
Journal of Computer Science 2 (1): 92-96, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Ibrahiem M.M-El-Emary, Faculty of Engineering, Amman Al Ahliyya University, Amman, Jordan
92

Managing a High Speed LAN using Distributed Artificial Intelligence

Ibrahiem M.M-El-Emary

Faculty of Engineering, Amman Al Ahliyya University, Amman, Jordan

Abstract: This study is concerned with a practical application of distributed artificial intelligence for
managing the high data rate bus structured local area computer network that uses deterministic
multiple access protocol. In the selected network that is managed using distributed artificial
intelligence, the dynamic sharing of the available bandwidth among stations is achieved by forming
“train to which each station may append a packet after issuing a reservation. Reservation and packet
transmissions are governed by the reception of control packets (token) issued by the network end
stations. Managing approach that was suggested depends on using intelligent autonomous agents,
which are responsible for various tasks among it: election of the end stations, the recovery from
failures, and the insertion of new stations in the network. All these tasks are based on the use of special
tokens.

Key words: Distributed artificial intelligence, autonomous agents, neural networks, EXPRES-NET,

CSMA/CD

INTRODUCTION

 The main task of the network management system
researchers is to develop new tool that work better than
current by available tools for doing this laborious work.
The work presented in this study directed about how to
delegate as much as possible to the machine, using
network administrators as knowledge engineers that
teach the machine how it should perform its work based
on what is called Intelligent Autonomous Agents.
 There are a few predictable advantages of using
Intelligent Autonomous Agents for any management
system, network management being just one. First of
all, there is the intelligent nature, which sounds
promising. Having an intelligent and adaptable system
is usually better than having dedicated applications for
specific solution. Likewise, the word Autonomous
gives us the idea of something that can work by itself or
need almost no human interference. Finally, agent gives
the impression of a helper or a wizard that some how
works between the machine and human. So, the main
objective proposed here is to project a system where the
human system administration does not have to work as
the truly intelligent-meaning cognitive- element in the
management process, feeding the system with the rules
of work or knowledge-it needs to operate, no more
boring work, but intelligent work[1].
 The network that is managed by the above
approach categorized as a local area network labeled by
TOKENET[2], its architecture based on a linear
bidirectional bus, and on a deterministic channel access
protocol, whose efficiency is similar to that of
EXPRESS protocols[3]. Advantages of this network
over the linear topology (L-EXPRESS-NET) are that
stations need not be numbered, and that no silence

counter is needed in order to schedule transmissions.
The used LAN is named TOKENET since tokens
(control packets) are used in the operations of the
channel access scheme. The protocol algorithms were
developed for a scenario in which Ethernet-like
networks cannot be used, i.e. considering a large
population of users that can be connected using several
kilometers of cable, and whose traffic requirements
must be satisfied with a very high data rate (>100
Mbps). The packet transmission time is assumed to be
much shorter than the end-to-end propagation delay, so
that the CSMA/CD yields extremely poor performance.

Architecture of the TOKNET Network: TOKENT is
based on a linear topology. It is thus possible to identify
the rightmost and leftmost active stations (where by
active we mean that stations are executing the protocol
algorithm). These two stations are named “end
stations”. Stations are connected to the bus by means of
passive taps that can simultaneously receive and
transmit[4]. Packet collisions can be detected. Interfaces
are capable of recognizing a limited set of short control
packets, named tokens, whose functions will be
described later on. The reception of tokens as well as
the reception of packets may produce some response by
a station. The time needed in order to start this response
is td seconds; this includes the time for the recognition
of the token (or the detection of the end of a packet
reception) and the time to initiate the response. td
should be of the order of a few bit times[2].
 Data packets are transmitted in trains, composed of
a token (the locomotive) followed by some packets
(possibly none, in which case the train is said to be
empty). The time separation between successive
elements of the same train is td seconds. Packets may

J. Computer Sci., 2 (1): 92-96, 2006

 93

board the train only after a reservation has been issued.
By listening to other stations reservations each station
can determine the correct position of packet in the train.
 Transceivers can operate in four different modes
depending on the state of the station: the CSMA-CD
mode and the polite sensing mode are used during
system initialization in order to elect the end stations;
the reservation mode is used when a station has a
packet ready for transmission in order to reserve a place
on the next train; the scheduling mode is used after a
reservation has been made in order to transmit the
packet in the train in the reserved position.
 The CSMA-CD mode implies the transmission of
packets following the CSMA-CD protocol[4,6]. It is
assumed that tc seconds are necessary to recognize a
collision. The time tc is a few times longer than td.
When a station is in the polite sensing mode it starts
transmitting its packet after recognizing the end of a
packet transmission from another station. If a collision
is detected in the initial tc seconds the transmission is
aborted and a new attempt will be made at the end of
the colliding packet. When a station is in the reservation
mode it transmits a short burst (any predefined bit
pattern) when it receives the reservation token. Stations
in the scheduling mode count other station reservations,
determine which their received wagon in the train is
and transmit their own packet in the reserved position.
If a collision occurs in the initial tc seconds the
transmission is immediately halted. Receivers are
always enabled. Packets (and burst) must be separated
by at least td seconds to be received.
 Packets can be of variable length. Before each
packet a preamble is transmitted in order to synchronize
the destination station receiver. The preamble duration
is of the order of several tens of bits. In some cases a
long preamble is necessary. It is not necessary,
insteade, to transmit a preamble before the reservation
bursts, since they must only be detected and need not be
decoded.

Access scheme used in TOKENET network: Assume
the two end stations have been found, and denote, as in
Fig. 1, by L the leftmost active station, and by R the
rightmost active station. Upon recognizing the end of a
train, R issues an R-token, denoted by Tr , and after td
seconds transmit a reservation burst. The token and the
burst propagate towards all stations to the left of R.
Each station with packets ready for transmission, upon
reception of Tr immediately transmits a burst of short
duration that serves as a packet reservation. Due to the
station latency time the burst is separated from Tr by a
gap of duration td. Denote by tb the time duration of
the burst. Provided that the distance between any two
adjustment stations is larger than the distance over
which the line signal propagates in (td+tb)/2 seconds,
stations receive bursts transmitted from station to the
left, separated by intervals of duration larger than td.

It is thus possible for each station to count the number
of bursts transmitted by stations to the left. Denote by
Nj the count of station j. Bursts transmitted by the
station to the right are instead seen as completely
overlapping and are thus undistinguishable.

Fig. 1: TOKENET topology; L and R are the network

end stations

 Finally Tr reaches L, that may transmit a
reservation burst as any other station if it has a packet
ready for transmit ion. After either transmitting the
burst or just hearing the overlapped bursts of all stations
with ready packets, L issues on L-token T1 that serves
as locomotive of a train of packets. If L has just
transmitted a reservation burst it also append the data
packet to T1, leaving a silent gap of duration Td in
between. The train propagates now in the L to R
direction and those stations that just made a reservation
may append packets. Before appending its own packet
to the train station j must recognize T1, and count Nj
packets in the train beyond T1. The train propagates all
the way to R collecting new wagons. R may append a
packet to the train too, and when R recognizes the end
of the train it issues a new R token, thus starting a new
cycle.
 A fault in the operation of the station may cause a
truncation of the train: if a station has a wrong
reservation count, it will either transmit too early (the
transmission is stopped after Tc seconds because of the
collision), or not transmit because it will not find
enough packets in the train before its own. Both events
prevent all stations to the right of the faulty one to
transmit in the current train. The same thing happens if
the station issues a reservation and then dose not
transmit the packet. If instead, a station transmits a
packet without transmitting the corresponding
reservation, a collision may take place id some station
to the right transmits a packet, but other stations can
still board the train. Otherwise, if no collision occurs,
then the train maybe larger than expected. All above
faults conditions only influence next cycle. Other faults
concerning either token losses or failures of the end
station must be reserved through a system reinitializing.
 Quantatively, when we show the impact of the
constraint on the minimum distance between
adjustment stations, we see that for a 100 Mbps
transmission speed, assuming that the sum (td+tb) is
equivalent to ten bit times, and that the propagation
delay is 10µs/km. The time interval corresponding to

J. Computer Sci., 2 (1): 92-96, 2006

 94

five bits is 50 ns, that is equivalent to a five-meter
distance. Stations must hence be separated by at least
five meters of cable.

Initialization procedure for TOKENET using
CSMA/CD protocol: If an active station doesn’t hear
any packet, token, or reservation burst on the bus for
more than To seconds (where To is of the order of
several round trip delays), it goes onto initialization
mode in order to elect the end station and restart the
protocol operation. The initialization procedure consists
of the following steps:

(a) Using the CSMA/CD protocol one station (say

station A) acquires the channel and issues an
initialization token. (Note: this may require several
retransmission attempts. At each attempts only the
station, which collided in the previous attempt,
participates). To avoid ambiguities the
initialization token length is such that transition
time is longer than the end-to-end propagation
delay.

(b) Upon hearing the initialization token, the
remaining active stations compete again (as in step
1) until one station (say station B) acquires the
channel and issues a response token.

(c) Station A issues a token which is called token A.
Station B issues token B immediately upon hearing
token A. All the other stations are listening and can
determine their relative position with respect to
station B as follow: for the station in region 1
(Fig. 1) there is a gap (larger than Td seconds)
between the time token A is received and the time
token B is received. For the stations in region 2
token A is received immediately (more precisely td
seconds) before token B. Station in region 1 are
temporarily inhabited to respond to R station
location tokens (see next step).

(d) Station A issues an R station location token that
starts a train of tokens since all stations in region 2
(stations that are not inhabited) append a similar
token to the train using the polite sensing mode.
Each station monitors the channel after
transmitting its token. If a station does not hear any
other transition after its own it concludes that it is
the right end station (R). The token has a special
format, namely, the preamble length is such that
reamable transmission time is larger than the end-
to-end propagation delay. This is necessary to
guarantee that all region 2 stations correctly receive
tokens.

(e) The newly elected R station issues an L station
location token, and the left end station (L) are
located using the same procedure above. Again the
token preamble transmit ion time is longer than the
end-to-end propagation delay.

(f) The L station issues an L token to notify the end of
the initialization phase.

(g) The R station receives the L token and issues an R
token, thus starting the data transfer phase.

Operation concept of failure recovery and inserting
a new station: The failure of an intermediate station
(i.e., a station located between L and R) has no impact
on the protocol; thus it does not require a specific
recovery procedure. The failure of left or right end
station, instead, requires the selection of replacement.
Assume that the R(L) station fails. The L(R) station
will detect the failure from the fact that the R-token (L
token) does not come back after the line has been idle
for a round trip time. After learning that the R (L)
station is down, the L(R) station decides it is the new R
station, issues an L station location token, and the
initialization procedures is executed step 5 on. At the
end the new end stations are elected. Note that if the L
station fails, the old R station remains the new R station
after the recovery, whereas, if the R station fails, the
old L stations becomes the new R station.
 When a new station become active, it is necessary
to allow it to join the other stations in the dynamic
sharing of the communication channel. If the new
station is in an intermediate position, i.e, between
station L and station R, then it may immediately
participate in the protocol procedures. If, instead, the
station is either off to the right or off to the left, then it
is necessary to reinitialize the whole network. The
decision the new stations must take whether to start the
initialization procedure itself by listening to the
channel.
 If the new station receives the R token and
reservation bursts immediately followed (after td
seconds) by the L token, then it concludes it is off to
the left. If the new station detects the end of the train
immediately followed by an R token then it concludes
that it is off to the right. If the new station, by listening
to the channel, determines that it is not located between
L and R, then it decides it is the new R station, and
issues an L station location token, thus triggering the
execution of the initialization procedure from step 5 on.
At the end of the execution of the algorithms the new
end stations are elected, and the new station has become
station R.

TOKENET network management using
autonomous agent approach: The main objective in
this session is to show how the agents fit in a standard
network management system. The used approach
depends on presenting a diagram from a regular system
and then replaces its internal component by another
diagram; using agents based components with similar
functionalities.
 An ordinary network management could have a
workflow like the one presented in Fig. 2[5] in which
data is collected from another managed device (1) using
some standard management protocol as SNMP. After
that, in step (2), the collected data is analyzed, and then

J. Computer Sci., 2 (1): 92-96, 2006

 95

condensed. In step (3) creating the real management
information. Later on, managers make their analysis in
step (4) and, if required, take reaction in order to correct
weak points of the system.
 Based on Fig. 2, we have replaced the management
approach with another one shown in Fig. 3 adapted to
agents’ technology oriented. The types of used agents
are: data collected (AgF) used to coordination of
knowledge exchange between agents of the same
community.
 In the following, we describe each part of the
generic agent’s framework shown in Fig. 3 as follows:

(a) Data collector agents (AgP); this type of agents

retrieve data from devices and saves this
information on a local knowledge database. This
knowledge could be kept and processed locally and
then shared to a whole community through the
agents’ framework shown in Fig. 4. The most part
of data collector agent functionality-which is
collecting data- is implemented by special
knowledge rules loaded inside its knowledge
database. These rules, in association with native
knowledge implemented in the code of the agent,
allow them to interface managed equipment
through SNMP protocol. A signal data collector
may collect information from several different
devices. It could be setup with multiple different
goals, with one or more goals for each device.

Fig. 2: Network management workflow

(b) Management agent (AgM); are responsible for

the organization of operation between agents of the
same community .In addition, they can implement
a higher level of data analysis based on shared
knowledge (data) coming from several different
collector agents. Finally, management agents
coordinate multiple data collector agents on
working on a special set of devices and later
correlating that data. Besides, we have other types
of management agents associated to agent
community and not directly to network

Fig. 3: Network management with agents

Symbols used in Fig. 3 are given by the following:
AgP: collector agent
AgM: manager agent
AgI: Interface agent
AgF: Facilitator agent
KQML: knowledge query management language

Fig. 4: Generic agent structure

management environments. What we mean by this
is that those agents will be presented on any
agent community, not just on those dedicated to
management self-creation, agents that neural
network structure, wizard agents-those that hold
and share massive knowledge data base-and many
others being projected in order to create an agent
virtual world.
 The types of agents specially setup for
network management purposes are:

* Data analyzer; which analyzes data retrieved from
different knowledge bases, usually from distinct data
collector agents.

J. Computer Sci., 2 (1): 92-96, 2006

 96

* Data consolidator; which combines or correlate
data coming for a set of distinct data collector agents,
creating new consolidated information.
* Future value predictors; which are implemented
by using neural network structures designed for time
series prediction. With this class of agents our
intention is to implement entities that theoretically
could predict future values in a time series. This
feature is quite helpful in designing proactive
management system.
* Value classifiers; which are implemented by using
neural network as well, permit data classification in
scales, like HIGH, NORMAL, or LOW instead of
linear values. This classification is implemented by
pattern machines and high adjustable being even
possible to create neural network structures that adjust
themselves based on past values of the time series.
 So far the neural agents have been studied as an
improvement for the system functionality. Neural
agents work as servers for the neural network
structures, where batches of data are submitted for
processing and result returned. In the future we are
idealizing to have hybrid agents, with both rules- based
and neural structures, inside INTERFACE modules.

(c) Interface agents (AgI); are the bridges between

the agent communities and the human managers.
There are various possibilities for these interfaces,
like e-mail interfaces, terminal like interfaces and
web interfaces. Selecting which interface the
human manager prefers the friendlier interface in
some aspects are the terminal like interface, where
humans can "chat" with agents using structured
language similar to human's natural language.
Interface agents, like any other, have their
functionality structured inside the community and
also the agent world. When a new sentence is
input, the local parser, which is implemented by
means of rules inside the knowledge database, will
try to translate and understand it. If this is not
possible locally, usually due to lack of local
knowledge, the task will be escalated a more
skilled-inside the community or not- that will try to
get translation for it. If in the end the agents can't
still understand the human entered sentence it will
reply-as of current implementation an "I can’t
understand you" sentence as ask to repeat.

(d) Facilitator agents (AgF); are communication

management agents needed in the agent
community to work as brokers for the information
exchange process. They also implement some
useful tasks related to data exchanging like list of
available service names, routing, meditation and
translation.

CONCLUSION

 Managing the TOKENET local area network has
been the aim of this study. The reason behind selecting
this network type comes from the ability of this
network to be used for a high speed local area
computers network using bidirectional bus, all network
separations which must be executed through the agents
are based on the transmission and reception of control
packets (token).
 Tokens issued by the network and stations are used
to schedule packets transmission in the from of a train
on which a packet is admitted only after a reservation
has been issued by the original station. The algorithm
for the election of the end station, the recovery from
failure, and the insertion of a new station are all based
on special token transmission.The architecture of
TOKENET is completely distributed: any station may
be elected and station depending on which station is at
some time connected to the network. When end station
fail, replacements are elected among those stations that
survived the failure.
 The following will drive our future work:
 To integrate even closer the promising field of
neural networks inside current interface module, in a
transparent and extensible way. So, furthermore, we
will have truly hybrid agents that will be able to take
advantage of the best of both words. For network
management, we use a direct utilization by creating
neural structures to predict temporal series dynamically.
This would be used in proactive network management
through future value prediction.

REFERENCES

1. CHikhouhou, M.M., P. Conti, K. Marcus, J.

Labetoulle, 2000. A software agent architecture for
network management: Case studied and experience
gained. INSM Special Issue on Intelligent Agents
for Telecommunications Management, 8: 3.

2. Ajmone Marson, M. and Gerla, 1983. TOKENET-
A token based local area network. Proc.
Mediterranean Electron Technical Conf.,
Athens,Greece.

3. Fratta, L., F. Borgonovo and F.A. Tobagi, 1981.
The EXPRESS-NET: A local area communication
network, integration voice and data. Proc. Intl.
Conf. Performance of Data Communication
Systems and their Applications, Paris, France.

4. Andrew S. Tanenbaum, 2003. Computer Networks.
Fourth Edn., Pearson Education, Inc., Prentice Hall
PTR, Upper Saddle River, New Jersey.

5. Maes, P., 1994. Agents that reduce work and
information overload. Comm. ACM, 37: 7, U.S.A.

6. Stallings, W., 2000. Data and Computer
Communications. 6th Edn. Upper Saddle River,
N.J., Prentice Hall.

