
Journal of Computer Science 3 (4): 223-232, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Nameer N. EL-Emam, Applied Computer Science Department, Faculty of Information Technology,
Philadelphia University, Jordan

223

Hiding a Large Amount of Data with High Security Using Steganography Algorithm

Nameer N. EL-Emam

Applied Computer Science Department, Faculty of Information Technology
Philadelphia University, Jordan

Abstract: This study deals with constructing and implementing new algorithm based on hiding a large
amount of data (image, audio, text) file into color BMP image. We have been used adaptive image
filtering and adaptive image segmentation with bits replacement on the appropriate pixels. These pixels
are selected randomly rather than sequentially by using new concept defined by main cases with their
sub cases for each byte in one pixel. This concept based on both visual and statistical. According to the
steps of design, we have been concluded 16 main cases with their sub cases that cover all aspects of the
input data into color bitmap image. High security layers have been proposed through three layers to
make it difficult to break through the encryption of the input data and confuse steganalysis too. Our
results against statistical and visual attacks are discussed and make comparison with the previous
Steganography algorithms like S-Tools. We show that our algorithm can embed efficiently a large
amount of data that has been reached to 75% of the image size with high quality of the output.

Key words: Hiding with high security, hiding with high capacity, adaptive image segmentation,

steganography

INTRODUCTION

 Steganography is an art and science of information
hiding and invisible communication. It’s unlike
cryptography, where the goal is to secure
communications from an eavesdropper by make the
data not understood, steganography techniques strive to
hide the very presence of the message itself from an
observer so there is no knowledge of the existence of
the message in the first place. In some situations,
sending encrypted information will arouse suspicion
while invisible information will not do so[1]. Both
sciences can be combined to produce better protection
of the information. In this case, when the steganography
fails and the message can not be detected if a
cryptography technique is used too. Hiding information
inside images is a popular technique nowadays. An
image with a secret message inside can easily be spread
over the World Wide Web or in a news groups.
 To hide a message inside an image without
changing its visible properties, the cover source can be
altered in ”noisy” areas with many colour variations, so
less attention will be drawn to the modifications. The
most common methods to make these alterations
involve the usage of the least-significant bit (LSB)
developed by Chandramouli et al.[2] , masking, filtering
and transformations on the cover image.

Dumitrescu et al.[3], construct an algorithm for
detecting LSB Steganography. Von Ahn et al.[4] are the
information theoretic scientistes; they construct
mathematical frameworks based on complex-theoretic
view to seek the limits of steganography. Other
construction is used by HweeHwa Pang [5]; his scheme
used hash value obtained from a file name and
password and a position of header of hidden file is
located. This approach is used by the present work with
new modifications. The next interesting application of
steganography is developed by Miroslav Dobsicek[6],
where the content is encrypted with one key and can be
decrypted with several other keys, the relative entropy
between encrypt and one specific decrypt key
corresponds to the amount of information. Because of
the continual changes at the cutting edge of
steganography and the large amount of data involved,
steganalysists have suggested using machine learning
techniques to characterize images as suspicious or non-
suspicious developed by Mittal et al.[7]. Pavan et al.[8]
used entropy based technique for detecting the suitable
areas in the document image where data can be
embedded with minimum distortion.
 When using a 24 bit colour image, a bit of each of
the red, green and blue colour components can be used,
so a total of 3 bits can be stored in each pixel. Thus, an
800 × 600 pixel image can contain a total amount of

J. Computer Sci., 3 (4): 223-232, 2007

 224

1.440.000 bits (180.000 bytes) of secret data. But using
just 3 bit from this huge size of bytes is wasting in size.
So the main objective of the present work is how to
insert more than one bit at each byte in one pixel of the
cover-image and give us results like the LSB[2,3]
(message to be imperceptible). This objective is
satisfied by building new steganography algorithm to
hide large amount of any type of information through
bitmap image [4, 6] by using maximum number of bits
per byte at each pixel. We discuss two types of attacks
to be sure that our process for embedded data is worked
efficiently. The first attack concerns to work against
visual attacks[7,9] to make the ability of humans is
unclearly discern between noise and visual patterns, and
the second attack concerns to work against statistical
attacks[3,8,10,11] to make it much difficult to automate.

New steganography algorithm with high security:
New Steganography algorithm by using three layers of
security has been constructed. These layers are
developed from previous works[1,10] to acquire high
security and they work independently to provide
unbreakable security wall Fig. 1.

Fig. 1: Steganography with security layers

 The encryption mechanism is the first layer of
security for data protection by using DES or AES
algorithm[1,5]. This layer is used before hiding input data
and it gives us powerful Steganography algorithm.
Before describing the present algorithm, we need to
show the following concepts:

Adaptive segmentation of the cover-image: We
introduce new concept of image segmentation by using
adaptive segment to support the second layer of
security. The cover-image from type bitmap is
segmented into random number of uniform[1] or non-

uniform segments according to the value of password or
any other key as in [2, 4, 5] that is provided by the data
owner (Fig. 2). At section four of this work, we have
shown how to calculate a number of segments by using
non-uniform which is more secure than uniform
segments to carry the input data. In addition, to avoid
sending files of this enormous size, a compression
scheme has been employed on BMP Stego image what
is known as lossless compression, a scheme that allows
the software to exactly reconstruct the original image.

Fig. 2: Adaptive segmentation on a cover-image using

uniform or non-uniform segmentations

Pixel selection style: This approach is the third layer of
security in this work, as shown in Fig. 1. We perform
random selection of the proper byte at each pixel of the
cover-image according to the color characteristic to
embed secret data. This type of selection is
implemented by using new concepts which are called
main cases and sub cases that have been described in
the next section. These new concepts are strength to
reduce the noise of a stego-image.

Descriptions of the steganography algorithm: In the
present Steganography algorithm, two parts (data
hiding at the sender side and data extracting at the
receiver side). These parts are constructed and
implemented to satisfy the following requirements:
1. The algorithm must reduce the chances of

statistical detection.
2. The algorithm must provide robustness against a

variety of image manipulation attacks.
3. The stego-image must not have any distortion

artifacts.
4. The algorithm must not sacrifice embedding

capacity in order to achieve the above
requirements.

The first part is used to hide data file inside Bitmap
according to the following actions:
* Accept encryption password from the sender.
* Find a maximum size (number of bytes) that is

accepted by the cover-image.
* Perform compression on secret data file to increase

the amount of hiding secret data.
* Perform encryption on secret data file.

J. Computer Sci., 3 (4): 223-232, 2007

 225

* Perform the following processes on the cover-
image from type bitmap:
- Adaptive segmentation according to the

password.
 - Adaptive filtering (noise remover) by using

Minimum Mean-Square Error (MMSE)[2]
equation (1) to reduce number of colors at the
cover-image.

() .mCCMMSE l
ijijσ

σ
ij

j,i 2
l

2
n −−=

∀

 (1)

Where
Cij = color byte at the Cover-image
σn

2 = noise variance.
σl

2 = local variance (in the segment under
consideration).
ml = local mean (average in segments under
consideration) .
* Perform scanning to select suitable pixels on each

segment by extracting image characteristics. The
candidate pixels are used to embed secret data.

* Perform hiding of the secret data into bitmap
images according to color characteristics.

 While the second part is used to extract data from
bitmap image at the receiver side in conformity with the
following actions:
* Extracting password.
* Scanning segment’s pixels according to the

password.
* Extracting data file.
* Decrypt the extracting data file by using the

password.
 The present Steganography algorithm is used to
hide any type of input data within a bitmap image
which includes 24– bits (3 bytes of RGB colors), each
byte is separated into two nibbles (four bits). The left
nibble contains the highest value in the byte while the
right nibble contains the lowest value in the byte.
Therefore, any changes in the right nibble will cause a
minimal change in a byte value. We can specify the
byte effective according to the left nibble value. The
nibble value is fixed by the interval [0, 15], so that we
conclude that we have 16 levels of a priority, each one
represents one main case (MC) out of 16. In the present
work we use the following formula equation (2) to
determine the index of MC that must be implemented to
perform hiding in a bitmap cover-image.

() .1IntMC 16
ByteColor += (2)

 where ByteColor∈{ByteRed, ByteGreen,
ByteBlue} represents the value of Color in decimal
notation. To hide large amount of data, all three colors
of one pixel are checked by the present Steganography

algorithm to perform hiding data by depending on new
concept which is called sub-case (SC). This concept is
used to organize the pixel architect. We have defined 6
SCs that are specified according to the following:
 Let us define MCcolor = index, where 1≤ index ≤ 16
and color∈{R, G, B} where R, G, B are pixel’s color
equal to ByteRed, ByteGreen and ByteBlue
respectively. Assume that the MC of the current color is
C and X,Y are the MCs of the rest colors at the same
pixel, then we can define the index of SC according to
the following conditions:

.

CYX, 6
C)Y&CX(|C)Y&CX(5

C)Y & C(X|C)Y & C(X 4
CYX, 3

)CY & C(X|)CY & CX(2
CYX, 1

SCofIndex
















>⇔
>==>⇔

><<>⇔
=⇔

=<<=⇔
<⇔

=

 (3)

 To embed data in the proper pixels, it is necessary
to use the priority value Pr(MC) which is calculated as
follows:

17MC)MCPr(−= (4)
where the priority level depends on the subscript of MC
as the following formula:

15i1i)Pr(MC)Pr(MC 1ii ≤≤∋∀> + (5)
 Before we describe the present Steganography
algorithm, let us define the following notations:

Type of pixels
1- CP: - Is the Current pixel that includes the set of
colors {R, G, and B}.
2- NP: - Is the next pixel of the CP.

Pixels properties:
1. Selected color:
 Color Color

Color CP
Sel arg min (MC)

∀ ∈
= (6)

2. Main case of the selected color in the current pixel:

ColorSelCmc MC Color CP= ∋ ∈ (7)
3. Main case of the rest colors in the current pixel:

CPRC&CPColor)MC(minargMC Color
RCColor

RC ⊂∈∋=
∈∀

 (8)

4. One of the rest colors:
 RCE&2,1iRCE i ∈=∀= (9)
5. Select one of the rest colors in the current pixel

whose its main case is greater than main case of the
selected color (Selc) :

RCC,RCH)MCPr()MCPr(
CSelH ∉∈∋< (10)

6. R, G and B are the red, green, and blue colors in
one pixel respectively.

Journal of Computer Science 3 (4): 223-232, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Nameer N. EL-Emam, Applied Computer Science Department, Faculty of Information Technology,
Philadelphia University, Jordan

223

Table 1: MC with their corresponding SC
MC The Corresponding SC Set Description of SC
1 {SC3, SC5, SC6} },RCC2,1iCPRC&CPSelCSC{ iiColor ≤∋=∀∈∈=∃∀

2-15 {SC1, SC3, SC5, SC6} }RCC|RCC2,1iCPRCandCPSelCSC{ iiiColor ≥≤∋=∀∈∈=∃∀

16 {SC1, SC3} }RCC2,1iCPRCandCPSelCSC{ iiColor ≥∋=∀∈∈=∃∀

Properties of embedding secret message: Create
Object (DataBits) which holds information about the
embedded message (the content and the length of the
secret message).

Properties of MC: Assume that every MC have a
number of SCs, Table 1 illustrates the MC with their
SCs. Practically, we conclude that SC2 and SC4 are
neglected from any MC. This restriction is used to
avoid sudden change of the colour in the stego-image.
 The following pseudo code shows step by step how
the present steganography algorithm can selecte the
suitable pixel efficiently to embed data to be
imperceptible from both visual and statistical attacks.
// Read data file bits , Perform Searching on all MC for each segment
starting from MC=1,…16
Foreach(MCi , i=1,…,16) {
 Foreach(segment in the Cover-image){
 Foreach(Sel(Color)∈ Cmc) {
 If (Cmc >= 2 AND SC=1) {
// Check the MC of rest colors
 If (RC = 1) {
// Check if all current pixel property is equal to the next pixel
property
 If (CP.property = NP.property) {
 // Hide 2 data bits in the selected color from the current pixel
 Hide(CP.C, DataBits(2));
 // Hide 2 data bits in the selected color byte from the next pixel
 Hide(NP.C, DataBits(2));
 }
 }
 }
Else if (Cmc >= 1 AND Cmc <= 16 AND SC=3) {
// Hide 1 data bit in the Red color byte
 Hide(CP.R, DataBits(1));
// Hide 1 data bits in the Green color byte
 Hide(CP.G, DataBits(1));
// Hide 2 data bits in the Blue color byte
 Hide(CP.B, DataBits(2));
 }
Else if(Cmc >= 1 AND Cmc <= 15 AND SC=5) {
// Hide 2 data bits in the selected color byte from the current pixel
 Hide(CP.C, DataBits(2));
// Hide data bits in the greater or equal MC byte for the selected
color min case from the rest pixel bytes
 Hide(CP.E, DataBits(2));
 }
Else if(Cmc >= 1 AND CP.Cmc <= 15 AND SC=6) {
// Hide 2 data bits in the selected color byte from the current pixel
 Hide(CP.C, DataBits(2));

// Hide data bits in the greater or equal MC byte for the selected
color min case from the rest pixel byte’s
 Hide(CP.H, DataBits(2));
 }
 }// end foreach Sel(color)
 } //end foreach segment
}// end foreach MC

Implementation of the present algorithm: Assume
that we have a cover-image which contains three types
of MC: MC1, MC2 and MC6 and we have three types of
pixels: MC1 with SC3, MC2 with SC5 and MC6 with
SC1. Now, we try to hide 2- bytes 01010101, 01010101.
Before we perform hiding, we must compute the
number of segments in the Cover-image through the
following steps:
1. Let S be a number of characters in the input

password (PS).
2. Find 






=

2
SIntN (11)

3. Find a number of segments on the vertical and
horizontal directions (Segv , Segh) by using the
following formulas:

∑
=

=
N

1i
iv)PS(ValSeg (12)

∑
+=

=
N2

1Ni
ih)PS(ValSeg (13)

where, Val(PSi) represents the value of the ith character
at the PS.
4. Find the size of non-uniform segments on both

directions:
* Find number of pixels (Length) for each

segment with respect to both directions:

1,...,sj;smodjk

)PS(ValLength
s,...,1j;smodjk

)PS(ValLength

j

i
Segi1
i

j

i
Segi1
i

h

v

==

=

==

=

≤≤

≤≤

 (14)

J. Computer Sci., 3 (4): 223-232, 2007

 227

5. Perform segmentation by using column wise
indexing on the cover-image into (Segv x Segh)
segments through non-uniform size of segments.
The present algorithm performs hiding into each
segment separately according to row wise scanning
as in Fig. 3.

Fig. 3: Scanning pixels on the adaptive image’s

segments

Fig. 4: Data Hiding Using MC 1 with SC 3

Fig. 5: Data Hiding Using MC2 with SC5

 The algorithm starts hiding data inside the highest
priority Pr(MC1), assume that CP includes the
following values of colors (R=15,G=0,B=13), the MC
of CP is MC1 with SC3. In the present Steganography
algorithm, we can hide the data “01010101”, as the
following:
 We assign the left most bit of the input data into
the right most bit of the R-byte, the bit before the left
most bit is assigned to the right most bit of the G-byte
and we assign the rest two bits (the right nibble of input
data) into the right most two bits of the B-byte as it is
shown in Fig. 4.
 After hiding data in all, the MC1, it will start hiding
inside the next highest priority which is MC2 in this
example. Let us say that the first pixel from MC2 was in
SC5 and its value was of colors (R=16, G=20, B=90), it
will hide the data as the following, the least 2 bit will be
modified in the current selected color and in the color

which it’s MC equal to the current selected color MC,
as it is shown in Fig. 5.
 And then after hiding the data in all the MC 2 it
will start hiding inside the next high priority in this
example which is MC 6, let we say that the first pixel
from MC6 was in SC1 and it’s value was (17, 21, 90), it

Fig. 6: Data Hiding Using MC6 with SC1

Fig. 7: Blue hills and sunset bitmap images before

and after data hiding

Fig. 8: Water lilies and winter bitmap images before

and after data hiding

will hide the data as the following, the least 2 bit will be
modified in the current selected color for the current
selected pixel and in the current selected color for the
next pixel, as it is shown in Fig. 6.

RESULTS AND DISCUSSION

 Confidence in the present results is gained by
comparing of the results obtained from the present
Steganography algorithm with those previously
published in the literatures[1-3, 5, 6, 9,11].
 As we mention before, specifications of a good
Steganography algorithms on a bitmap image are
depend on the following points:

J. Computer Sci., 3 (4): 223-232, 2007

 228

1. Comparison between the present work and the
previous work.

2. A Large amount of hiding data (Avoid Statistical
attack): using one cover-image as a carrier to hold
a maximum number of bytes instead of a sequence
of carriers.

3. Human vision scale (Avoid visual attack):
Steganography message can be embedded into
digital images in ways that are imperceptible to the
human eye. In other words, a stego-image that is
generated by the present algorithm has to be
normal for human vision and cannot be detected.

Comparison with previous work: We use more than
50 BMP images to test the present algorithm and to be
sure that the aim of data embedding is satisfied. In this
work, it appears that the efficiency of embedding data is
very high when we perform comparison with previous
works. We have been shown the comparison results of
four BMP images with fix size 400x400 pixels Fig. 7-8
with S-Tools algorithm[1]. The results illustrate the level
of efficiency according to the following concepts:
* The amount of hidden data.
* The amount of noise detections.
 Fig. 9 illustrates the amount of the hidden data on
selected images from Fig. 7-8 with fix size (400x400)
pixels.
 It appears that the present work can hide a large
amount of data and it exceeds the capability of the S-
Tools. We should emphasize that the “Blue Hills”
image in the Fig. 7 can hide the maximum amount of
data while the “Water lilies” image in Fig. 8 is in the
minimum. This variety of image’s capabilities to hide
bytes depends on the color distribution and the
sequence of the input characters.
 Figure 11 illustrate the amount of the noise on 4
images by using two kinds of noise detections, the first
one is used to find the average of 4 neighbor pixels in
the 3x3 pixels Fig. 10-left around the pixel Pi as in
equation (15). While the second one is used to find the
average of 12 neighbor pixels in the 5x5 pixels Fig. 10-
right around the pixel Pi as in equation (16).

∑
=









∑+








∑+



















−= ==
mxn

1i
5

PP

5

PP

3x3

4

1j

C
j

C
i

4

1j

S
j

S
i

Noise
 (15)

∑
=









∑+








∑+



















−= ==
mxn

1i
13

PP

13

PP

5x5

12

1j

C
j

C
i

12

1j

S
j

S
i

Noise
(16)

 Where Pi
S and Pi

C are the color values of the pixel i
in both stego-image and cover-image respectively, and
(mxn) is a number of pixels in a bitmap image.

 In Fig. 12 we divide a noise frequency into 21
classes, started from the minimum value (- 10) to the
maximum value (+10) in the selected bitmaps. We
calculate the frequency of damage pixels and then
determined the corresponding class for each pixel. We
perform sector comparison instead of pixel

Fig. 9: The amount of hidden byte vs four different

bitmap carriers

Fig. 10: Noise detections using 4 and 12 neighbor

pixels

Fig. 11: Noise detection of the present work and

previous works vs four deference bitmap
carriers

comparison to show the smoothing of color around a
specific pixel; this comparison has been implemented
by using equation (16). It appears that the present work
is less noise frequency than S-Tools algorithm for all
images.

Avoids statistical attack: Challenge χ2 attacks.

∑
=

′

′−
− =

k

1i n
)nn(2

1kχ
i

2
ii (17)

Where, k-1 is degree of freedom and n’
i is calculated

according to the equation (18).

J. Computer Sci., 3 (4): 223-232, 2007

 229

 .
2

}C,C{settheinaccorscolorofFrequancy
n

}B,G,R{
1i2

}B,G,R{
i2'

i
+

=
(18)

Where,

 {R ,G,B} {R,G,B}
2i 2i 1{C ,C }+ is the i-th pair of the palette colors

}B,G,R{
255

}B,G,R{
1

}B,G,R{
0 C,....,C,C for each color

{R,G,B}.

Sunset

-50

0

50

100

150

200

250

300

350

-15 -10 -5 0 5 10 15

Noise Difference

Fr
eq

ua
nc

y

Present Work S-Tools

Blue Hills

Water lilies

Winter

Fig. 12: Frequency of the sector noise

The secret message of length of 40% of Blue Hills image size.

The secret message of length of 75% of Blue Hills image size.

J. Computer Sci., 3 (4): 223-232, 2007

 230

The secret message of length of 40% of Sunset image size.

The secret message of length of 75% of Sunset image size.

Fig. 13a: Probability of embedding for a secret message of length 40 and 75% of images (Blue Hills, Sunset) size

The secret message of length of 40% of Water lilies image size.

The secret message of length of 75% of Water lilies image size.

The secret message of length of 40% of Winter image size.

The secret message of length of 75% of Winter image size.

Fig. 13b: Probability of embedding for a secret message of length 40 and 75% of images (Water lilies, Winter) size

Sunset

Water lilies

Blue Hills

Winter

J. Computer Sci., 3 (4): 223-232, 2007

 231

Fig. 14: Value difference on neighboring pixels for both cover and stego images

CcolortheataccorscolorofFrequancyn i2i = (19)
 We use equation 19 to express the probability that
distributed of ni

’ , ni are equal.

.dxxe1p 1
χ

02

1 2
1k

2
1k

2
x

2
1kΓ

2
1k

−−−






 −− ∫−= (20)

 While the message-carrying pixels in the image are
selected randomly rather than sequentially according to
MCs with their SCs concepts, the chi-square test is less
effective. It appears that chi-square attack on stego
images with randomly scattered messages produces
fluctuating P values in the beginning and then, as the
sample size increases, the p value eventually drops to

0

5

10

15

20

Blue Hils Sunset Water lilies Winter

Stego-Images

Eu
cl

id
ea

n
N

or
m

 Fig. 15: Euclidean norm evaluations on four stego
images

Fig. 16: The length of cover and stego images

zero due to the sensitivity of the test. Figures 13a-13b
show the comparison between Cover and Stego images,
it appears that the present embedded algorithm produce
the same behavior of the probability P with respect to
the length of secret message (40% and 75%) of the
image size and any window size using four types of
images. In addition we see that the p value eventually
drops to zero at the window sizes 20 and 35 on any
image. We conclude that stegoanalysis can not be
detected an embedded data due to the matching of
Stego and Cover images curves.

Statistical of the value difference between
neighboring pixels: In this work we calculate the
difference of the horizontally neighboring pairs of the
image Fig. 14 and we perform the comparison between
Cover and Stego images on four types of images
according to the following formula:

,PPVal C
1j,i

C
j,i

C
j,i −= +

1)nxm(,..,1iPPVal S
1j,i

S
j,i

S
j,i −=∀−= + (21)

It appears that all values differences are come near to
zero for both Cover and Stego images and comparison
between them are indeed remarkable similar. We
conclude that the smoothing of the color is equivalent
for both Stego and Cover images.
Avoids visual attack
The amount of Euclidean norm: Fig. 15 shows the
amount of the Euclidean norm to compute the distance
between the Cover-images and Stego-image presented
at Fig. 7a-7b. This measure is used to find the set of the
closest palette color (in Euclidean norm) by using the
following equation:

)BB()GG()RR(d 2
sc

2
sc

2
sc −+−+−= (22)

Where the subscript c means the cover-image and the
subscript s means the stego-image. It appears that Sunset image has a maximum norm
due to the large area of uniform palette color (Red,
Pink), while Winter image has a minimum norm due to

J. Computer Sci., 3 (4): 223-232, 2007

 232

small area of the uniform palette colors (Blue or White
or Black).

The amount of brightness information: Figure 16
shows the amount of the length L equation (23) of the
RGB vector for both cover and stego images shown in
Fig. 6-7. This measure is necessary to use against
visual attack to find the brightness information.

.BGRL 222 ++= (23)

CONCLUSION

 In this work, we satisfy the aim that says
Steganography is an effective way to obscure data and
hide sensitive information. The present algorithm
allows an individual to hide data inside other data with
hopes that the transfer medium will be so obscure that
no one would ever think to examine the contents of the
file. The algorithm which is described by pseudo-code
is presented and it is possible to implement a
Steganography algorithm to hide a large amount of data
into carrier bitmap image.
 We used three layers of security to secured data by
obscuring the context in which it was transferred. With
continued research and an improvement in algorithms
design, steganography can be taken as a serious way to
hide data and the present work appears that it was more
efficient than the most familiar algorithm like (S-
Tools)[1]. Working against visual and statistical attacks
need adaptive algorithm on each step of data embedded.
It was found that the present algorithm was attractive
and results reached by this algorithm were efficient in
the field of data embedding (Steganography). We
performed three types of comparison; the first one was
used to compare the present algorithm with S-Tools
algorithm through the amount of noise and the amount
of size. It appears that the present work was less
effective of the nose at the pixels and lager amount of
embedded data. The second comparison was made upon
the statistical attack; it shows that it was difficult to
distinguish between Cover and Stego image when chi
square and the difference between neighboring pixels
were implemented. The last comparison was found that
visual attack results indicate that using non uniform
color was extremely powerful when we have large
amount of embedded data.

REFERENCES

1. S-Tools (http:// digitalforensics. champlain. edu/

download/ s-tools 4.zip).
2. Chandramouli, R. and N. Memon, 2001. Analysis

of LSB based image steganography techniques.
Proc. of ICIP, Thessaloniki, Greece.

3. Dumitrescu, S., W. Xiaolin and Z. Wang, 2003.
Detection of LSB steganography via sample pair
analysis. In: LNCS, Vol. 2578, Springer-Verlag,
New York, pp: 355–372.

4. Ahn, L.V. and N.J. Hopper, 2004. Public-key
steganography. In Lecture Notes in Computer
Science. Vol. 3027 / 2004 of Advances in
Cryptology - EUROCRYPT 2004, pp: 323–341.
Springer-Verlag Heidelberg.

5. Pang, H.H., K.L. Tan and X. Zhou, 2004.
Steganographic schemes for file system and b-tree.
IEEE Trans. on Knowledge and Data Engineering,
16: 701–713.

6. Dobsicek, M., 2004. Extended steganographic
system. In: 8th Intl. Student Conf. on Electrical
Engineering. FEE CTU.

7. Mittal, U. and N. Phamdo, 2002. Hybrid digital-
analog joint source-channel codes for broadcasting
and robust communications. IEEE Trans. on Info.
Theory, 48: 1082 –1102.

8. Pavan, S., S. Gangadharpalli and V. Sridhar, 2005.
Multivariate entropy detector based hybrid image
registration algorithm. IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing, pp: 18-
23.

9. Moulin, P. and J.A. O’Sullivan, 2003. Information-
theoretic analysis of information hiding. IEEE
Trans. on Info. Theory, 49: 563–593.

10. Amin, P., N. Liu and K. Subbalakshmi, 2005.
Statistically secure digital image data hiding. IEEE
Multimedia Signal Processing MMSP05, China.

11. Jackson, J., G. Gunsch, R. Claypoole and G.
Lamont, 2004. Detecting novel steganography with
an anomaly- based strategy. J. Electr. Imag., 13:
860– 870.

