
Journal of Computer Science 3 (8): 639-645, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Mahmoud Ahmed Abou Ghaly, Mathematics Department, Faculty of Science, Ain Shams University,
Cairo, 11566, Egypt, Tel +20242219893 Mob +20125243452 Fax: +20248262201

639

Operational Semantics for Lazy Evaluation

Mahmoud A. Abou Ghaly, Sameh S. Daoud, Azza A. Taha and Salwa M. Aly

Mathematics Department, Faculty of Science,
Ain Shams University, Cairo, 11566, Egypt

Abstract: An operational semantics for lazy evaluation of a calculus without higher order functions
was defined. Although it optimizes many aspects of implementation, e.g. there is a sharing in the
recursive computation, there is no � conversion, the heap is automatically reclaimed, and an attempt to
evaluate an argument is done at most once. It is still suitable for reasoning about program behavior and
proofs of program correctness; this is primarily due to the definition via inferences and axioms which
allows for proofs by induction on the height of the proof tree. We also proved the correctness of this
operational semantics by showing that it is equivalent with respect to the values calculated to the
operational semantics of LAZY-PCF+SHAR due to S. Purushothaman Iyer and Jill Seaman.

Keywords: Higher order functions, � conversion, LAZY-PCF+SHAR

INTRODUCTION

 Lazy evaluation delays expression evaluation and
avoids multiple evaluation of the same expression. Any
implementation of lazy evaluation or call by need has
two ingredients[1].
1. Arguments to functions should be evaluated only
 when their values are needed.
2. Arguments should only be evaluated once, further
 uses of them within the function body should use
 the values computed before. This means that there
 is a sharing of arguments.
The first ingredient is taken form normal order
evaluation, and the second ingredient is taken from
applicative order evaluation, i.e. Lazy evaluation is a
normal order evaluation with sharing of arguments. In
Lazy evaluation we pursue normal order evaluation and
stop the evaluation when there is no top level redex.
The existence of higher order functions in a calculus
increase its expressive power, but makes obstacles in
defining simple semantics and efficient
implementations for lazy evaluation, for this sake, we
will waive part of the expressive power of the calculus,
by waiving higher order functions from the calculus.
This is not a big problem, since higher order functions
do not exist in imperative languages. So we will use a
calculus with the terms; variable, number, the recursive
operator µx.e, and the application of a function to

arguments (with the context conditions that a function
cannot be the result or the arguments of another
function). We will define an operational semantics for
lazy evaluation of this calculus. We call this calculus
with its operational semantics rules Lmßr, since we will
use multi ß reductions of the terms. Also we will
compare the simplicity and the efficiency of this
operational semantics with the operational semantics
for lazy evaluation of the general lambda calculus.
 Although Lmßr operational semantics is mainly to
model sharing of arguments, it also perform many
implementation optimizations, like, The heap is
automatically reclaimed, since there is an automatic
deletion of out of scope variables from the heap. An
attempt to evaluate an argument is done at most once,
since once an argument is evaluated the result of
evaluation is stored and latter reference to the argument
will copy this stored value directly. There is no �
conversion (a renaming of variables with a completely
fresh variables to avoid name clashes). There is a
sharing in the recursive computation. The key reason
for all such optimizations is Lmßr uses multi argument
reduction for terms.
 There have already been some attempts to provide
semantics of lazy evaluation for lambda calculus, but
all of them require extra overhead to deal with the
existence of higher order functions in the calculus. For

J. Computer Sci., 3 (8): 639-645, 2007

 640

example, The G-machine[8] and the Tim machine[4]
perform lambda lifting as a preprocessing step to get rid
of the free variables. The operational semantics LAZY-
PCF+SHAR due to S. Purushothaman and J. Seaman[6],
and the operational semantics due to J. Launchbury[5]
are closely related to Lm�r, for simplicity, we rename
them as L1 and L2 respectively. In L1 and L2, once a
variable is added to the environment it is not deleted
from it, the reason is, we cannot determine the end of
the scope of a variable (since the result of function
application can be a function). So the names of the
variables must be unique. Consequently they perform �
conversion, L1 do this in its {Appl} rule, while L2 do
this during its normalization step. But in Lm�r, the heap
is automatically reclaimed, once the function
application was end, we will remove the bindings
corresponding to the arguments of the function from the
environment, this because, in Lm�r function application
will always result with a value (not another function).
So in Lm�r it is not necessary for variables names to be
unique. Consequently � conversion will not happen.
Also, there are two cases in the evaluation of the
recursive expression µx.e.
Case 1: e requires the value of x before reducing to
 whnf, this means that e depends directly on x,
 e.g. x, + x x, 2*x.
Case 2: e reduces to whnf without requiring the value
 of x, e.g. + 2 5.
The results of the evaluation of L1, L2 and Lm�r for
these two cases are;
Case 1:
L1: there is no sharing, and the evaluation will enter
 an infinite loop.
L2: there is a sharing, and the evaluation will fail.
Lm�r: there is a sharing, and the evaluation will enter
 an infinite loop.
Case 2:
L1: there is no sharing, and the evaluation will
 terminate with a whnf value.
L2: there is a sharing, and the evaluation will
 terminate with a whnf value.
Lm�r: there is a sharing and the evaluation will
 terminate with a whnf value.

Where, entering an infinite loop results from using
infinite data structure which is possible only with lazy
evaluation. The evaluation will fail when it requires the
value of a certain variable, and this variable does not
exist in the environment.

In the rest of this paper, we will, define the multi-
argument reduction of terms, the calculus with its
operational semantics rules, and we will show the
correctness of this semantics. Finally the conclusion
and the bibliography.

The Syntax of Lm�r: The syntax of Lm�r is E::= v | n
| (�x1 .. xn.e) e1 .. en | µx.e i.e. a term is either a variable,
constant number, application, or meu-abstraction
respectively. Where, the term meu-abstraction is used
for recursive computation, e.g. µx. CONS 1 x evaluates
to an infinite list of 1's. And the application is an
application of n expression e1.. en to the function (�x1 ..
xn.e) that have the n parameters x1 .. xn and body e. We
will reduce the application using multi-argument �
reduction, which we will explain in the next section.

Multi Argument Reductions: It is a modified form of
�-reduction, in which we may effectively perform
several �-reductions at once, we explain this using the
following example; consider the reduction of the
following expression (�x.�y. – y x) 3 4. The basic
lambda reducer, proceeds step by step like this (�x.�y. –
y x) 3 4 � (�y. – y 3) 4 �- 4 3 � 1
There is no reason however, why we should not
perform the �x and the �y reductions simultaneously,
thus (�x. �� y. – y x) 3 4 � - 4 3 This multi argument
reduction constructs an instance of the body (- y x)
whilst substituting 3 for free occurrence of x, and 4 for
free occurrence of y. The following observations are
crucial:

i. Much is gained by performing the reductions
simultaneously. Firstly it builds less intermediate
structure in the heap, since the intermediate result
of the �x is never constructed. Second no problems
are presented by the free occurrence of x in the �y
abstraction.

ii. Nothing is lost by performing �x and the �y
reductions simultaneously. The result of
performing the �x reduction alone is a �y
abstraction, and (assuming that we perform normal
order reduction until whnf is reached) no further
work can be done on the �y abstraction until it is
given another argument.

Hence we may as well wait until both arguments are
present and then perform both reductions at once.

The Operational Semantics: The semantics we
present here is an intermediate-level operational
semantics, lying midway between, a straightforward
denotational semantics, as that of Josephs[7] and a full
operational semantics of the abstract machines[4,8]. It

J. Computer Sci., 3 (8): 639-645, 2007

 641

actually captures sharing within lazy evaluation without
requiring extra machinery either of continuations or
heaps, code pointers, dumps and the like. The stack
(environment) is the only computational structure
required. The operational semantics rules are shown in
Fig.1

Terms are evaluated with respect to a single
environment called the operational semantic
environment. The structure of this environment is
simply a stack of a list of bindings of variable to tuples,
it could be described by the following syntax rules
 n ::= 0 | 1
bL ::= v�(E, n) | bL, v�(E, n)
D ::= � | D[bL]
Where E is a term, v is a variable and � is the empty
brackets. That is the environment D is a stack of the
binding list bL. Lm�r maps each variable to a pair of
expressions, the first component of the pair represents
the value of the variable and the second component acts
as a marker. Originally when a binding is added to the
environment the second component of the pair is set to

0 and the first component is set to the original value of
the variable. Once this variable is evaluated then the
second component of the pair is changed to 1 and the
first component is set to the result of the evaluation.
 As an example the bold x in the expression (�xy.+
* ((�x.x)(- 4 2)) x x) (+3 7) (* 2 6) is evaluated w.r.t.
the environment [x�(+ 3 7, 0), y�(* 2 6, 0)] [x�(- 4 2,
0)] that contains two bindings list, while the first light x
is evaluated w.r.t. the environment [x�(+ 3 7, 0), y�(* 2
6), 0)] that contains only one binding list, and the
seconds light x is evaluated w.r.t. the environment
[x�(10, 1), y�(* 2 6, 0)], which is the same environment
as that of the first light x, but the information that x is
evaluated before is taken into consideration.
 As shown from this example that the binding list
bL is a list of bindings corresponding to the arguments
of the function, it is pushed onto the stack before the
evaluation of the function body starts, the function body
is evaluated with respect to this new stack, and the
stack is poped to remove this bindings list at the end of
the evaluation of the function body. This corresponds to
the very famous garbage collecting rule in block
structured languages; last allocated first deallocated.
The coupling of an expression with an environment is
referred to as a configuration and is denoted as D e for
an expression e and an environment D.
The operational semantics of Lm�r are defined as a
natural semantics, which define the evaluation relation
between a program and its final value in terms of
inferences and axioms. There is no sense of a sequence
of intermediate steps in the evaluation, since an
expression evaluated directly to its final value. This
style of semantics is often referred to as one step or big
step semantics. Proofs of theorems about the evaluation
relation defined with these semantics can be carried out
by induction on the height of the proof justifying the
evaluation relation. Natural semantics were explored by
Poltkin[2] and latter by Kahn[3].
Rule {m�rInt} is used to evaluate an integer value it
returns the same value with the same environment.
Evaluation of the expression µx.e with respect to the
environment D, begin by applying rule {m�rRec},
which leads to an evaluation of the variable x with
respect to the environment D augmented with the
binding list [x�(µx.e,0)], this applies rule {m�rVar4}
which evaluates e with respect to the same environment
D[x�(µx.e,0)]. There are two cases to be considered;
Case 1: e requires the value of x before reducing to
whnf, thus a reference to x during the evaluation of e
causes rule {m�rVar4} to be applied again, which again
evaluates e with respect to the same environment. So

J. Computer Sci., 3 (8): 639-645, 2007

 642

rule {m�rVar4} is continuously applied with the same
environment. Thus we enter an infinite loop and there is
a sharing, since we use the same environment.
Case 2: e reduces to whnf without requiring the value of
x. Assume e reduces to the whnf e', then the result of
evaluation is e' and the binding for x is updated to
x�(e',1) to capture sharing. Following reference to x, if
any, will apply rule {m�rVar2} and return the value e'
directly. Thus in this case there is a sharing and the
evaluation terminates with a whnf value.
Note that; at the end of the evaluation of the term µx.e
we remove the one binding list for x that we added
before, from the resulting environment, since this is the
end of x scope.
The {m�rAppl} rule evaluates the application (�x1 ..
xn.e) e1 .. en in an environment D, by evaluating e (the
body of the function), in the environment D augmented
with the bindings list [x1�(e1,0) .. xn�(en,0)]. Assume e
is evaluated to the expression e' and the environment is
updated to D'[xi] (where D is modified to D' and
[x1�(e1,0) .. xn�(en,0)] is modified to [xi]). Then the
result of evaluation of the original redex is e' paired
with environment D', and the bindings list [xi] is deleted
from the resulting environment since xi 's scopes end at
this point.
Rule {m�rVar1} makes the largest contribution to the
implementation of the call by need strategy. In order to
determine the result of evaluating the variable x in the
environment R[D, x�(e,0)] (i.e. the binding
corresponding to x is the rightmost binding in the
environment). Then the expression e is evaluated with
respect to R, say this result with expression e' also R
may be updated to R'. Then the result of evaluation of x
is e' paired with the environment R'[D, x�(e',1)]. So the
binding for x is updated to the new pair (e', 1) to
capture sharing.
 So arguments are stored in the environment by the
{m�rAppl} and {m�rRec} rules until they are needed,
at which point they are evaluated by the {m�rVar1} or
{m�rVar4} rules respectively. Thus {m�rVar1} and
{m�rVar4} rules correspond to the first evaluation of a
variable, (it occurs when the second component of the
pair of the binding corresponding to this variable is 0).
The result of the evaluation is now stored as the first
component of the pair in the resulting environment, to
capture sharing, and the second component of the pair
(the marker) is set to 1. Then following evaluation of
the same variable will use the {m�rVar2} rule, since
the marker is now 1. {m�rVar2} rule will return the
first component in the pair directly without

reevaluation, and no changes are made to the
environment.
The {m�rVar3} two rules are used when the variable
being looked up in the environment is not the rightmost
binding in the environment it searches for the binding
of that variable in the tail of the environment,
propagating the results it receives. If it does not exist at
all then the rule {m�rError} will raise the exception
var_have_no_value.
Removing out of scope variables from the environment
does not happen in L1 and L2, although it has many
advantages. It saves the space occupied by those
variables, and saves the time of renaming of those
variables. The task of renaming of a variable consist of
two steps
i) Generating a new name, where by a new name we
 mean a name that does not exist in the expression
 under evaluation and must not be added previously to
 the environment.
ii) Substituting this new name for the old one in the
expression under evaluation.

Correctness of the Lm�r Operational Semantics: In
this section, we will show that the operational
semantics are computationally correct in the sense that
the values computed by the semantics are correct. This
can be done by proving that the semantics are
equivalent (with respect to the values calculated) to
some accepted or standard semantics, whether
operational or denotational. In this paper it will be
shown that operational semantics of Lm�r are
equivalent to the operational semantics of L1[7]. The
correctness of L1 with respect to a standard
denotational semantics is already shown in[7]. Thus,
once the equivalence of Lm�r and L1 is shown, the
correctness of Lm�r with respect to the standard
denotational semantics follows automatically.

L1 Semantics: Since the set of terms of Lmßr is a
subset of the PCF set of terms, so Fig. 2 contains only
subset of L1operational semantics[7]. L1 evaluates
configuration denoted by <e, D>. Where D denotes the
L1 environment, it is formally described as; D::= [] |
[x�e]D i.e. the environment maps each variable to its
value.
Example: assume that the primitives operations +, *
were added to Lm�r, and they are evaluated in a prefix
form. So Fig. 3 contains an evaluation of the expression
(�xy.+ * ((�x.x)(- 2)) x x) (+3 7) (* 2 6) using Lm�r
and L1 semantics.

J. Computer Sci., 3 (8): 639-645, 2007

 643

Equivalence of Lmßr and L1 Semantics: The proof
of equivalence is given in theorems 1, 2 it requires a
condition on the Lm�r environment; if the second
expression of a pair is 1 then the first expression of this
pair must be in normal form. This property is referred
as Enf, it is defined below.

Definition: Enf
1) Enf([])
2) if Enf(D) then Enf(D[x�(e,0)])
3) if Enf(D) and e is in normal form, then
Enf(D[x�(e,1)])

The following Lemma shows that this property is
propagated by Lm�r.

Lemma:
If Enf(D) and D e D' e' then Enf(D') and e'∈NF
Proof: the proof is by induction on the height of the
 inference of D e D' e'
In order to state the equivalence theorem it is necessary
to define a translation from Lm�r environment to L1
environment. This translation will be denoted by * and
will map each variable to the first expression in the
pair.

Definition: (* translation)

 []* = []
 (D[R, x�(e,b)])* = [x�e] (D[R])* where b = 0,1
Theorem 1 is the first equivalence theorem; it states that
if the Lm�r semantics produces a value in an

environment having property Enf, then the semantics of
LAZY-PCF+SHAR produces the same value.

Theorem 1:
if D e D' e' and Enf(D) then ∃ D" s.t. <e , D*> � <e' ,
D"> and (D')* ⊆ D" where e is a Lm�r term
Proof: the proof is simply by induction on the height of
the inference of D e D' e'
Here, we will show the {m�rVar4} and {m�rRec}
cases, the other cases are straightforward inductive
cases based on the definitions of Enf and *
{m�rVar4}:Given D[x�(µx.e,0)]x D'[x�(e',1)] e' (1)
and Enf(D[x�(µx.e,0)]), we will search for D" s.t. <x,
(D[x�(µx.e,0)])*> � <e', D"> and (D'[x�(e',1)])* ⊆ D"
The premise of (1) is D[x�(µx.e, 0)] e D'[x] e' (2)
since Enf(D[x�(µx.e,0)]) then applying IH to (2) gives
<e, (D[x�(µx.e,0)])*> � <e', A> (3) and (D'[x])* ⊆ A
=> <e, [x�µx.e]D*> � <e', A> by Definition of *
=> <e[nx/x], [nx�µx.e]D*> � <e', A> by � conversion
=> <µx.e, D*> � <e', A> by {Rec} rule
=> <x, [x�µx.e]D* > � <e', [x�e']A> by {var1} rule
The proof is completed if we take D" = [x�e']A.

{m�rRec}: Given D µx.e D' e' (1) and Enf(D), we
will search for D" s.t. <µx.e, D*> � <e', D"> and
(D')* ⊆ D". The premise of (1) is D[x�(µx.e,0)] x
D'[x�(e',1)] e' (2). Since Enf(D) then Enf(D[x�(µx.e,0)]).
Applying IH to (2) yields <x, (D[x�(µx.e,0)])*> � <e',
A> (3) and (D'[x�(e',1)])* ⊆ A (4).
(4) => [x�e'](D')* ⊆ A by Definition of *
=> A = [x�e']D" for some D" and (D')* ⊆ D". Then
(3) becomes <x, (D[x�(µx.e,0)])*> � <e', [x�e']D">
=> <x, [x�µx.e)]D*>�<e', [x�e']D"> by Def of *
=> <µx.e, D*> � <e', D"> by {var1} rule.

Theorem 2 is the second equivalence theorem it states
that if L1 semantics produces a value in an environment
D* with the property Enf(D) then Lm�r semantics
produces the same value

Theorem 2:

if <e, D*> � <e', D'> and Enf(D), then ∃ D" s.t.
D e D" e' and (D")* ⊆ D' where e is a Lm�r term.

Proof: The proof is by induction on the height of the
inference of <e, D*> � <e', D'>. We will show here the
{Rec} case, the other cases are straightforward
inductive cases based on the definitions of Enf and *
{Rec} Given <µx.e, D*> � <e', D'> (1) and Enf(D), we
search for D" s.t. D µx.e D" e' and (D")* ⊆ D'. The

J. Computer Sci., 3 (8): 639-645, 2007

 644

premise of (1) is <e[nx/x], [nx�µx.e]D*>�<e', D'>
Def. of * => <e[nx/x], (D[nx�(µx.e, 0)])*> � <e', D'>
(2) since Enf(D) => Enf(D[nx�(µx.e,0)]), then
applying IH to (2) yields D[nx�(µx.e,0)] e[nx/x] A
e' (3) and (A)* ⊆ D' (4).
(3) => D[x�(µx.e,0)] e A e' (5) by � conversion.
During this evaluation the binding [x�(µx.e,0)] may
updated, say to [x], then there must exist D" s.t. A =
D"[x]. Then (4) becomes (D"[x])* ⊆ D' => (D")* ⊆ D'
and (5) becomes D[x�(µx.e,0)] e D"[x] e'

=> [x�(µx.e,0)]) x D"[x�(e',1)] e' by {m�rVar4}
=> D µx.e D" e' by {m�rRec}

CONCLUSION AND FUTURE WORK

 In this paper, an operational semantics for lazy
evaluation has been presented. It has been shown that
the semantics is correct with respect to LAZY-
PCF+SHAR[7] operational semantics. Our semantics
captures sharing of the arguments in the environment,

J. Computer Sci., 3 (8): 639-645, 2007

 645

demonstrated by the absence of duplication of
arguments evaluation, and updating values when
evaluated. Although it optimizes many aspects of
implementation, (e.g. there is no � conversion, there is a
sharing in the recursive computation, and the heap is
automatically reclaimed, since there is an automatic
deletion of out of scope variables from the heap), it is
still suitable for reasoning about program behaviour and
proofs of program correctness, this is primarily due to
the definition via inferences and axioms which allows
for proofs by induction on the height of the proof tree.
The main defect of this semantics is that, it does not
allow higher order functions in the calculus. We will
arrange to solve this in future work.

ACKNOWLEDGEMENTS

Many thanks to Prof. Dr. Mark Brian Josephs the
director of ICR, London South Bank University, for
hosting me for a 6 months visit to ICR. This paper is
written during this visit.

REFERENCES

1. Wadsworth, C. P., 1971. Semantics and Pragmatics

of the Lambda Calculus, PhD thesis, Oxford
University.

2. Poltkin, G. D., 1981. A Structural Approach to
Operational Semantics, Technical Report DIAMI
FN-19, Computer Science Department, Aarhus
University, Aarhus, Denmark.

3. Kahn, G., 1987. Natural semantics, Rapport de
Recherche 601, INRIA, Sophia-Antipolis, France.

4. Fairbairn, J. and Stuart, W. S., 1987. TIM: �� A
Simple, Lazy Abstract Machine to Execute�
Supercombinators, In Proceeding of IFIP
conference on Functional Programming Languages�
and Computer Architecture, Portland, Springer
Verlag LNCS 274, pages 34-45,

5. Launchbury, J., 1993. A Natural Semantics for
Lazy Evaluation, In Proceedings of Twentieth
Symposium on Principles of Programming
Languages, Charleston, South Carolina, pp 144-
154.

6. Seaman, J. and Purushothaman, S., 1996.
Operational Semantics of Sharing In Lazy
Evaluation, Science of Computer Programming
Elsevier, Amsterdam, vol. 27, no3, pages 289-
322 (19 ref.)

7. Josephs, M., 1989. The Semantics of Lazy
Functional Languages, in TCS 68, pages
 105-111,

8. Johnsson, T., 1984. Efficient Compilation of Lazy
Evaluation, In Proceeding of the ACM SIGPLAN
Symposium on Compiler Construction, pages 58-
69

