
Journal of Computer Science 2 (9): 710-715, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Khalil Shihab, Department of Computer Science, SQU, Box 36, Al-Khod, 123, Oman
710

A Backpropagation Neural Network for Computer Network Security

Khalil Shihab

Department of Computer Science, SQU, Box 36, Al-Khod, 123, Oman

Abstract: In this paper, an efficient and scalable technique for computer network security is presented.
On one hand, the decryption scheme and the public key creation used in this work are based on a
multi-layer neural network that is trained by backpropagation learning algorithm. On the other hand,
the encryption scheme and the private key creation process are based on Boolean algebra. This is a
new potential source for public key cryptographic schemes which are not based on number theoretic
functions and have small time and memory complexities. This paper along with test results show that
the possibility of guessing keys is extremely weaker than using the Data Encryption Standard method
(DES), which is a widely-used method of data encryption. The presented results are obtained through
the use of MATLAB 6.5.1 software.

Key words: Security, encryption, decryption, neural networks

INTRODUCTION

 The problem of protecting information has existed
since information has been managed. However, as
technology advances and information management
systems become more and more powerful, the problem
of enforcing information security also becomes more
critical[1]. The massive use of the communication
networks for various purposes in the past few years has
posed new serious security threats and increased the
potential damage that violations may cause. As
organizations are increasing their reliance on computer
network environments, they are becoming more
vulnerable to security breaches. Private and public
sectors more than ever today depend on the information
they manage. A violation to the security of the
information may jeopardize the whole system working
and cause serious damages. Advances in artificial
neural networks (ANNs) provide effective solutions to
this problem[2], section 5 provides more details on
ANNs.

 The security problem is considered here as the
problem of keeping communications over the network
private. In other words, a secure network allows only
the intended recipient to intercept and read a message
addressed to her/him. Thus, protection of information is
required against possible violations that can
compromise its secrecy (or confidentiality). Secrecy is
compromised if information is disclosed to users not
authorized to access it. While the encryption scheme
used in this work is based on Boolean algebra, the
decryption scheme here is based on a neural network
techniques that uses backpropagation learning
algorithm.

Data encryption: The data transferred over Public
infrastructure should be unreadable for illegal purposes.
The fundamental of encryption technique is to map the
data to a domain in a manner that is safe from sniffing.
Two major techniques used in encryption are:
Symmetric encryption and Asymmetric encryption[3, 4].
In Symmetric encryption method, a common key is
shared among participants. This is used in both
encoding and decoding processes. The sender encrypts
the message (M) using a key (K) to generate the
codeword (E), i.e.,
E = Encrypt (K, M) (1)
 The resulting codeword is decrypted using the
common key after being sent through the network and
is received by the receiver, i.e.
M = Decrypt (K, E) (2)
 In Asymmetric encryption model, two keys are
assigned to each member: Private key, which is
exclusively confined to the user and Public key, which
is published among other members by the user.
Theoretically, the encryption function is such that the
message encrypted with the Public key, is not decrypted
unless by the means of corresponding private key and
the message encrypted with the private key, is not
decrypted unless by the means of corresponding Public
key. The relation between encryption and decryption by
these two keys can be mathematically shown. If M is
the message, Pub_Ui shows the ith user’s Public key
and Prv_Ui is the ith user’s private key, then:
M=Decrypt[Pub_Ui, Encrypt(Prv_Ui, M)] (3)
iff <Pub_Ui, Prv_Ui > ∈ Ui
where Ui is the ith user’s key set.
Also:
M=Decrypt[Prv_Ui,Encrypt(Pub_Ui,M)] (4)
iff <pub_Ui, prv_Ui > ∈ Ui

J. Computer Sci., 2 (9): 710-715, 2006

 711

 Therefore, to send a private message, the sender
encrypts the message using the receiver’s Public key
and transfers it through Public infrastructure. On the
other side, the receiver decrypts the encoded message
by the help of its own private key. An encryption
mechanism can also be used to authenticate the sender
of a message. The technique is known as a digital
signature. To sign a message, the sender encrypts the
message using his or her private key. The recipient uses
the inverse function and the sender’s Public key to
decrypt the message. The recipient knows who has sent
the message; because, only the sender has the key
needed to perform the encryption. To ensure that
encrypted messages are not copied and resent later, the
original message can contain the time and date that the
message was created. Interestingly, two level of
encryption can be used to guarantee that the message is
both authentic and private. First, the message is signed
by using the sender’s private key to encrypt it. Second,
the encrypted message is encrypted again using the
recipient’s Public key. Mathematically, double
encryption can be expressed as:
X=Encrypt[Pub_U2, Encrypt(Prv_U1,M)] (5)
 Where M denotes a message to be sending, X
denotes the string resulting from the double encryption,
Prv_U1 represents the sender’s private key and Pub_U2
denotes the recipient’s Public key.

 At the receiving terminal, the decryption process is
the reverse of the encryption process. First, the recipient
uses his or her private key to decrypt the message. The
decryption removes one level of encryption, but leaves
the message digitally signed. Second, the recipient uses
the sender’s Public key to decrypt the message again.
The process can be expressed as:
M=Decrypt [Pub_U1, Decrypt(Prv_U2,X)] (6)

 Where X denotes the encrypted string that was
transferred across the network, M denotes original
message, Prv_U2 denotes the recipient’s private key
and Pub_U1 denotes the sender’s Public key. If a
meaningful message results from the double decryption,
it must be true that the message was confidential and
authentic. The message must have reached its intended
recipient because only the intended recipient has the
correct private key needed to remove the outer
encryption. The message must have been authentic,
because only the sender has the private key needed to
encrypt the message so that sender’s Public key will
correctly decrypt it[3, 4].

Model design: Suppose M is some N-bit initial
unipolar data, i.e.,
Mi = {0, 1}, 0 � i � N-1 (7)
 The encryption process includes two functions:
Permutation and Doping. In the following subsections,
we will describe these two functions.

Permutation function: This function contains a vector
P of 2N elements, whose elements are in [0, 2 N-1]
interval. This vector should not have repeated elements.
P = < p0, p1, … ,p2N- 1 > (8)
0 � pi � 2N - 1
pi � pj If i � j
Where < p0, p1, … ,p2N- 1 > is an n-Tuple.
If we let Val (M) be as follows:
Val(M)=2N-1*MN-1+2N-2*MN-2+…+20*M0 (9)
Then the Permutations (Perm) can be defined as
follows:
Perm (M) = Bin [Pval(M)] (10)
 Where Bin (X) returns the binary form of X. In
other words, the Permutation function maps the string
M of value V onto a string located at Vth position of the
P vector. Note that vector P includes 2N unrepeated
elements reveals that the Permutation is a bijective
function, i, e.,
M � M' <==> Perm (M) � Perm (M') (11)

Doping function: This function includes an N'-element
vector, D, whose elements are in [0, (N+ N'- 1)]
interval. N' is a selective number. The vector D should
contain no repeated elements as well. The Doping
function makes the (N + N')-bit string E, from N-bit
string S as follows:
* For each i ∈ D: Ei = Fi (S).
 In which Fi can be any Boolean function.
* N non-permutated elements of E are

correspondingly permutated with S elements.
For example, suppose:
S = [0 1 0].
D = [0 2 5].
E0 = F0 (S) = S0 AND S1.
E2 = F2 (S) = S0 OR S1 OR S2.
E5 = F5 (S) = E0 OR E2.
Therefore,
E = [1 0 1 1 0 0].

Model description: The permutation function operates
over an N-bit message M to produce an N-bit result S,
i.e.,
S = Perm (M) (12)
 S will be presented to Doping function, then the (N
+ N')- bit result, i. e, E, will be generated.
E = Dop (S) (13)
 E is represented as the encrypted data. In this
model, the private key is:
Prv_U = {P, D, N', Fi} (14)

Guessing the private key: For the 2N-element vector
P, there are (2 N!) states and for the N'-element vector
D whose elements are in the [0, (N + N'-1)] interval,
there are (N+N')! /N! states. Also, there are 22N states
for each of N-variable Fi functions. Consequently, even
under the assumption that N' is known, the overall
number of states is as follows:
Total States=2N!*(N+N')!/N!*2N'*2N (15)

J. Computer Sci., 2 (9): 710-715, 2006

 712

 It is clear that this space is much larger than the
256 state spaces through Data Encryption Standard
(DES), which has been used widely, even by choosing
small values for N and N'. As an example, if N=5 and
N' = 1, then these values generate a space of 1029 times
larger than that of DES.

Artificial neural networks (ANNs): A neural network
is a massively parallel-distributed processor made up
from simple processing units, which has a natural
propensity for storing experiential knowledge and
making it available for use. The use of neural network
offers the Input-Output Mapping property and
capability[2,5-9].
 The ANNs learning algorithms can be divided into
two main groups that are supervised (or Associative
learning) and unsupervised (Self-Organization)
learning[2, 5, 10]. Supervised learning learns based on the
target value or the desired outputs. During training the
network tries to match the outputs with the desired
target values. It is presented with an example picked at
random from the set and the synaptic weights of the
network are modified to minimize the difference
between the desired response and the actual response of
the network produced by the input signal in accordance
with an appropriate statistical criterion. The training of
the network is repeated for many examples in the set
until the network reaches a steady state, where there are
no further significant changes in the synaptic weights.
The previously applied training example may be
reapplied during the training session but in a difference
order. Thus the network learns from the examples by
constructing an input-output mapping for the problem
at hand[5].
 Unsupervised learning method is not given any
target value. A desired output of the network is
unknown. During training the network performs some
kind of data compression such as dimensionality
reduction or clustering. The network learns the
distribution of patterns and makes a classification of
that pattern where, similar patterns are assigned to the
same output cluster. The Kohonen Self-Organizing
Map (SOM) network is the best example of
unsupervised learning network[5].
 SOM has been used to provide a graphical
representation of the analysis, highlighting outliers that
may suggest suspicious activity[6, 7, 10]. In our
cryptography process, we used a feed-forward network
implementing the back propagation algorithm[11, 12].

Using neural network to learn the public key: An
encrypted message has (N+N') bits. However, it will
have only 2N valid states. No other state is generated.
To learn the Public key, the valid states are fed to a
supervised neural network. We will expect that the
initial message M will show up as the output. In other
word, training set will be the following pairs:
{(E0, M0), (E1, M1)…(E2N-1, M2N-1)} (16)

 Where Ej and Mj are encrypted string of length
(N+N') and N-bit initial string, respectively.
 Having been trained in this way, the structure and
the weights of the network are presented as a Public
key.
Pub_U=< Net, W > (17)

The backpropagation neural network: One of the
most commonly used supervised ANN model is
backpropagation network that uses backpropagation
learning algorithm[2, 12, 13]. Backpropagation (or
backprop) algorithm is one of the well-known
algorithms in neural networks. The introduction of
backprop algorithm has overcome the drawback of
previous NN algorithm in 1970s where single layer
perceptron fail to solve a simple XOR problem. The
backpropagation neural network is essentially a
network of simple processing elements working
together to produce a complex output. These elements
or nodes are arranged into different layers: input,
middle and output. The output from a backpropagation
neural network is computed using a procedure known
as the forward pass[2, 5, 14, 16]:
* The input layer propagates a particular input

vector’s components to each node in the middle
layer.

* Middle layer nodes compute output values, which
become inputs to the nodes of the output layer.

* The output layer nodes compute the network output
for the particular input vector.

 The forward pass produces an output vector for a
given input vector based on the current state of the
network weights. Since the network weights are
initialized to random values, it is unlikely that
reasonable outputs will result before training. The
weights are adjusted to reduce the error by propagating
the output error backward through the network. This
process is where the backpropagation neural network
gets its name and is known as the backward pass:
* Compute error values for each node in the output

layer. This can be computed because the desired
output for each node is known.

* Compute the error for the middle layer nodes. This
is done by attributing a portion of the error at each
output layer node to the middle layer node, which
feed that output node. The amount of error due to
each middle layer node depends on the size of the
weight assigned to the connection between the two
nodes.

* Adjust the weight values to improve network
performance using the Delta rule.

* Compute the overall error to test network
performance.

 The training set is repeatedly presented to the
network and the weight values are adjusted until the
overall error is below a predetermined tolerance. Since
the Delta rule follows the path of greatest decent along
the error surface, local minima can impede training.
The momentum term compensates for this problem to
some degree.

J. Computer Sci., 2 (9): 710-715, 2006

 713

Cipher block chaining: In order to complicated
decryption for illegal people, cipher block chaining can
be used so that each plaintext block is XORed with the
previous cipher block before being encrypted. Thus, the
encryption will not be context free. The first block is
XORed with the initial vector that is randomly selected.
In other word, encryption steps will be as follows:
C0 = Encrypt (P0 Xor IV).
C1 = Encrypt (P1 Xor �0).
C2 = Encrypt (P2 Xor �1).
C3 = Encrypt (P3 Xor �2).
In general, Ci is as follows:
Ci = Encrypt (Pi Xor �i-1) (18)
 Where IV is initial vector, Pi is ith plaintext, Ci is
ith cipher text and �i is a window cut of Ci so that the
length of �i be equal to the length of Pi. Decryption is
also done via the following procedure:
P0 = IV Xor Decrypt(C0).
P1 = �0 Xor Decrypt(C1).
P2 = �1 Xor Decrypt(C2).
P3 = �2 Xor Decrypt(C3).
In general, Pi can be represented as follows:
Pi = �i-1 Xor Decrypt(Ci) (19)
 It is observed that encryption of ith block is a
function of all plaintexts in block 0 through (i-1).
Hence, depending on where the plaintext is located,
different cipher texts are generated from the same text.

Implementation: In our simulation, an initial 12-bit
data set has been used, (N=12) and 4 bits are doped
through encryption process (N' =4). P & D vectors are
produced randomly after considering essential
conditions (unrepeated elements). We use the following
Boolean functions:
F3 = S3 Xor S1.
F8 = S8 Xor S4 Xor S2 Xor S0.
F12 = S11 Xor S6 Xor S3.
F13 = S11 Xor S9 Xor S7 Xor S5.
Table 1 shows a few examples.

Table 1: Some of the encryption results
M Perm((M) Dop(S)
000000000000 101010111101 1000101101111101
000000011000 011011111000 0110101111111000
010101001100 111110110111 1101111001101111
010101010010 001101110111 0001110011101111
010101010111 100111010011 1000011110101011
010101011010 010111010101 0111011010100101
010101011110 000100101000 0011010101011000
010101100100 001100000101 0010110100000101

 The neural network used in the decryption process
is a 3-layer feed-forward network implementing the
back propagation algorithm. There are 16 neurons in
input layer, 24 neurons in the hidden layer and 12
neurons in the output layer. Figure 1 shows the
architecture of the neural network. To implement our
neural network we used the Neural Network Toolbox in
MATLAB.
 At the beginning of the learning process, the
weight matrices between input and hidden layer (IW
{1,1}) and between hidden and output layer (IW {2,1})
are initialized with the random values in the [-0.5, 0.5]
interval. Vectors for hidden neuron biases (b {1}) and
output neuron biases (b {2}) are also initialized with

Fig. 1: Neural network architecture in decryption
process

Fig. 2: Original signal before encryption

Fig. 3: XORed signal

Fig. 4: Permuted signal

random values. In the hidden and output layers, the
linear activation functions have been used. After several
iterations, when the difference between the calculated
output and the desired output is less than the threshold
value, the iteration is stopped.

J. Computer Sci., 2 (9): 710-715, 2006

 714

RESULTS

 In order to evaluate the discussed mechanism, the
encryption and decryption steps of a typical digital
signal are shown below. Figure 2 shows original signal
in a plain form. Figure 3 shows the signal in a chained
form. The value of this signal in each time sample is the
XORed of original signal value in the same time sample
and previous time sample of encrypted signal. In our
experiment, IV is “10101001100” and the window is
put over the first twelve bits. Figure 4 and 5 shows the
permuted and doped signal respectively. The result
shows that the encryption mechanism is not a
contextfree process. It is seen that, although that the
original signal has same values in 7th and 8th time
samples, but the encrypted signal has different values
right in the same time samples. This condition is
repeated in 11th and 12th time samples. Figure 6 and 7
show the artificial neural network outputs and
decryption signals respectively.

Fig. 5: Encrypted signal

Fig. 6: Neural network output

Fig. 7: Decrypted signal

CONCLUSION

 As the computer network grow, the encryption
mechanisms are of notable importance. In particular,
the asymmetric encryption models have been always
deeply considered because of their wide range of usage.
However, finding two pair functions for encryption and
decryption that satisfy the necessary conditions for
providing computational strength and safety that has
always been a serious problem.
 In this work, we provide a new asymmetric
encryption mechanism based on artificial neural
networks. First, we presented the overall methods of
encryption, and then we explored the necessary
conditions of asymmetric methods. Next, we presented
a model for the encryption mechanism that is based on
Boolean algebra. We then used a neural network to
learn the decryption mechanism. Finally, the simulation
results showed that after training the artificial neural
networks, it can be used effectively as a decryption
function.

REFERENCES

1. Modaressi, A.R. and S. Mohan, 2000. Control and

management in Next-Generation Networks:
challenges and opportunities. IEEE Commun.
Mag., 38: 94-102.

2. Russell, S. and P. Norvig, 2003. Artificial
Intelligence: A Modern Approach. 2nd Edn.
Prentice Hall, Inc.

3. Comer, D., 2001. Computer Networks and
Internets with Internet Applications. 3rd Edn.
Prentice Hall, Inc..

4. Alfred, J.M., P.C. van Oorschot and Scott, 2001.
Handbook of Applied Cryptography. 5th Edn. CRC
Press.

5. Kohonen, T., 1997. Self-Organizing Maps.
Springler-Verlag, Berlin.

6. Sin, Y.L., W.L. Low and P.Y. Wong, 2002.
Learning fingerprints for a database intrusion
detection system. Proc. 7th Eur. Symp. Research in
Computer Security, Zurich, Switzerland, pp: 264-
280.

7. Lee, S.C. and D.V. Heinbuch, 2001. Training a
neural network-based intrusion detector to
recognize novel attacks. IEEE Trans. Systems,
Man and Cybernetics Part A: Systems and
Humans, 31: 294-299.

8. Zhou, T., X. Liao and Y. Chen, 2004. A novel
symmetric cryptography based on chaotic signal
generator and a clipped neural network. Advances
in Neural Networks-ISNN, Intl. Symp. Neural
Networks Proc., Part II. Lecture Notes in Computer
Science, 3174: 639-644

J. Computer Sci., 2 (9): 710-715, 2006

 715

9. Dokas, P., L. Ertoz, V. Kumar, A. Lazarevic, J.
Srivastava and P. Tan, 2002. Data mining for
network intrusion detection. Proc. NSF Workshop
on Next Generation Data Mining.

10. Leonid, P., E. Eskin and S.J. Stolfo, 2001.
Intrusion detection with unlabeled data using
clustering. Proc. ACM CSS Workshop on Data
Mining Applied to Security.

11. Wang, K. and S.J. Stolfo, 2004. Anomalous
payload-based network intrusion detection. Proc.
7th Intl. Symp. Recent Advanced in Intrusion
Detection (RAID), pp: 201-222.

12. Nong, Y., S. Vilbert and Q. Chen, 2003. Computer
intrusion detection through EWMA for auto
correlated and uncorrelated data. IEEE Trans.
Reliability, 52: 75-82.

13. Li, C., S. Li, D. Zhang and G. Chen, 2004.
Cryptanalysis of a chaotic neural network based
multimedia encryption scheme. Advances in
Multimedia Information Processing PCM 2004
Proc., Part III, Lecture Notes in Computer
Science., Springer-Verlag, 3333: 418-425

14. Yen, J.C. and J.I. Guo, 2002. The design and
realization of a chaotic neural signal security
system. Pattern Recognition and Image Analysis
(Advances in Mathematical Theory and
Applications), 12: 70-79.

15. Li, S. and X. Zheng, 2002. Cryptanalysis of a
chaotic image encryption method. Proc. IEEE Intl.
Symp. Circuits and Systems, 2: 708-711

16. Lian, S., G. Chen, A. Cheung and Z. Wang, 2004.
A chaotic-neural-network-based encryption
algorithm for JPEG2000 encoded images.
Advances in Neural Networks, Intl. Symp. Neural
Networks Proc., Part II, Lecture Notes in Computer
Science, 3174: 627-632.

