
Journal of Computer Science 3 (7): 549-555, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Mansoor Al-A’ali, Department of computer science, college of information technology, university of
Bahrain, PO Box 32038, Kingdom of Bahrain

549

Optical Character Recognition System for Arabic Text Using Cursive

Multi-Directional Approach

1Mansoor Al-A'ali and 2Jamil Ahmad
1Computer Science Department, College of Information Technology, University of Bahrain, P. O. Box

32038, Sakheer Campus, Kingdom of Bahrain
2Dean, IQRA University, Pakistan

Abstract: This paper presents a novel new technique based on feature extraction and on dynamic
cursor sizing for the recognition of Arabic Text. The most challenging area in Arabic OCR (AOCR)
research is the segmentation of words into their sub-words and their individual characters. Several
rules are defined that govern the size and movement of the cursor through each segment. The features
obtained from each segment are termed strokes and each segment is defined by a number of strokes
where each stroke is defined mainly in terms of a sequence of directions. The basic concept followed
here is a logical, dynamically sized cursor that is used to "travel" through a text image of one word at a
time while extracting features of strokes. The strokes obtained are then "pieced" back together to be
classified into character classes based on a knowledge base and eventual recognition of characters is
achieved. The results demonstrate that the technique is successful.

Key words: Arabic, OCR, features, strokes, segments

INTRODUCTION

OCR is the process of converting a raster image

representation of a document into a format that a
computer can process. Thus, it may involve many sub
disciplines of computer science including image
processing, pattern recognition, natural language
processing, artificial intelligence, and database systems
[1].

Despite intensive investigation, the ultimate goal of
developing an optical character recognition (OCR)
system with the same reading capabilities as humans
still remains unachieved and more so in the case of
Arabic language.

OCR has attracted researchers interest not only
because of the very challenging nature of this problem
to shorten the reading capabilities gap between
machines and humans but also because it improves
human machine interaction in many applications.
Example applications include office automation, cheque
verification, and a large variety of banking, business
and data entry applications.

Most commercially available OCR products are for
typed English text because English text characters are
separated from one another with spaces and do not have
all the extra complexities associated with Arabic letters.
This is the reason why English OCR techniques and
systems are easier and well developed.

Arabic is a popular script. It is estimated that there
are more than one billion Arabic script users in the
world. If OCR systems are available for Arabic
characters, they will have a great commercial value.
However, due to the cursive nature of Arabic script, the
development of Arabic OCR systems involves many
technical problems, especially in the segmentation
stage. Although many researchers are investigating
solutions to solve the problems very little progress has
been made. Some researchers focused on segmentation,
thinning and pattern matching whilst others focused on
using neural networks for training the OCR system2,3
[2,3]. Arabic is a cursive-type language, which is written
from right to left and therefore recognition should occur
in this way. There are 28 characters in the Arabic
alphabet. Each character has two to four different
forms, which depends on its position in the word or
sub-word. As a result, there are 100 classes to be
recognized. Fig. 1 shows the basic isolated individual
letters.

An Arabic word can itself consist of one or more
sub-words (������ . Most characters have dot(s),
zigzag(s), madda, kashida, etc., associated with the
character and this can be above, below, or inside the
character. Many characters have a similar shape. The
position or number of these secondary strokes and dots
makes the only difference, for example, the following
word has two letters which are identical but for the dots
above one and below the other.

J. Computer Sci., 3 (7): 549-555, 2007

 550

������������������	���������
����������������������������������
���

Alef Bah Tah Thah Geam Hah Khah Dal Thal Rah

�������������� ���������������� ���� ����������� �������������� ����������������������� ����
Zean Seen Sheen Sad Dad Tah Zah Ayn Ghayn

��� ����������!����������"�����������
Pha K’aaf Kaaf Lam Meem Noon Ha Waw Yah

Fig. 1: Basic Isolated Arabic characters

Arabic words may horizontally overlap and
characters may stack on others. These introduce
problems for both the word and the character
segmentations. At this stage, it is not hard to understand
that segmentation is a crucial step in the development
of an Arabic OCR system.

Arabic uses many ligatures, especially in
handwritten text. Ligatures are characters that occupy a
shared horizontal space creating vertically overlapping
connected or disconnected letters; ‘Madda’, and
diacritic objects. These make the task of line separation
and segmenting text more difficult. Arabic uses many
types of external objects, such as dots, ‘Hamza’ which
are common amongst certain sets of letters. Characters
can be written in many different sizes, writing
instruments (varying thickness and stroke quality), and
slants (causing character sharing along the horizontal
axis). The shape of the letter is influenced by its
position in the word. The letter is written differently if
it is written at the beginning, at the end, in the middle or
it is isolated. For example, the letter "� can be written
in the shapes shown in Fig. 2.

isolated "
beginning #$
middle ##�###
end %##

Fig. 2: Shapes of an Arabic letter ' " '

 Fifteen letters of the Arabic alphabet have one,
two or three “dots” placed above or below the character
body, for example:

���
���	�����!������������ �����&
Four letters have “hamza”, each in a different place, for
example:

�'�����(�����(������)���
Character segmentation can be performed by either

the dissection or recognition-based techniques.
Dissection means the decomposition of the image into a

sequence of sub-images using general features. It
involves analysis of the image into its sub-image
segmentation paths. Each sub-image is treated as a
character for recognition. It is worth mentioning that
classification of characters is carried out at a later stage.
Projection analysis, connected component processing,
and white space and pitch ending are some of the
common dissection techniques used by OCR systems.
These techniques are suitable for scripts which have
spaces between characters. If a dissection technique is
used for cursive scripts, a more intelligent and specific
analysis technique for the particular script is needed.
However, there is still no guarantee that high
segmentation accuracy can be achieved. The basic
principle of recognition-based character segmentation is
to use a mobile window of variable width to provide the
tentative segmentations which are confirmed (or not) by
the classification. Characters are by-products of the
character recognition for systems using such a principle
to perform character separation. The main advantage of
this technique is that it bypasses serious character
separation problems. In principle, no specific
segmentation algorithm for the specific script is needed
and recognition errors are mainly due to failures during
the classification stage. For these reasons, more and
more cursive script OCR systems use this technique.

Despite the research work done so far on the
recognition of handwritten Latin and Asian languages
text and the excellent results obtained in Latin text, a
few research papers and reports have been published for
handwritten Arabic text recognition [1].

Research in Arabic OCR has been gaining
momentum and some attempts have been reported.
Most published research so far does not deal with all
issues of Arabic OCR, typed or handwritten, but is
rather focused on specific aspects. Kavianifar etal [4]
report on a feature extraction for a multi-font OCR. The
approach works on the recognition of sub-words of all
words and then the global features for each word are

J. Computer Sci., 3 (7): 549-555, 2007

 551

extracted. A concept of Contour tracing is used in the
feature extraction phase.

Alma'adeed etal[2] use the Hidden Markov models
(HMM) with some success in recognizing certain types
of printed Arabic words. They present unconstrained
Arabic handwritten word recognition using a model
which is based HMM. The system first attempts to
remove some of the variation in the images that do not
affect the identity of the handwritten word. Next, the
system codes the skeleton and edge of the word so that
feature information about the lines in the skeleton is
extracted. Then a classification process based on the
HMM approach is used.

Other researchers have combined OCR with post
processing to correct the results by utilizing the Arabic
morphology[5]. The technique corrects substitution and
rejection errors. However, such approach will face
problems since post OCS correction cannot possibly be
done for most Arabic words since many two, three or
four letter words can be difficult to precisely decide.

Sari etal[6] present an Arabic character
segmentation algorithm of Arabic scripts. The
developed segmentation algorithm yields on the
segmentation of isolated handwritten words in perfectly
separated characters only. It is based on morphological
rules, which are constructed at the feature extraction
phase. Finally, the Arabic character segmentation
algorithm is combined with an existing handwritten
Arabic character recognition system.

Cowell etal[7,8] used normalized isolated characters
for size and extracts an image signature based on the
number of black pixels in the rows and columns of the
character and compares these values to a set of
signatures for typical characters of the set. This
technique identifies the closet match and gives the
closeness of match to all other characters in the set,
which is expressed in a triangular confusion matrix.
The problem with this approach is that the thinning
process and the length of the characters would
eventually produce many fuzzy situations and hence
imprecise decisions would appear.

Cheung etal[9] introduced Arabic word
segmentation algorithm to separate horizontally
overlapping Arabic words/sub-words. There is also a
feedback loop to control the combination of character
fragments for recognition. The authors claim a 90%
recognition accuracy with a 20 chars/s recognition rate.

Al-Ohali et al [10] describe an the development of
an Arabic cheque recognition system based n the use of
a database of letter recognition information databases
for the recognition of hand-written Arabic cheques. The
databse contains a databases of real-life Arabic legal
amounts, Arabic sub-words, courtesy amounts, Indian

digits, and Arabic cheques. They describe a validation
procedure which includes grammars as well as some
algorithms to verify the correctness of the tagging
process. This approach is limited since it deals with a
limited set of words representing the words
representing numbers and needs a more elaborate
testing of the handwritten words.

The rest of the paper is organized as follows:
Section 2 presents our proposed model and the
segmentation technique which is a further elaboration
of the proposed approach, section 3 presents the
implementation of the approach, section 4 presents the
method for character classification, and section 5
presents the results of the implementation of the
approach.

THE PROPOSED MODEL AND
SEGMENTATION

Fig. 5 shows diagrammatically the overall

mechanism of the proposed system where initially text
is scanned and converted into a binary file. The image
is then analyzed and classified using the techniques
developed in this paper (which will be discussed in the
following sections). The resulting AOCR system is for
off line recognition of Arabic text. Initial tests were
performed on computer typed text and they do not
appear to be any visible problems to extend the system
to work on handwritten text.

In the early stages of development, thinning of the
image before extraction of the strokes was considered,
but this idea was abandoned. The reason was that the
text image was not being thinned accurately which
would cause the stroke segmentation algorithm to crash.
The decision was then taken to implement a logical,
dynamically sized cursor that would take care of
thinning and stroke determination simultaneously.

The segmentation of the image (Arabic text) is
done at two levels. First, the text in the image matrix is
split into lines of text using the horizontal projection
technique and into segments using the vertical
projection technique (i.e. location of horizontal lines of
zero density of pixels, given the line of text from the
horizontal projection technique, indicates the beginning
of a segment and the subsequent location of another
zero density line of pixels indicates the end of a
segment, thus an entire segment is located). The
segments obtained here can be entire words, part of a
word, an isolated character, a diacritic, or a dot(s). For
example the line of text (I study in the university of
Bahrain) would be segmented as indicated by the
enclosing boxes as shown in Fig. 3. Each word is
segmented into its sub-words.

J. Computer Sci., 3 (7): 549-555, 2007

 552

Arabic text sentence: Each segment would be
identified by 2 sets of coordinate points - one for the
bottom left point of the enclosing rectangle and another
for the top right point of the enclosing rectangle.

��*+'���������'��������,-����.��*/��������������01�23�4�����
�01 23�4 � �.� */ �,- � � � � *+ �
Fig.. 3: Arabic Text

Other preprocessing functions: Each segment is
then marked with horizontal, vertical or intersection
markings which is done using the middle of the
distance method as follows:

1. Start from the left most X boundary of the

segment.
2. Find the first 'on' (i.e. black) pixel while changing

the X-axis value in the segment and record
 the location of this pixel as 'first'
3. Find the first 'off' (i.e. white) pixel while still

changing X and record the previous most pixels
 'last'
4. Calculate the midpoint as follows: midpoint = (first

+ last) div 2
5. Mark the pixel at the midpoint as horizontal
6. Repeat steps (2) to (5) till X reaches the end of the

segment
7. Now start from the top leftmost Y boundary of the

segment
8. Repeat steps (2) to (6) exactly except change Y

instead of X. Also if a pixel has been marked as
horizontal and has been calculated as a vertical
marking also, it is marked as a intersection.

PATTERN AND FEATURE EXTRACTION

RECOGNITION SYSTEM

For each of the segments the following subsections
apply:

Feature Extraction, Definition and Representation:
A horizontal and vertical intersection is located in the
segment and this serves as the starting point of the
logical, dynamically sized cursor. The cursor starts with
one pixel, which gives it a size zero. A cursor size
of one is indicated by including all 8 immediate
neighboring pixels in the zero sized cursor. Further
increases are indicated by increasing the outer layers of
the cursor as shown in Fig. 4. The relationship between
the size of the cursor and the number of pixels it
occupies is: Number of pixels = ((size * 2) + 1) ^ 2

The cursor is first increased to an optimal size so as

to cover less than or equal to a certain constant called
'PercentForOptimalSizeCursor' which is a percentage
of (0...1). All except stroked pixels should be included
to calculate the percentage of pixels on in a cursor. The
movement of the cursor is governed by the following
rules. That is, a cursor can move in any of the eight
directions by its whole size provided:

No. of
pixels

Cursor
appearance

SIZE

1

0

9

1

25

2

Fig. 4: Cursor appearance & Size

1. All pixels in the new cursor position are
unvisited and not already part of another
stroke

2. All the pixels in the new cursor position are
at least a certain percentage ON. This
percentage is indicated by a constant called
'PercentOn' (0..1)

3. If the cursor can move in more than a
certain no. of directions, indicated by a
constant called 'OptionLimit' (it can be a
value between 1..8 but is usually set at 3),
the cursor has to be resized, increased in
this case, so as to reduce the no. of
directions that the cursor can move in to
meet the OptionLimit value.

4. If the cursor cannot move in any direction,
it has to be resized, reduced in size in this
case, so as to increase the no. of directions
it can move in. But if by reduction, the
cursor is able to move in more than the
OptionLimit, then the previous size is
taken.

5. If after resizing, the cursor can still not
move in any direction, this means that

J. Computer Sci., 3 (7): 549-555, 2007

 553

either a start point of a stroke has been
found or if a start point was earlier located,
an end point of a stroke has been
determined

6. After the possible directions that a cursor
can move in have been found, they are
sorted according the most natural flow of
direction. That is, the first choice for
movement of the cursor will be so as to
make the minimum change in direction
from the previous direction, see Figure 6.

Scanned image in BMP format

 ASCII file of image text in document

Fig. 5: The overall model of the proposed system.

If the cursor previously moved towards the North (NN)
and the directions available for movement are: NN,
NW, SE, SW then, after sorting the list of options from
most natural flow of direction to least, the list would
look like this:

Rank Direction
1 NN
2 NW
3 SE. SW

SE and SW are ranked the same because they represent
the same amount of change in direction.

 NE NN
 NW

SS WW

 SE SW

 EE

Fig. 6: Possible directions of Cursor movement

Therefore the cursor would choose the most natural
flow of direction and the remaining choices would be
pushed on to a stack in their sorted order, with the next
most natural flow of direction at the top of the stack,
see Fig. 6. The stack is emptied when the chosen
direction leads to a start point after which the cursor
moves as normal except that the directions and the size
of the cursor at each direction is now recorded as the
cursor moves. Also, the directions not taken during this
stage are stored in an array as connection points
between the points on the stroke and the untravelled
points. After the cursor reaches an end point, a stroke
has been found and recording of the directions ends.
The next starting point for the cursor is obtained by
popping the stack. If a stroke happens to start at the
same point and the stack is empty, then either a dot has
been located or an extra part of a segment not taken as
part of any stroke has been found (in this case sampling
will reject the extra part later on). The segment is
checked for any un-stroked intersection pixels. If one is
found, the entire process is repeated. If no un-stroked
intersections can be found and the stack is empty, the
stroke determination process ends for the current
segment. Therefore, features of a segment are defined
as a group of strokes and each stroke is represented by:

• A starting point
• A string of directions
• An ending point
• An array of cursor sizes that correspond to

each direction in the direction string.
• An array of connection points between the

present stroke and points which were not taken
during the recording process and pushed on to
the stack.

Separation of image
 into segments

Extraction of strokes
 from segments

Recognition of characters

Program to save image
text in 2-D array

Classification of strokes

J. Computer Sci., 3 (7): 549-555, 2007

 554

CHARACTER CLASSIFICATION

 After the strokes of each segment have been
identified and recorded, they have to be reassembled to
form valid characters. Note that a stroke may be an
isolated character, a character piece, two character
pieces together, a diacritic sign or a dot(s). The
relationship between strokes is deduced using the array
of connection points for each stroke. Sampling will
have to be done before classification to remove
unnecessary strokes, that is, those that do not fit
anywhere to form a valid character.

A knowledge base is built to contain information
about character classes. For example, all characters that
have a closed loop such as (����������������������)
could form one class and all characters that have a half
open circle such as (
 �) will form
another character class and so on. Strokes will then be
re-assembled to form valid characters and these will
then be assigned a character class and the next step
would be to use a process of elimination to deduce
which character the reassembled character most closely
matches. The corresponding ASCII value will then be
assigned.

Since the prime consideration of the proposed
algorithm is the pattern recognition system, the image
processing system is kept as simple as possible.
Therefore, it is assumed that there is no horizontal or
vertical overlapping between characters in the text. This
is done to ensure the success of the segmentation
algorithm which relies on the horizontal projection
technique to determine lines of text and also the vertical
projection technique to segment each line of text. There
should also be no slanting of text and the quality of text
should be good.

RESULTS OF IMPLEMENTATION OF THE
ALGORITHM

The algorithm was tested on samples of words: A

scanned version of an example text is shown in Fig. 7.

 ��
��
Fig. 7: Scanned image of the Arabic word

The image processing operations of binarization,
segmentation and markings produced satisfactory
results on the test data used. Each segment was divided
up into strokes. But the types of strokes extracted varied
as two constants were varied –

 * PercentForOptimalSizeCursor
This constant can be varied from 0 to 1 and

represents the percentage of pixels that are 'ON' in the
cursor in question. It is used to set the limit for
tolerance of the number of 'ON' pixels. For example, a
value of 0.8 indicates a cursor may be enlarged to the
point where the percentage of 'ON' pixels is 80% or
less.
 * PercentOn

This constant is used to set the limit for
determining acceptable directions for movement. The
direction is acceptable if the cursor in that position
occupies at least 'PercentOn'. For example, a value of
0.9 indicates that a cursor would have to have 90% of
its pixels 'ON' to be able to move there.

Fig. 8 shows how by different combinations of the
two constants, different number and types of strokes are
obtained.

The reason for the large number of strokes is the
combination of percentage conditions applied to the
cursor. There are probably areas with uneven writing
where the cursor ends up in an area, which indicates an
end point, which in fact is a point where the cursor does
not fit, given the rules for movement. So the cursor
ends up determining a larger number of smaller strokes.
But these strokes, when displayed on screen, do not
give a very accurate picture of the character piece. So
with certain combination of percentages, a relatively
smaller number of strokes are obtained, which give a
more accurate picture of the character piece. It was
noted that at particular combinations of percentages, a
very large number of strokes are obtained resulting in a
heap overflow error. As far as a dot or dots were
concerned, they were, at most levels of the two
constants, recognized as a dot and in the case of two
dots, as a straight line. The character classification
module was not implemented due to problems in the
feature extraction module.

% For
Optimal
Cursor
Size

Percent
On

No of
Strokes

Resulting
Storks

1

1 27

0.9 1 29

0.8 0.9 36

Fig. 8: Combination of Two Constant

J. Computer Sci., 3 (7): 549-555, 2007

 555

CONCLUSION

 This paper presented a new approach for
Arabic character recognition based on producing a
logical dynamically sized cursor to traverse the image
of the Arabic word. The cursor identifies the different
possible strokes and calculates some values functions.
After some trials, the thinning algorithm approach was
disregarded because it caused the cursor to produce un-
definable stokes. The research demonstrates that the
identifying the directional vectors of the strokes of the
Arabic characters within the word is the best way
forward for Arabic OCR’s. Further work is required to
recombine strokes into characters where each stroke
should be added to neighboring strokes through
available connection points until it fits into a character
class. Building a database of character classes such as
characters that have a closed loop or a half open
upwards circle is another future research direction.

REFERENCES

1. Khorsheed M. S. 2002. Off-line Arabic character
recognition-a review. Pattern Analysis and
Applications, Vol. 5, Issue 1: 31-45

2. Alma'adeed S., Higgens C., Elliman D., Kasturi R.,
Laurendeau D., and Suen C. 2002. Recognition of
off-line handwritten Arabic words using hidden
Markov model approach, Proceedings 16th
International Conference on Pattern Recognition.
IEEE Comput. Soc, Los Alamitos, CA, USA. Vol.
3: 481-4

3. Menhaj M. B. and Adab M. 2002. Simultaneous
segmentation and recognition of Farsi/Latin printed
texts with MLP. Proceedings of the 2002
International Joint Conference on Neural
Networks. IJCNN'02 (Cat. No.02CH37290). IEEE,
Piscataway, NJ, USA. vol.2: pp: 1534-9

4. Kavianifar M. and Amin A. 1999. Preprocessing
and structural feature extraction for a multi-fonts
Arabic/Persian OCR. Proceedings of the Fifth
International Conference on Document Analysis
and Recognition. ICDAR '99 (Cat. No.PR00318).
IEEE Comput. Soc, Los Alamitos, CA, USA. pp:
213-16

5. Sari T. and Sellami M., 2002. MOrpho-LEXical
analysis for correcting OCR-generated Arabic
words (MOLEX)”. Proceedings Eighth
International Workshop on Frontiers in
Handwriting Recognition. IEEE Comput. Soc, Los
Alamitos, CA, USA. pp: 461-6

6. Sari T., Souici L. and Sellami M. 2002. Off-line
handwritten Arabic character segmentation
algorithm. ACSA, Proceedings Eighth
International Workshop on Frontiers in
Handwriting Recognition. IEEE Comput. Soc, Los
Alamitos, CA, USA, pp: 452-7

7. Cowell J., Hussain, F., Hamza M. H., and Sarfraz
M. 2001. Extracting features from Arabic
characters, Proceedings of the IASTED
International Conference Computer Graphics and
Imaging. ACTA Press, Anaheim, CA, USA, pp:
201-6

8. Cowell J. and Hussain F., 2002. A fast recognition
system for isolated arabic characters”, Proceedings
Sixth International Conference on Information
Visualisation. IEEE Comput. Soc, Los Alamitos,
CA, USA, pp:650-4

9. Cheung M. A., Bennamoun M. and Bergmann N.
W., 2001. An Arabic optical character recognition
system using recognition-based segmentation,
Pattern Recognition. Vol. 34, Issue 2: 215-33

10. Al-Ohali Yousef, Cheriet Mohamed and Suen
Ching 2004. Databases for recognition of
handwritten Arabic cheques, Pattern
Recognition, Volume 36, Issue 1: 111-121.

