
Journal of Computer Science 3 (3): 144-148, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Seungkyu Park, Graduate school of Information and Communication, Ajou University, San 5,
Suwon, Kyunggi, Republic of Korea

144

A Case Study of Black-Box Testing for Embedded Software using Test Automation Tool

1Changhyun Baek, 2Joongsoon Jang, 3Gihyun Jung, 4Kyunghee Choi, and 5Seungkyu Park

1, 4, 5
Graduate School of Information and Communication, Ajou University, Republic of Korea

2Division of Industrial and Information System Engineering, Ajou University, Republic of Korea
3
Division of Electronics Engineering, Ajou University, Republic of Korea

Abstract: This research shows a case study of the Black-Box testing for Temperature Controller (TC)
which is one of the typical embedded systems. A test automation tool, TEST, was developed and some
kinds of TCs were tested using the tool. We presented statistical analysis for the test results of the
automated testing and defined the properties of the software bugs for the embedded system. The main
result of the study were the following: (a) test case prioritization technique was needed because the re-
view phase, in the test process, takes long time; (b) there are three types of software defects for the
embedded software; (c) the complexity of the system configuration have an effect on the software de-
fect; (d) the software defect was distributed in vulnerable points of the software; and (e) testing activi-
ties reduce the number of the software defects. The result can be useful in the asymptotic study of test
case prioritization.

Key words: Black-box testing, embedded software, system test, software defect, test automation tool

INTRODUCTION

 As a scale of market for the embedded software
has grown up, product’s quality and reliability hold a
key post in the software development process. In 2004,
one of the world famous mobile companies did addi-
tional after service because of some kinds of software
defects. Like this, there have been many cases of de-
fects of the embedded system as software with short
product life cycle recently. For this, more effort for the
quality assurance of embedded software has been re-
quired[1]. Each enterprise or companies have tried to
reduce defects on software development process, more-
over, to describe requirements and to verify that it is
satisfied, between in each process. To use the test
automation tools is one of good approaches. They are
skillfully devised for convenient use and give testers
the testing environment which is more correct than the
manual testing. The conventional test automation tool
for the embedded software usually was used for Unit
Test. Also, many times of modification and adaptable
periods were required to apply to specific system.
These problems caused impossibility for the testing.
Generally, embedded system's configuration of hard-
ware is very various and there would be a difficulty for
generalization of testing environment, so the conven-
tional test automation tool for the embedded software

testing couldn't be applied to various systems[2-4]. Be-
cause of this situation or restriction the conventional
development of embedded system company has not
used the existing automation tool for the testing, or
tested in limited situation. It had to develop new testing
automation tool for the testing fitted on a developing
system as well[5-7].
 In this study, we developed the test automation tool,
Testing stand for Embedded Software Testing (TEST),
which is dedicated to the embedded system, introduced
the annual testing results and presented properties of
the software defects for the embedded software.

Temperature controllers: Temperature Controller
(TC) is one of the typical embedded systems that gets
input variables by environmental factors of outside and
is controlled by switch input by user. TC operates with
ambient sensor, in-car sensor, humidity sensor and
photo sensor on environmental factor of outside. As a
user inputs each switch, it decides indicator's on/off.
Embedded software inside of TC carries out decision of
intention like indicator, display and actuator by envi-
ronmental condition and user's input. Fig. 1 shows a
hardware configuration of the TC. TC is classified with
FATC (Full Automatic Temp. Controller) and MTC
(Manual Temp.Controller). In FATC, internal soft-
ware's function is complicated so every possible cases'
testing is required.

 J. Computer Sci., 3 (3): 144-148, 2007

 145

Fig. 1: Hardware configuration of TC

Product Modeling
(Microsoft Excel)

Model Verification
(Microsoft Access DB)

Test Case Generation
Test Execution

Test Report Generation

Fig. 2: Snapshots for test phase using TEST

Test automation tool: The main reason to use the
automation tool for testing is to overcome the demerits
of the existing manual test. The time cost can be re-
duced for framing Defect Record, documentation and
writing report. The exactness of test result can be also
guaranteed in previous studies which compare the man-
ual test and the automation test, the manual test requires
more than two times of expense and time as well[8].

 Testing software's maximizing of the automation
on every procedure on testing can be a standard to
ability of tool. How much the developed testware sup-
ports to test procedure like test script generation, test
execution and test report generation, there would be
ability as an automation tool. A study for the realization
of the automation tool like test case's operation of
automation or automated comparison between actual
result and expected result has been in progress. Also, a
study of organization of test report template for embed-
ded software has begun[9-11].
 TEST (Testing-stand for Embedded Software Test)
includes 5 functions for verification of embedded soft-
ware[12]. 'product modeling' which reflects FSM and
product specification on Microsoft Excel, 'model verifi-
cation' which verifies exactness of input by user[13-15],
'Test script generation' which creates test cases auto-
matically based on product specification, 'test execution
and comparison' which executes test cases and 'test
report generation' which reports test result that is used
as data of defect verification[16,17]. TEST embodied in
Microsoft Visual Basic.Net, VBA Macro and many
DLL based on C.

Test accomplishments: Now as it introduced earlier, it
shows the result of test accomplishments about total 7
tests for TC by using TEST. As it explained earlier, TC
is divided by two types. In MTC, however, functions of
SW are simple and the outbreak of defect was not re-
ported, so we ruled out all test results which is from
testing MTC. Accordingly, only 7 results of ATC are
introduced next. Fig. 3 shows the primitive data of test
result. One software defect is classified by some crite-
rions to find its properties.

Fig. 3: Primitive data for analyzing test results

0

2

4

6

8

10

12

Product Modeling Test Case Generation Test Execution Reviewing and Adjusting Test Report Generation

Test Phase

T
im

e
(D

A
Y

)

Min Time Max Time Average
Fig. 4: Time cost for test phases

Time cost for testing: As the result in Fig. 4, it takes
from 2 weeks to 1 month to test a unit system. For
testing a unit system, the number of accomplished test
case, there can be small differences of number of the
test cases, is about 50,000.
 In each phase, it was realized that the time for
executing test cases, reviewing and adjusting the found
out defect, takes too long. During test process, the time
for carrying out of the test case takes more than 35% of
the whole process. In ‘reviewing and adjusting defect’
phase which is directly related to this, during executing
test cases, it starts from where the defect happens, so if
a software defect is found out, the test period should be
longer. In consequence, a study that test case can be
operated in preferred order to find out such software
defect quickly during the test process, has been going
on.

 J. Computer Sci., 3 (3): 144-148, 2007

 146

if (iVar >= 255) ----------------- � exact code
if (iVar > 255) ----------------- � defect code

Fig. 5: Example of programming defect

0

5

10

15

20

25

30

A B C D E F G

Type

T
he

 N
um

. o
f F

au
lt

Programming Error Specification Misunderstanding Specification Error Total
Fig. 6: Classifications and test results of the software

defects

Software defect classification: As the result using by
test automation tool, 1-25 software defects were found
out in each unit system. Fig. 5 described the found out
defect in Programming Defect, Specification Misunder-
standing and Specification Defect.
 Programming Defect is traditional software defect
and means that it happened by programmer's defect and
it takes 74% of found out defect. For the example of
this defect can be like using 'bigger' instead of 'bigger
or equal'. Fig. 3 indicated the example of the Program-
ming Defect.
 Specification Misunderstanding means that a de-
veloper misunderstands the given specification and
defect happens. A developer analyzes by his or her own,
however, between multitudinous and complicated lo-
gics are mentioned on specification, so defect happens.
These kinds of problems are almost 14% of the whole.
 Specification Defect is when a specification of
product development includes defect by a developer. In
this case, test automation tool reported there was a
defect on SUT, but, in fact, there was a problem in
specification that used by test automation tool and it
takes 12% of the whole.

Fig. 7: Distribution of software defect

Fig. 8: Residual plots for software fault

Hardware configuration and software defect: Fig. 7
shows number of software defect about number of
actuator or sensor connected in one unit TC. Through
the 7 each of system it can get the result that as much as
complicated organization of hardware has given, more
and more software defect can be lied. When the number
of organization factor of hardware which are connected
in system, are getting more, it means there are many
things to control inside of embedded software, also it
can cause compilation by software's increasing. These
result means when embedded software is measured, the
complexity of hardware configuration can be used as a
factor, like using lines of program was for existing
traditional software's complexity.
 We can predict the number of software defect
which are in the given software using these results. Fig.
7 shows that NSoftwareFault (the number of software fault)
would be increased linearly as NEndItem (the number of
End Item) have been increased. This fact could be used
to decide the time to stop software testing. Fig. 7 and 8
were drawn by MINITAB based on real test result. We
did a polynomial regression analysis between NSoftware-

Fault and NEndItem. We can find out the regression equa-
tion like Equation 1. (S=3.23859, R-Sq=90.2%, R-
Sq(adj) = 85.3%, FRegression = 18.38 and PRegression =
0.010)

Y = 0.0745X2 - 2.7535X + 27.531
Equation 1 Regression Equation between NSoftwareFault
and NEndITem

Output variable and software defect: Fig. 9 is the
result of mapping with software defect and output vari-
able. Those test objects, 7 TC have similar hardware
organization and depending on system, additional input
has existed.

 J. Computer Sci., 3 (3): 144-148, 2007

 147

Therefore from black-box test which verifies software
through in/output, result of output defect is considered
as software defect. As shown on the Fig. 9, specific
output defect is centralized. In the Fig., output: O17,

0
2
4
6
8
10
12

O 1
O 2 O 3 O 4

O 5
O 6

O 7
O 8

O 9

O 10

O 11

O 12

O 13

O 14

O 15

O 16

O 17

O 18

O 19

O 20
O 21

O 22
O 23

O 24
O 25O 26O 27O 28O 29O 30

O 31
O 32

O 33
O 34

O 35

O 36

O 37

O 38

O 39

O 40

O 41

O 42

O 43

O 44

O 45

O 46
O 47

O 48
O 49

O 50
O 51 O 52 O 53

Fig. 9: Distribution of software defect based on output

variables

0
2
4
6
8
10
12
14
16

M1
M 2 M 3 M 4

M 5
M 6

M 7
M 8

M 9
M 10

M 11

M 12

M 13

M 14

M 15

M 16

M 17

M 18

M 19

M 20

M 21
M 22

M 23
M 24

M 25
M 26

M 27M 28M 29
M 30

M 31M 32M 33
M 34

M 35
M 36

M 37

M 38
M 39

M 40

M 41

M 42

M 43

M 44

M 45

M 46

M 47

M 48

M 49

M 50
M 51

M 52
M 53

M 54
M 55

M 56 M 57 M 58

Fig. 10: Distribution of software defect based on inter-

nal modules

O21 and O35, were assigned as that value through the
many different conditions and then more software de-
fect was caused by comparing with other input. Fig. 10
is about distribution of internal logic. In Fig. 9, it takes
a look at the relationship between defect and specific
output. Similarly with this, in Fig. 10 it is about a rela-
tionship between defect and specific internal logic.
These results can be used as prediction of confidence of
embedded software. It tells framing specific logic or
system related with a specific variable should be clear.
Reorganizing complicated formation of specific logic in
simple system is needed.

 These results could be used to order the test cases
as a test case prioritization technique. For example, we
should change the execution order between the test
cases to find out the software defect more quickly. As
we mentioned earlier, the review phase require much
time to decide whether test result is the software defect
or not. For that reason, recently various test case priori-
tization techniques are researched.

0

2

4

6

8

10

12

14

1st 2nd 3rd 4th

System Under Test

T
he

 N
um

. o
f S

of
tw

ar
e

Fa
ul

Fig. 11: Software defects is on a decreasing trend

 Test case prioritization techniques have been
shown to improve regression-testing activities by in-
creasing the rate of defect detection, thus allowing
testers to fix defects earlier. Hema Scrikanth et al. de-
veloped a prioritization scheme with two main goals:
identifying the severe defects earlier and minimizing
the cost of test case prioritization. They proposed the
prioritization scheme based on customer-assigned pri-
ority and requirement complexity[18]. This scheme has a
restriction that prioritization is done by expert although
it is impossible to collect talented expert in a small or
middle enterprise.
 Sebastian Elbaum et al. orders the test cases based
on the number of function calls and proposes the
scheme that modification parts of the software have
higher priority than others when testers want to test the
software in the passion of the regression testing[19]. This
method could be applied to the black-box testing be-
cause its ideas are on the basis of the white-box testing.

Software defect reduction: Fig. 11 shows number of
software defect of TC delivered by two same compa-
nies. They are different types of system, but basic or-
ganization of HW/SW is similar. After development of
test automation tool, 13 software defect were found out
at initial applied model, however only 3 defect were
discovered at fourth model. This shows as one com-
pany which orders an embedded system applies test
automation tool, a positive manner for quality verifica-
tion has an effect on product developer, so operation

 J. Computer Sci., 3 (3): 144-148, 2007

 148

from development step to increasing of product's qual-
ity is progressing. Also it can be analyzed as applying
test automation tool, it can be guaranteed of verification
ability and discussion about developer's product.

CONCLUSION AND FUTURE WORKS

 In this study, TC which is one of the embedded
systems was introduced as the automation tool for
black-box test. Through the results of the several TC
test, additionally using test automation tool to embed-
ded software which has taken manual test already, so it
can take apart more fallacies. Accordingly, it confirms
this would work on positive side of increasing product's
quality. In the future, in the future, as in a view of rate
between timing of test accomplishment and discovering
defect, study which is for increasing of utility factor for
test, formatting of superior quality of test case and
organizing test case in ranking with new techniques,
will be advance. In this part as it introduced in part 3, it
shows the result of test accomplishment about total 7
tests of TC by using test automation tool. As it ex-
plained in part 2, TC is divided by two types. In MTC,
however, function of SW is simple and the outbreak of
defect was not reported, so it was excepted from the
test result. Accordingly, only 7 results of ATC are in-
troduced in this part.

REFERENCES

1. Ireson, W.G., C.F. Coombs and R.Y. Moss, 1995.

Handbook of Reliability Engineering and Man-
agement. McGraw-Hill Professional.

2. Beizer, B., 1995. Black-Box Testing. John Willey
& Sons.

3. Beizer, B., 1990. Software Testing Techniques.
2nd Edn., International Thomson Computer Press.

4. Jang, Y., K. Yeo and H. Lee, 2003. A case study of
the manual testing and automated testing. KISS
Conference.

5. Broekman, B. and E. Notenboom, 2003. Testing
Embedded Software. Addison Wesley.

6. Rodd, K., 1998. Practical Guide to Software Sys-
tem Testing. K.J. Ross & Associates Pty. Ltd.

7. OVUM, 1999. Software Testing Tools, OVUM.
8. Sowers, M., 2002. Software Testing Tools Sum-

mary, Software Development Technologies Inc.
White Paper.

9. Hayes, L., 1995. The Automated Testing Hand-
book. Software Testing Institute.

10. Fewster, M. and D. Graham, 1999. Software Test-
ing Automation: Effective Use of Test Execution
Tools. ACM Press, Addison Wesley.

11. Dustin, E., J. Rashka and J. Paul, 1999. Automated
Software Testing. Addison Wesley.

12. Baek, C., S. Park and K. Choi, 2005. TEST: An
Effective Automation Tool for Testing Embedded
Software. WSEAS Trans. on Information Science
& Applications, Vol. 2.

13. Kim, B., C. Baek, J. Jang, G. Jung, K. Choi and S.
Park, 2004. A design and implementation of the
check module for the test of embedded software.
KISS Conference.

14. Kim, B., C. Baek, J. Jang, G. Jung, K. Choi and S.
Park, 2005. A design and implementation of virtual
environment operator for the embedded software
test. KCC 2005.

15. Hoffman, D., 2001. Using test oracles in automa-
tion. Pacific Northwest Software Quality Confer-
ence.

16. Jeon, H., C. Baek and S. Park, 2005. A test report
for the effective defect tracing of the embedded
software. Vol. 32, KICS Conference.

17. IEEE-SA, 1998. IEEE829: IEEE Standard for
Software Test Documentation. IEEE-SA Standards
Board.

18. Srikanth, H and L. Williams, Requirements-Based
Test Case Priotization.

19. Elbaum, S., G. Rothreml and S. Kanduri, 2004.
Selecting a cost-effective test case prioritization
technique. Software Quality J., 12: 185-210.

