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Abstract: It is important to increase the Wireless Sensor Network (WSN) lifetime, due to its limited 
energy resource, while meeting the constraints of applications. Recent Advances for In-Network Proc-
essing (INP) motivate many WSN applications which are based on multi rate and distributed signal 
processing, and therefore require the support of rate-based routing as well as MAC and link layer de-
signs to maximize the WSN lifetime. We propose a new scheme called “Rate Distribution (RateD)”, in 
which the application rate constraints are distributed in the WSN based on an optimized routing 
scheme.  An optimal RateD was achieved by forming optimal data flows under rate constraints, which 
was an NP-complete problem. To reduce the complexity, a near optimization solution formed and ana-
lyzed, and a practical rate-based routing selection based on rate assignment also proposed to achieve 
effective rate distributions. The simulation shows that this scheme significantly extends the WSN life-
time for INP applications. 
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INTRODUCTION 

 
Unlike the general-purpose Wireless Local-Area 

Network (WLAN) that is designed to support all types 
of applications, Wireless Sensor Network (WSN) oper-
ates under a set of unique resource constraints and mis-
sion-driven requirements[1]. For example, in resource-
limited WSN, an effective network operation design 
has to consider energy efficiency with very high prior-
ity, and the WSN must operate at least for a given mis-
sion time or as long as possible.  
With respect to energy efficiency, WSN nodes should 
cooperatively organize the network using distributed 
algorithms and protocols. When a network is organized 
in distributed fashion, the nodes in network are not only 
passing on packets or executing applications programs, 
they are also involved in taking decisions about how to 
operate network. This idea makes the in-network proc-
essing[2,3,4,5,6] a first rank design principle. For example, 
Aggregation, Distributed Source Coding (DSC), Dis-
tributed Compression, and Distributed and Collabora-
tive Signal Processing are some of the enabling tech-
nologies. Recent advances in collaborative signal proc-
essing and distributed source coding has fueled effec-
tive distributed designs in WSN. Sensors’ sampling and 
coding rates as well as sensor data correlations have to 
be reflected by WSN design factors such as setting link 
rates, making routing decisions, etc. 

DSC reduces the number of transmitted bits but 
still obtains the full information from all sensor reading 
at the sink [7, 8]. It utilizes the correlation of data col-

lected at multiple sensors without mutual communica-
tion between these sensors, and sets the multiple coding 
rates at these different sensor nodes. DSC works in a 
unique way profoundly different from the typical data 
aggregation  methods[9,10,11,12,13,14].The data aggregation 
method combines data flows, and attempts to remove 
the redundant data among them by collecting informa-
tion from multiple correlated sensor nodes. In order to 
prevent the redundant data from flowing into the whole 
network, data aggregation usually has to be performed 
early in the local area. This results in the bottleneck 
problem on aggregation points and the lack of load 
balancing, which deteriorates the network lifetime. In 
DSC design, because the inherent redundancy among 
the information bits collected from sensor nodes is al-
ready removed, there is no need of data aggregation. 
DSC information bits are collected independently, 
separately, and at different data rates to reach the sink 
node for source decoding. Therefore, it is desirable for 
efficient WSN designs to support such multi rate data-
flow in network. Due to the nature of distributed and 
collaborative signal processing in WSN, these multi-
rate data transmission requirements in DSC are not 
limited to a small category of applications, but are 
rather general in many signal processing related WSN 
applications. To date, there is a lack of multi-rate WSN 
designs and a strong need for such efforts on the other 
hand, while the complexities of both sensor nodes and 
networks grow.   

Multiple paths which each start from a single 
source independently can be more advantageous than a 
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single aggregation path, due to the load balancing and 
hence the benefit for an increased WSN lifetime, so 
long as the interferences among paths are limited at a 
low level. Because of the information “non-
redundancy” in DSC, it is more effective to extend 
WSN lifetime by balancing loads and using disjoint 
route transmissions for DSC, and save energy by coor-
dinating transmission rates with distributed coding 
rates. 

In each wireless sensor node that performs real-
time coding and transmission, if the channel condition 
allows and the network traffic amount is not high, a 
lower data transmission rate can be more advantageous 
than the higher transmission rate with respect to the 
communication energy consumption.  Schurgers [4] uses 
the following equation for communication energy con-
sumption analysis. In Equation (1), bitE  is the energy 
consumption, b  is the constellation size, and sR  is the 
symbol rate. (See details about this equation in [15]). 

max 1[ (2 1) ]sb
bit s E R

s

R
E C C C

R b
= ⋅ − + + ⋅ ⋅   (1) 

From Equation (1), once symbol rate sR  is deter-
mined, the higher modulation constellation size is, the 
higher is data rate as well as the higher energy cost, 
assuming the same BER value at the receiver end. Ac-
cording to Equation (1), if we use different modulation 
schemes, lower rate transmission can achieve the en-
ergy saving. This is  true since the decreasing of data 
rate results in longer transmission time, the power con-
sumption used for low data rate transmission decreases 
much more.  
Many research activities related to multi rate and power 
control are  reported in the CDMA areas [16, 17]. How-
ever, their primary goal is to maximize channel utiliza-
tion [18, 19] and minimize the interference and near-far 
effect [20, 21]. As a result, the multi rate and power con-
trol schemes in these works are not suitable for WSN. 
In WSN, This energy scalability in Equation (1) com-
patible with data rate ensures that energy is not wasted 
by providing performance in excess of an application's 
needs. These above observations also motivate us to 
design efficient schemes to support In-Network Proc-
essing in WSN. 

The rest of the paper is organized as the following. 
In Section II, we define rate distribution concept with 
the sensor network model. Section III forms an optimi-
zation problem under the rate constraints and provides 
a near optimal solution especially for INP applications. 
We evaluate our method in the Section VI using simu-
lations, and draw conclusion in Section V. 
 
Sensor Network Rate Distribution Model: We con-
sider a large scale static sensor network, where each 
source sensor generates certain data coding rate and has 
to be relayed to the sink node. This WSN consists of 
large number of nodes that can dynamically vary their 

transmission power. Two wireless nodes have a link in 
between if the sending node transmits with sufficiently 
high power such that the SNR at the receiving node is 
greater than a given threshold value. The threshold 
value is chosen to achieve a desired bit error rate for the 
given modulation scheme and data rate.  

Under this sensor network setting, we will investi-
gate on the following problems: 
• If each source sensor generates data with certain 

coding rate, how can a route path be determined to 
match the coding rates requirements while achiev-
ing optimized energy savings? 

• How can a whole network design be determined to 
satisfy the multiple sources with multiple coding 
rates while optimizing the network life time? 

• To address these two problems, there are several 
issues at different layers to be considered. Some re-
lated research work in optimizing the energy and 
network lifetime have been done in 22,23,24,25], how-
ever, the optimizations in those research have not 
considered the rate constraints for INP applica-
tions. In this paper, with respect to the INP appli-
cations, at the network layer, an optimal route has 
to be found. At the MAC and link layer, we need 
to make each node meet the constraints associated 
with the link bit rate, and the load balancing at 
each node. Clearly, there is a cross-layer problem 
that couples multi rate MAC, power control and 
routing. 

Remark 1: For a given data-generating rate vector  

1 2( , ... )nr r r r  , 0ir ≥ , We say that rate distribution is 
feasible if and only if there exists a solution such that 
all generated data can be relayed to the sink by distrib-
uting ir  constraint in the network. 

There are two types of rate distribution strategy 
shown in Fig.  2. One is “direct rate distribution” in 
Fig.  2(a), and the other is indirect rate distribution in 
Fig.  2(b). We assume that there are a group of sensors 
collaboratively measuring and detecting a target. Direct 
rate distribution means that each sensor directly sends 
their data to the sink with its individual rate via a node-
disjoint path;, indirect rate distribution means that sen-
sors firstly aggregate their data into local cluster head 
and then send them to the sink node with multiple dis-
joint paths (rates are distributed from the local cluster 
head). 

 
Fig. 2: Rate Distribution Model 
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Obviously, the direct rate distribution is more suit-
able for DSC applications, in which each sensor has 
already removed redundant information to send out; 
and the indirect rate distribution has positive advan-
tages in other collaborative signal processing, in which 
each sensor might have redundant information and it 
has to be removed as early as possible when traffic data 
flows into network. 

We generalize a common model for rate distribu-
tion in Fig.  2(c) from both direct distribution and indi-
rect distribution. This model in Fig.  2(c) shows that 
there is a rate distribution source sensor set ns , in which 
sensors have spatial correlations and work together to 
commit sensing functionality. The number of sensors in 
this set ns  is denoted as ns . For the indirect distribu-

tion model example in Fig.  2(b), we only have node-
disjoint multi-hop routing paths starting from the clus-
ter head to the sink node, therefore, ns =1, and in Fig.  

2(a), ns =4. 

Remark 2: For a given data-generating rate vector 

1 2( , ... )nr r r r , 0ir ≥ , in source sensors ns  , the rate 
distribution is optimal  if and only if there exists a solu-
tion such that all generated data can be relayed to the 
sink by distributing ir  constraints so that the network 
lifetime (e.g., the time until any node runs out of energy) 
is maximized. 

We assume that the optimal rate distribution is to 
address sensor networks where multiple sensors coop-
erate on the same task, and network is static or changes 
very slowly, thus the optimization can be pre-calculated 
and configured during the network planning stage. It 
can also be done by a central node, which informs the 
optimal rate distribution information to other nodes 
when the network configuration needs to be updated. 
Therefore, it is clear that our goal is to find a solution 
for the optimal rate distribution by a cross layer optimi-
zation in the joint MAC and routing design scheme. 

Equation (2) and (3) are close form relationships be-
tween the desirable BER and transmit power, for BPSK, 
QPSK and QAM modulations respectively, which can 
be straightforwardly derived from [5,12,13]: 

 
( )[ ]

A
NBERerfcbRsPs QPSKBPSK 021, 2 ⋅⋅⋅⋅= −                      (2) 
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  When modulation scheme is determined, symbol 
rate Rs and constellation size b is also determined ac-
cordingly. Desirable BER is a system parameter, pre-
defined by the system. Gaussian noise power intensity 
No is a system constant value. Channel attenuation with 

antenna gain A can be calculated from lower layer.  As 
a result, the transmit power can be calculated from 
Equation (2) and (3). We assume that each sensor peri-
odically performs measurements. Denote the data rate 
from node i  to node j  as

,i jR . Therefore, without 

loosing generality, for BPSK,QPSK and  M-QAM 
modulation, we can characterize the transmission 
power and receiver power as follows: 
For BPSK and QPSK: 

( , ) ( , )tra n sm it
ijP i j i j Rδ= ⋅                  (4) 

For M-QAM:                                   
( , ) ( )tra n sm it

ij ijP i j b Rω= ⋅                       (5) 

For BPSK, QPSK  and M-QAM: 
( )

i

rec ieve
kj

k N
P j Rρ

∈

= ⋅∑                           (6) 

where ( ) 21 0
1( , ) 2 Ni k C e r f c B E R

A
δ − = ⋅ ⋅ ⋅ 

 , the 

typical value of ρ is 50 nJ/b,  
21

2 1 0
2

1 1( ) ( 1) 1
2ik

Nb C b erfc B E R
b A

ω
−

−
   = ⋅ − ⋅ − ⋅ ⋅        

 

And  
1C  and 

2C  are the constant value. We denote the 
data rate generated at each node i as

iG , 

1, 2 , . . . .i N= . For constant source rate
iG ,1 i N≤ ≤ , 

we can formulate the optimal rate distribution problem 
in (7) (8) and (9) under rate constraints. Denote 

iT  as 
the sensor i  lifetime. Then, we have the following data 
rate equations and energy constraints for each node i , 
1 i N≤ ≤ . 

i i

k i i i k
k M k N

R G R
∈ ∈

+ =∑ ∑             (7) 

( ( , ) )
i i

i k k i i i
k M k N

i k R R T Eδ ρ
∈ ∈

+ ⋅ <∑ ∑       (8) 

( ( ) )
i i

i k i k k i i i
k M k N

b R R T Eω ρ
∈ ∈

+ ⋅ <∑ ∑
    (9) 

  1, 2 , .. .b N=  
Among them, 

iM is a set of neighbor nodes of i   
which sends data traffic to node i ,  

iN is a set of 
neighbor nodes of i   which receives data traffic from 
node i . Equation (7) states, at each i , that the data traf-
fic 

iG  generated by node i , plus the amount of total 
received data traffic from others sent to i , are equal to 
the total bit rate transmitted from i . The second set of 
N  inequalities in (8) and (9) state that the energy re-
quired to receive and transmit all these data traffic at 
each node i , at the end of sensor lifetime

iT , cannot 
exceed its energy constraint.  
 
Rate Distribution Optimzation: At the routing layer, 
our objective is to maximize the network lifetime T 
while (11) and (12) or (13) are satisfied. We formulate 
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the flow routing problem into the following optimiza-
tions. 

m in ( )iT T=      (10) 
Max T  
s.t.  

i i

ik k i i
k N k M

R R G
∈ ∈

− =∑ ∑      (11) 

   
( ( , ) ) 0

i i

ik k i i i
k M k N

i k R R T Eδ ρ
∈ ∈

+ ⋅ − ≤∑ ∑
 (12) 

    Or  
( ( ) ) 0

i i

ik ik ki i i
k M k N

b R R T Eω ρ
∈ ∈

+ ⋅ − ≤∑ ∑
   (13) 

The above problem is based on the constant iG . If the 

iG  is time-variable, it is expressed as ( )iG t . Assume 
each sensor measures data and generates constant data 
rate periodically. Suppose that the transmission rate and 
power do not change within each period τ , and neither 
does the data rate generated by sensors. During the lth 
period, we denote the time length for link i to j as l

i jt  

with the transmission rate 
ij

lR . At each node, we use 

( )transmit
ijP l  to denote transmit power needed for trans-

mission satisfying a target BER from node i  to node 
j  at the lth period. So the average power consumption 

can be expressed in (14). 

( ) ( ) / ( ) /
i i

i transmit recieve
averge ij ij ji ji

j N j M

P l P l t P l tτ τ
∈ ∈

= ⋅ + ⋅∑ ∑      (14) 

Thus for the time varied data rate problem, we could 
convert it to the following problem: 

m in ( )iT N τ= ⋅       (15) 
Max  T  
s.t.  

1

( ) ( )
iN

i
a verg e i i

l

P l N Eτ
=

⋅ ⋅ ≤∑   (16) 

( ) ( ) ( ) , 1, 2 , . . . .
i i

k i ik i i
k M k N

R l R l G l l N
∈ ∈

− = =∑ ∑
 (17) 

Those above problems can not be solved by polynomial 
time, which are NP hard because the objective function 
is the max-min problem. However, for this optimization 
problem under the time variable rate constraints, we 
can find a NEAR optimization solution by exploring 
the rate distribution characteristics in INP applications.  
In INP applications, it is reasonable that there are very 
small group of sensor nodes that generate the sensing 
data, compared with the large size network. Several 
space-correlated sensor nodes report the data to sink 
node. In such kind of large scale static network, there 
are just very small data traffic compared with the net-
work size, and most of the sensors play a role in relay-
ing data without generating data themselves when a 
small group of sensors report the data to the sink node. 

Let us denote 1 2{ , ...... }kS s s s  as the source sensor 
group set, k  is the number of source sensors. Denote a 

1 2{ , ...... }mF f f f  set which includes all the other m  
number of sensors except for sensors in S . Sensors in 
F  only are intermediate nodes forwarding data in the 
network. Therefore, for sensors in F  set, we can de-
rive (18), which states that the incoming data rate 
should be equal to the outgoing data rate for node i . 
 

( ) ( ) , 1 , 2 , . . . . ,
i i

i k k i i
k M k N

R l R l l N i F
∈ ∈

= = ∈∑ ∑
  (18) 

Based on (17), we can derive the power consumption at 
the  lth period τ  
 

( ) ( ) ( ) ( )

( ( ) ) ( )
i i

i

i
i j i j j i

j M j N

ij i j
j M

P l b R l R l

b R l

ω ρ

ω ρ
∈ ∈

∈

= +

= + ⋅

∑ ∑

∑
   (19) 

 
The T maximization problem (Max T) in the previous 
section can be converted to minimization problem (Min 
R). 

m a x ( ( ) )
i

i j
j M

R R l
∈

= ∑
     (20) 

Min R  
s.t.  
( ( ( ) ) ( ) ) 0

i

i j i j i i
j M

b R l T Eω ρ
∈

+ ⋅ ⋅ − ≤∑     (21) 

Therefore, in order to optimize sensor network lifetime, 
we attempt to find route paths between source and sink 
that can reduce the flow rate on each sensor, which 
means that optimal rate distribution must find lower 
rate route path under source rate constraints. K node 
(link) disjoint source-destination paths in a network is a 
suitable solution for this problem, because lower rate 
can be achieved on each of sensors for load balancing 
and lower source rate constraints. Finding K node 
(link) disjoint path has been well studied in graph the-
ory. It is a polynomial 2( )k Nο  running time algo-
rithm. 
To be practical, we propose a rate selection scheme 
based on the link rate assignment method.  The link rate 
of each hop i on the route path is denoted as ir . Be-
cause of the limited memory constraints and rate re-
quirements, the node transmission rate on the route path 
must be more than or equal to the individual source 
node coding rate. We also observe from Equation (1), 
once symbol rate sR  is determined, the higher modula-
tion constellation size is, the higher is data rate, and the 
higher is the energy cost, assuming the same BER value 
at the receiver end. Therefore, In order to pursue opti-
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mal rate distribution, we demand that nodes with more 
residual power energy should be assigned with higher 
transmission rate, and lower transmission rate should be 
associated to the nodes with less residual power energy. 
Equation (22) shows the data rate being assigned on the 
sensor is proportional to the residual energy of each 
sensor, c  is a constant value. 

residual
i ir C E= ⋅        (22) 

In INP applications, a group of sensors generate data 
with multiple data rates and transmit them to the sink 
node. 

 
Fig. 3: n-level routing selection 

 
As is shown in Fig.  3, we can separate the sensors be-
tween the source sensor group and sink node into n 
levels according to their distance to the sink. Sensors at 
each level will be assigned with data rates according to 
their residual energy. For example, in the thi  level, the 
sensor residual energy is in R e Re

min( ) m ax( )[ , ]sidual sidual
i iE E , there-

fore, the thm  sensor in thi  level will choose mr  as 
calculated in (23). 
 

Re Re
( )

min max minRe Re
max( ) min( )

( )
sidual sidual

max i m
m sidual sidual

i i

E E
r G G G

E E
−

= + −
−

  (23) 

 
After each sensor determines its rate according to its 
residual energy and level, each sensor will choose its 
next hop node in the next level based on its rates. Sen-
sors always choose the next hop node that has the same 
rate or the closest value. If some nodes at the same 
level have been assigned the same rate, a probability-
based next hop route selection will be applied. This 
routing selection scheme guarantees that each individ-
ual source node in the source group can find node-
disjoint path while satisfying their rate constraints. 
 
Simulation and Evaluation: The evaluation metrics 
are defined as follows. The desirable BER is -
50db 5(10 )− ; the noise power density 0N  is the prod-
uct of Boltzmann constant 231038.1 −×  and equiva-
lent noise temperature Tn . We generally assume the 
noise temperature is normal room temperature 290K, 

and the noise power density value 21104 −× J/Hz. The 
antenna gain together with the channel attenuation fac-
tor A is 910 − . The frequency bandwidth is 1 MHz. 
These simulation parameters are specified in Table 1. 
The energy expenditure per unit information transmis-
sion from node to is   

1t tra nsm issio n
ij a m p ije P d

R
ε= ⋅ + ⋅   (24) 

And 
r recieve
ije e=      (25) 

where recievee =150nJ/bit, which is the energy con-
sumed in the transceiver cir-
cuitry. ampε =100pJ/bit/ 4m is the energy consumed at 

the output transmitter antenna. t r a n s m i s s i o nP  is the 
transmit power and can be calculated by either (5) or (6) 
in Section II. R denotes the data rate between node i  
and j .  
Table 1: Data Rate and Modulation Scheme Parameters   

Data Rate 
(Mbps) 

Modulation 
Scheme 

Transmit 
Power (mW) 

Transmit 
Energy 
(1m) 

1 BPSK 0.036 36nJ/bit 
2 QPSK 0.073 36.5nJ/bit 
4 16-QAM 0.812 20.6nJ/bit 
6 64-QAM 2.868 40.78nJ/bit 
8 256-QAM 6.915 81.25nJ/bit 

 
We start with a simple simulation Scenario 1. In this 
scenario, four nodes (1,2,3,4) are deployed in the pris-
matic shape, node 1 generates data at the 2, 4, 8Mbps. 
Fig.  4  (b) shows Minimum Hop(MH) routing path, 
Fig.  4 (c) shows the Minimum Total Energy(MTE) 
Routing path, and Fig.  4 (d) shows the RateD routing 
path. 

 
Fig.  4:  MTE, MH, and Rate Distribution in  Prismatic 

topology 
The distance of each pair of links except for link (1-4) 
is 5 meters, and link (1-4) is 10 meters. The simulation 
result shows that the network lifetime is reduced with 
the increased data rate of source sensor. However, 
MTE and RateD has achieved longer network lifetime 
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than MH. This is because MTE finds a minimum en-
ergy path, and RateD distributes the rate into two dis-
tributed lower rate paths. From Fig.  5, we can see that 
RateD achieve longest network lifetime at both low and 
high rates. Based on the basic model in Fig.  6, we test 
more complex scenarios, considering a network of 28 
nodes (see Fig. 6) over a 8 0 8 0× square meter area.  
Assume that the transmission range of each node is 
limited within 15 m. The rate distribution is constrained 
by the transmission power range, so we assume that 
topology has no significant dynamic changes. 

 
Fig. 5: Network Lifetime in MH, MTE and RateD in 
 Prismatic topology 
 

 
Fig. 6: 8 0 8 0×  Square Simulation Topology 

 
In Fig.  6, each node has been marked by its coordi-
nates as well as link distances. We use Grin Graph the-
ory software to look for the MH, MTE and RateD route 
paths, and compare the one-source, two-source and 
three-source sensors scenarios,  the result is shown in 
the Fig.  7, 8, and 9. In those graphs, the vertical coor-
dinate value represents the network lifetime, the hori-
zontal coordinate value is the data rate of each source 

sensor. From Fig.  7, 8, and 9, we can see that for each 
scenario, the network lifetime is reduced with the in-
creased data rate and number of source sensors. This is 
because there is more traffic at each rate. However, 
RateD has achieved longer network lifetime than both 
MH and MTE.  In Fig.  7 for one single source, MTE 
and RateD have achieved longer network lifetime than 
MH, both of them increases 87%, 103% and 88% life-
time more for the source rate 2, 4, 8 Mbps than MH. 
This is because the MH has to increase its transmit 
power to achieve required BER when the hop distance 
is not the shortest distance (energy), then it does not 
save energy. However, for the RateD and MTE, both of 
them find the shortest routing path in terms of the en-
ergy consumption instead of the MH path, which can 
significantly extend the network lifetime.  We also find 
that the MTE has the same performance with respect to 
the network lifetime for the single source, because 
RateD does not use the multiple route path due to sin-
gle source sensor , then RateD extend the network life-
time in this scenario only by minimizing the total en-
ergy consumption, which is as same as the MTE rout-
ing. However, for the two sources in Fig.  8, the RateD 
has more advantages than both MH and MTE, and it 
has extended 195%, 250%, 240% more network life-
time than the MH. It also has extended 96%, 96% and 
71% network lifetime more than the MTE. This is be-
cause the RateD is not only to extend network lifetime 
by achieving the energy savings with lower rate 
transmission , but also by finding multiple lower rate 
node (or Link)  disjoint paths in the network and bal-
ance the energy consumptions, the similar performance 
achievement can be seen in Fig.  9. Here, the RateD has 
extended the network lifetime 20%, 19% and 27% 
more, separately at the source rate 2Mbps, 4Mbps, and 
8Mbps than the MTE. It also extends the network life-
time 200%, 189% and 210% more than the MH. 
 

 
Fig.  7: One source sensor at 2, 4, 8 Mbps 
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Fig.  8: Two sources sensor at 2, 4, 8 Mbps 

 
 Fig.  9:  Three source sensor at 2, 4, 8 Mbps 
 

CONCLUSIONS 
 
In this paper, we have explored the characteristic of 
multiple rates in In-Network Processing applications 
and defined a new concept called “Rate Distribution” 
based on the dynamic link rate assignment in the static 
WSN, which suggests that the sensor network distribute 
the application rate constraints efficiently based on 
solving an optimization problem of joint routing, MAC 
and link layer scheme. We form a rate distribution net-
work model for INP as an optimization problem, which 
is targeted to extend the network lifetime by distribut-
ing the load, and to achieve energy savings by low rate 
transmission.  
Since the optimal problem is NP-complete,  to reduce 
the algorithm complexity, a near optimization model 
with respect to the INP is analyzed and a practical and 
simple rate-based routing selection scheme for rate dis-
tribution is suggested. The simulation results show that, 
with a dynamic link rate assignment and optimal rate 
distribution, the network lifetime has been extended.  
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