORMATION: FROM
COSA (PIM) TO CORBA (PSM)

 To illustrate how our strategy of mapping can be
used, we apply it to COSA (PIM) to CORBA (PSM)
transformation. Figure 3 presents the process of
transformation from COSA software architecture to
CORBA standard platform.
 CORBA is a standard platform that provides
simplicity of development by assembling prefabricated
components but it does not support high levels of
abstraction, especially composite components and
connector concept. Meanwhile COSA supports
composite components and defines connectors
explicitly as abstract concepts.
 Therefore, it is very useful to define an automatic
transformation from COSA UML profiled (as an MDA
PIM) to CORBA UML profiled (as an MDA PSM).
The primary interest is a rapid mapping and smooth
integration of COSA concepts into CORBA platform to
achieve a higher level of abstraction and to help solving
the problems of interactions among CORBA
components. Compared to COSA, CORBA has
concrete aspects and fully realizing designs.
 COSA to CORBA transformation must follow
incremental process that generates CORBA concepts
from its corresponding COSA. This process starts with
defining a UML model conforms to the COSA meta-
model, next producing automatically a UML CORBA
model as a target platform. After that, the model is

Fig. 3: COSA (PIM) to CORBA (PSM) transformation

evaluated by the CORBA UML profile. Figure 3
presents the process of transformation from COSA
software architecture to CORBA platform.

Correspondence concepts: COSA UML profile[12] and
CORBA UML profile[9] are based on two different
UML meta-models; we need to map each COSA
concept into CORBA concepts. The COSA-CORBA
correspondence can be deduced easily from the same
semantics between UML elements. COSA components
are represented by UML 2.0 components. Since UML
2.0 component corresponds to a UML 1.4 class (the
name of the class is the name of the component), a
UML 2.0 component «COSAComponent» may be
transformed to UML class «CORBAHome». COSA
connectors, which are abstractions that include
mechanisms of communication, are not defined
explicitly in CORBA platform; we tried to find the
closest CORBA concepts semantically. COSA
connectors are represented by UML 2.0 classes. Since
UML 2.0 class matches UML 1.4 class, so UML 2.0
Class «COSAConnector» is mapped to UML class
«CORBAHome». Table 1 shows the concepts of COSA
and their CORBA correspondence.

Mapping rules: Mapping rules must follow COSA to
CORBA correspondence concepts. To elaborate each
mapping rule we affect all elements relationships of
source model (COSA) to its corresponding relationships
on the target model (CORBA).
 For example, COSA components, which are
abstraction that includes mechanisms of computation,
are represented by UML 2.0 components. Since UML
2.0 component corresponds to a UML 1.4 class (the
name of the class is the name of the component), a
UML 2.0 component «COSAComponent» may be
transformed to UML class «CORBAHome». We
include operations for acquiring attached elements

MCOSA

MCORBA

PIM

 Run

COSA ProfileUML2.0

CORBA ProfileUML1.4

MM UML1.4

 Definition

PIM

PSM

PSM

MM UML2.0

J. Computer Sci., 3 (10): 793-802, 2007

 798

Table 1: COSA-CORBA correspondence
COSA concepts CORBA concepts
«COSAConfiguration» Component «CORBAModule» Package
«COSAComponent» Component «CORBAHome» Class
«COSAConnector» Class
«Component-Interface» Port «CORBAComponent» Class
«Connector-Interface» Port
«COSAPort» Interface «CORBAInterface» is
 synchronous
«COSARole» Interface «CORBAEvent» is
 asynchronous
«Service» Class «CORBAEvent» Class
«Connector-Service» Class
«COSAGlu» Association Class «IDL-Operation» Operation
«COSAUse» Delegate connector «CORBAComponent» with two
«COSABinding» Delegate interfaces provided and required
connector
«COSAAttachment» Assembly
connector
«COSAProp» Property «IDL-Attribute» Attribute

rule COSAComponent2CORBAHome {
from inComp : UML2!Component
(inComp. hasStereotype(‘COSAComponent’))
to outHome:UML14!Class (
name <- inComp.name,
feature<-inComp.getCOSAProps(),
constraint<-inComp.getCOSAConsts(),
clientDependency <-inComp.getCOSAImps(),
stereotype <-‘CORBAHome’
)
}

Fig. 4: Mapping rule from COSA component to

CORBA home using ATL

(getCOSAProps for acquired component properties,
getCOSAImps for acquired component
implementations and getCOSAContsraints for acquired
component constraints) because COSA components
contain only properties, implementations and
constraints and then we impose this to the
corresponding CORBA element (Fig. 4). This rule is
expressed in ATL (Atlas Transformation Language)[2] .
 COSA connectors, which are abstractions that
include mechanisms of communication, are not defined
explicitly in CORBA platform; we tried to find the
closest CORBA concepts semantically. COSA
connectors are represented by UML 2.0 classes (Fig. 5).
Since UML 2.0 class matches UML 1.4 class, so UML
2.0 Class «COSAConnector» is mapped to UML class
«CORBAHome».
 COSA component/connector interfaces match
UML 2.0 ports. Ports correspond to UML classes
(name of the class is name of the port). So, a UML class
(that represents a UML 2.0 component) must be
attached to another class (that represents ports). Every
class that represents a port (a UML class corresponds to

«CORBAComponent») must be attached to a UML
class that represents a component or a connector
(components and connectors correspond to
«CORBAHome»). COSA provided ports/roles (or
required ports/roles) are transformed to facets (or
receptacles) for synchronous communication or to event
sinks (or event sources) for asynchronous
communication (Fig. 6). This rule is expressed in ATL
(Atlas Transformation Language)[2].
 An important aspect of COSA architecture is to
offer a graph of component and connector types called
configurations.
 A UML 2.0 component can contain subcomponents
and subclasses. COSA configurations are represented
by UML 2.0 components. Since UML 2.0 component
matches UML 1.4 Class (Fig. 7), UML 2.0 Component
«COSAConfiguration» is mapped into UML class
«CORBAModule».

rule COSAComponent2CORBAHome {
from inComp : UML2!Component
(inComp. hasStereotype(‘COSAComponent’))

to outHome:UML14!Class (
name <- inComp.name,

feature<-inComp.getCOSAProps(),

constraint<-inComp.getCOSAConsts(),

clientDependency <-inComp.getCOSAImps(),

stereotype <-‘CORBAHome’

)

}

Fig. 5: Mapping rule from COSA connector to CORBA

home using ATL

rule COSAPort2CORBAInterface{
 from InPort:UML2!Interface
 (InPort.hasStereotype('Required-Port')

 or(InPort.hasStereotype('Provided-Port')
 to utIntf:UML14!Interface(
 name <- InPort.name,

 namespace<-thisModule.CORBAModule,

)

 do{

 let tp:String = InPort.getStereotype()
 if InPort.getPropObj(tp,‘Mode')=#synchnous
 outIntf.stereotype<-'CORBAInterface'

 else
outIntf.stereotype<- ‘CORBAEventPort’

 feature<-inComp.getCOSAProps(),

}

Fig. 6: Mapping rule from COSA port to CORBA

interface using ATL

J. Computer Sci., 3 (10): 793-802, 2007

 799

rule COSAConfiguration2CORBAModule {
 from inConfig :UML2!Component
 (Config.hasStereotype(‘COSAConfiguration’))
 to outHome:UML14!Package (
 name <- Config.name,
 feature<-inComp.getCOSAProps(),
 constraint<-inComp.getCOSAConsts(),
 clientDependency <-inComp.getCOSAImps(),
 namespace<- thisModule.CORBAModel,
 ownedElement<- Config.ownedMember,
 stereotype <-‘CORBAModule’
)
}

Fig. 7: Mapping rule from COSA connector to CORBA

home using ATL.

System client-server
{

 Class Component Server {
 Interface {

Connection-Mode =synchronous
Ports provide {provide ;}
}
Constraints {max-clients=1;}

}
Class Component Client {
 Interface {

Connection-Mode =synchronous
Ports request {request ;}
}

}
Class Connector RPC {

Interface {
Connection-Mode =synchronous
Roles provide {callee ;}
Roles request {caller ;}

}
Glue {….}

}
}

Fig. 8: The Client-Server system in COSA

Fig. 9: The Client-Server system using COSA UML

2.0 profile

Fig. 10: The Client-Server system using COSA UML

2.0 profile

Specific COSA connectors such as Use, Binding and
Attachment are mapped into UML class (which is
«CORBAComponent») and bound a provided interface
(or event sink) into required interface (or event source).
The principle of transformation using COSA and
CORBA profiles is based on mapping each element in
the COSA UML 2.0 profile into an element of the
CORBA UML 1.4 profile.

Implementing the transformation: To illustrate how
the COSA-CORBA transformation can be used, we
apply it to the Client-Server system. Figure 8, shows
the description of the system using COSA and Figure 9
presents the system after applying the profile. Figure 10
shows the architecture in CORBA after applying the
transformation.
 COSA to CORBA transformation is implemented
in IBM Rational Software Modeler (RSM) for Eclipse
3.1. This visual modeling tool supports creating and
managing UML models for software applications
independent of their programming language. It has been
used to define profiles for different applications, to
convert meta-models and models into .ecore files and to
elaborate the transformation from a source model to a
target model. The Plug-In is developed in four steps:

J. Computer Sci., 3 (10): 793-802, 2007

 800

Fig. 11: COSA-CORBA transformation

• The meta-model of COSA (and CORBA) with all

tagged values and OCL constraints is defined by
the UML 2.0 (UML 1.4) profile

• The COSA-CORBA transformation is created.
This transformation describes how COSA model
elements are matched and navigated, to create and
initialize the elements of CORBA models

• The meta-model of COSA (and CORBA) with all
tagged values and OCL constraints is defined by
the UML 2.0 (UML 1.4) profile

• COSA to CORBA transformation is configured
and executed. The elaborated CORBA model is
evaluated by its profile

 COSA-CORBA transformation is defined using
ATL transformation language[2] of RSM. Figure 11
shows the meta-models COSA and CORBA (in the left
side) and the mapping rules (in the right side).
 For the client-server example, we elaborated the
client-server system by a components diagram and
OCL constraints. The model is validated by COSA
profile. The COSA-CORBA transformation is applied
to the COSA model for elaborating its correspondent
CORBA model. Figure 12 shows the applied CORBA
model of Client-Server system.

J. Computer Sci., 3 (10): 793-802, 2007

 801

Fig. 12: The CORBA model of Client-Server system

RELATED WORK

 In[4], Garlan points out that the world of software
development and the context in which software is being
used are changing in significant ways and these changes
promise to have a major impact on how architecture is
practiced. Rodrigues at al.[14], defined a mapping rules
to transform an ACME description into a CORBA IDL
specification. They focused on composing systems by
exploring the ACME extensions facilities to include
input/output ports in an ACME specification. They
transformed almost every thing as an IDL interface,
therefore, they did not really profit from the concepts
available in CORBA IDL. ACCORD RNTL Project[1]
is an open and distributed environment that aims to ease
assembling components. It defines a semi-automated
matching of concepts and an automated transformation
of ACCORD model into CCM. This work is based on
UML profiles to represent ACCORD and CCM

architectural concepts. It defines an intermediate filter
model for adapting transformation process. Then
assembling components are defined using XML files,
this makes it difficult to promote components reuse.
Manset at al.[5], defined a formal architecture-centric
model-driven development (ACMDD) process on top
of the powerful architecture description languages and
platform, ArchWare. They used a formal semantics for
building architectural models and refining to multi-
layered architecture specifications. Marcos at al.[6],
integrated true architectural design aspects in MDA
architecture and followed a transformation approach on
the level of architecture models from Platform-
Independent Architecture models (PIAs) free from all
technological constraints to a Platform-Specific
Architecture models (PSAs) depending on specific
needs and technologies. They studied the integration
software architecture as a new aspect at PIM and PSM
levels into MDA for better manageability and

J. Computer Sci., 3 (10): 793-802, 2007

 802

administration. Its approach allows a well separation
between differentes aspects, but disagrees in the more
integration of architecture concepts and architectural
styles available in ADLs. More recently, in[15] Sanchez
proposed an automatic transformation between
requirement and architecture models for achieving a
comfortable MDA framework.
 Our approach of profile transformations can be
seen as a base for mapping architectural concepts into
an implicational plat-form. It offers number of
advantages compared to related works, including:

• Fast mapping and smooth integration of most of

SA concepts especially the concepts that are not
defined explicitly such as connector, configuration,
roles, to achieve a complete MDA framework

• Satisfying the higher level of abstraction of MDA
plate-form by adopting high abstraction level from
the UML Profile

• Automatic elaboration rules at the transformation
process by using the same UML meta-models

 However, our approach does not include the
description architectural styles available and the
capacity of automatic elaboration of the correspondence
specification concepts between MDA PIM and MDA
PSM meta-models for the transformation process.

CONCLUSION

 In this research, we propose the integration of
software architecture concepts into MDA platform and
also we define a strategy of direct transformation using
UML profile by mapping software architecture model
and platform models in UML meta-model then
elaborate correspondences concepts between results
UML meta-models in mapping rules. We illustrated our
strategy using an automatic transformation from COSA
concepts to CORBA concepts. This strategy allows the
mapping of COSA software architecture concepts that
are specified in the UML profile (PIM) into CORBA
platform (PSM).Related benefits of profile
transformations is a higher abstraction level of MDA
platform and more easily and more quickly integrating
architectural concepts within MDA.
 For our future work, we are considering the
mapping at the meta-meta level, i.e. from an
architectural meta-meta model into MOF. We are also
considering the transformation in the other MDA
platform and in the other SA-based.

REFERENCES

1. ACOORD RNTL Project, www.infres.enst.fr.
2. ATLAS group LINA. and INRIA Nantes, 2007.

ATL: Atlas Transformation Language. ATL User
Manual version 7.0.

3. Fuentes-Fernández, L. and A. Vallecillo-Moreno,
2004. An Introduction to UML Profiles. European
J. Inform. Prof., 7 (2): 6-13.

4. Garlan, D., 2000. Software Architecture: A
Roadmap. Proc. of 22nd International Conference
on Software Eng., pp: 91-101.

5. Manset, D., R.H.,Verjus and F. Oquendo, 2006. A
formal architecture-centric, model-driven approach
for the automatic generation of grid applications.
Proc. of the 8th Int. Conf. on Enterprise Inform.
Systems.

6. Marcos, E., C.J., Acu�a and C.E. Cuesta, 2006.
Integrating Software Architecture into a MDA
Framework. Proc. of the 3th European Workshop
on SA (EWSA’2006), France, pp: 128-143.

7. Medvidovic, N. and R.N. Taylor, 2000. A
classification and comparison framework for
software architecture description languages. IEEE
Trans. Software Eng., 26: 70-93.

8. Model Driven Architecture, www.omg.org/mda.
9. OMG, 2002. UML profile for CCM: Revised

Submission. document mars/03-01-01
10. OMG, October 2004. UML 2.0 Superstructure

Specification: Revised Final Adopted
Specification.www.omg.org/docs/ptc/04-10-02.pdf.

11. OMG, June 2005. UML OCL 2.0 Specification:
Revised Final Adopted Specification.
www.omg.org/docs/ptc/05-06-06.pdf.

12. Alti, A., T. Khammaci and A. Smeda, 2007.
Representing and Formally Modeling COSA
software architecture with UML 2.0 profile.
IRECOS Review., 2 (1): 30-37.

13. Oussalah, M., A. Smeda and T. Khammaci, 2004.
An explicit definition of connectors for component
based software architecture. Proc. of the 11th IEEE
Conference Engineering of Computer Based
Systems (ECBS’2004), Czech Republic, pp: 44-51.

14. Rodrigues, M.N., L. Lucena and T. Batista, 2004.
From Acme to CORBA: Bridging the Gap. First
European Workshop on Software Architecture
(EWSA’04)., pp: 103-114.

15. Sánchez, P., J. Magno, L. Fuentes, A. Moreira and
J. Araújo, 2006. Towards MDD Transformation
from AORE into AOA, Proc. of the 3th European
Workshop on Software Architecture, pp: 159-174.

