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Abstract: In the systems on chip (SoC) design, the synthesis of communication architecture 
constitutes the bottleneck which can affect the performances of the system. Various schemes and 
protocols can be necessary, just as various topologies of interconnection. To reduce the complexity of 
the communications refinement, we present in this study a model and a synthesis approach for multi-
bus communication architecture containing centralized bridge. The automation of the arbiter synthesis 
step profited from a detailed attention. This stage generates a hierarchical arbiter integrating various 
priority arbitration modules. The proposed approach was integrated in a toolbox based environment. 
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INTRODUCTION 

 
 The systems on chip (SoC) equip more and more 
systems in fields as varied as general public electronics 
or communications. These systems are carried out 
starting from preset blocks (IP: Intellectual Property) 
that allow the reuse of the simple blocks (memory, etc) 
and complexes blocks (DSP, DMA, ASIP, etc). There is 
already thinking about designing reusable SoC in their 
turn, comprising a reconfigurable interconnected 
network and a RISC processor. The reconfiguration 
technique is appropriate for a series of applications that 
could be classified in the same field (image processing, 
telecommunication, etc). Because of important fall of 
cost realized thanks to the efforts made at the hardware 
level, an additional cost is added for the software part 
of these applications reaching today about 80% of the 
total cost of development[1]. To reduce in a significant 
way the software costs, the manufacturers of SoC 
generally choose to use the hierarchical standard buses 
(AMBA, STbus, etc). The objective is to be able to use 
owner’s solutions, although IPs are not always 
compatible. Another solution consists in using the 
networks on chip (NoC) which are completely 
reconfigurable and which are connected with 
programmable circuits with a very important rate of 
integration. The use of SoC is also justified by the great 
availability of IPs components from a large number of 
manufacturers such as ARM, Hitachi, MIPS, etc. These 
companies propose RISC processors in the form of IP 
with performances which vary according to the 
application to realize. ARM preceded its principal 
competitors while selling more than 400 million RISC 
processors for embarked systems only for the year 
2000[2]. 
 The establishment of a solution of communication 
in a SoC is a crucial task which must take account of 
the delays due to the communications. It should be 
noted that these deadlines are increasingly weak taking 

into account the fact that technology is more and more 
accurate. The principal manufacturers of SoC propose 
standard buses which are used and recognized by the 
majority of the IPs. The choice of architecture of 
adequate communication then poses a broad range of 
problems which consist of optimizing several criteria at 
the same time. 
 Our objective is to develop an extensible model 
and an interactive approach of synthesis of 
communications architectures containing multi-bus 
bridges. The basic tasks of this approach consist of the 
synthesis of adapters of the communications protocols, 
the synthesis of arbitration and the generation of a 
parameterised multi-bus bridge.  
 
Related works: The work undertaken by several teams, 
researchers and industry, referring to the integration of 
the communication within a SoC focused on the study 
of the new resources for the design of the SoC. New 
technologies appeared and various types of 
communication are studied. These resources from now 
on are among the elements influencing the 
performances of the SoC. The majority of these works 
concentrated on the exploration of the solutions space[3-

5] known as optimal to lead sometimes to a system 
which can include more than one bus. The components 
having then the most affinities at communication 
regards will be placed on the same bus. The various 
buses will be generally connected between them by a 
set of bridges. These bridges will be given the 
responsibility to make the adaptation (two by two), 
according to needs for the application to realize. 
  A comparison between various architectures of 
SoC equipped with a guide of selection of an 
architecture given according to the application to 
establish was presented[6]. Liang proposes an 
infrastructure of adaptive communication of a SoC 
which can be reconfigured on the application level[7]. 
New high performance architecture for the design of the 
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SoC (LottryBus) was presented[8]. This architecture is 
equipped with an arbiter (Lottry Manager) which 
allows the assignment of the priorities to the askers 
while basing itself on a law of probability which takes 
account of the history of communication for each 
requester performance of this technique was compared 
with a set of traditional techniques of arbitration (Fixed, 
TDMA, etc) for various classes of applications. The 
weak point of this technique is that it does not consider 
the problem of arbitration for a multi-bus system. The 
Sonics Company[9] proposed a new generation of bus 
Silicon Backplane using micro-networks. This 
technology consists in connecting several components 
through modules of interface to the micro-network. The 
limit of this new generation of bus is that surface used 
is more important than that used by a bus. As the 
performances of micro-networks although they are 
better as those of a bus are not always enough to meet 
the needs for certain applications. 
 The presented approaches do not allow the 
exploration of the arbitration space. They generally 
choose a given mechanism of arbitration or in extreme 
cases leave the choice with the designer to fix the mode 
of priority which adapts best to its application. 
Moreover, the approaches suggested are not addressed 
to the automation of the phase of generation and 
synthesis of a single bridge in the case of a multi-bus 
architecture. They use a structure of distributed bridges 
by affecting a bridge for each couple of buses. In this 
study we focused on architecture of centralized bridge. 
The selection of the modules to be used for the 
adaptation and the arbitration is done starting from a 
parameterised communication library. This library 
makes it possible to mask the communications 
protocols details from the user. The bus arbiter present 
inside the bridge allows to manage the communications 
between two components belonging to the same bus 
(internal communication) and even allow exchanges 
between components belonging to different buses while 
passing by the bridge (external communication). In 
order to minimize the latency time, we propose a 
hierarchical arbiter by associating a level of arbitration 
each level of communication (internal or external). In 
the other approaches, the external communication is 
done in two stages. The initiator of the communication 
or master takes the control of its bus and reaches the 
bridge behaving then like a slave. The bridge then 
formulates a request to obtain the access to the bus 
connected to the slave and thus acts as a master on this 
bus. The priority assignment in our approach is based 
on a cost function to be minimized and can lead to a 
mixed arbitration using various priority modes. 
 
Synthesis of communication architecture for SOC: 
The use of the bridges in a SoC is necessary when the 
adaptation between several sub-networks 
communication must be operated. This established fact 

arises when the architecture of communication is 
treated on a hierarchical basis in order[10]:  
 
* To offer the necessary performances locally; 
* To accentuate parallelism by using concurrent 

resources of transport; 
* To make defer the problems of incompatibility of 

protocols of the various sets of processor/bus, on 
single composing and allow as much as possible 
the use of the native protocols. 

 
 In this work we assume that we have a set of buses 
and that the processors of same affinities in terms of 
communication were allocated on the same buses. This 
phase can be made by an approach of architectural 
exploration such as[3]. The problem of synthesis can be 
formulated as a problem of generation of a centralized 
bridge containing structures of adaptation and levels of 
arbitration. This bridge will make it possible to adapt 
two resources of communication belonging to the same 
bus or different buses but guaranteeing a given 
bandwidth. 
 
Bridge model: The model of the bridge proposed can 
be regarded as an application specific of the adapters to 
the connection of several buses supporting each one 
several masters. It allows two essential tasks which are 
arbitration and adaptation. To ensure a communication, 
the initiator sends a request and addresses to the 
component with which it wants to communicate. By a 
mechanism of address decoding and priority 
management inside the bridge, the target components 
will be identified. If the target belongs to the same bus 
with the master it will be managed by an internal level 
of arbitration associated with the bus itself. If it belongs 
to a bus other than that of master it will be managed by 
a level of external arbitration associated with the 
various buses of architecture. The data exchanged by a 
master on its bus follow a protocol of exchange which 
can not be supported by the bus connected to the 
targeted slave. The bridge then allows the adaptation of 
these two protocols. 
 To uncouple the synchrony from the various buses 
we call upon mechanisms of buffer memory (FIFO). 
The costs and the performances relating to these 
components rise from the implementations of the finite 
states machines carrying out the various protocols and 
managing these memories. These components must 
support the bandwidths suitable for each bus adapted in 
order to optimize the use of these shared resources of 
communication. FIFOs being dimensioned to deal with 
a small number of packets are small. As for the 
adapters, when the protocols to be adapted are not more 
usual, it is necessary to develop specific models to the 
considered pairs of bus. These components answer a 
quite precise specification: to adapt two resources of 
communication supporting a given bandwidth. 
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If we take a system which, after study of the space of 
solutions, led to the use of two different buses only, 
then it will be necessary to adopt the architecture of 
Fig. 1. The exchanges are done while passing by two 
FIFOs (FIFO I and FIFO O) allow the management of 
the transfers between buses with different speeds. 
 In addition to the units of adaptation, arbitration 
levels, address decoder and FIFOs, the bridge includes 
a control unit of communication and a set of 
multiplexers. Figure 2 presents the model which will be 
used to control the communication in the case of three 
buses and to define the dataflow direction according to 
whether the operation is a reading or a writing. This 
task is assured by the control unit. This unit must 
command at the same time the adequate modules of 
adaptation for the selected operation. 
 

Bus 1   Bus 2   

C1   C2   C3   C4   

M1   M2   

Fifo I   

Fifo O   

Arbitration   

Adaptation   

Control   

Bridge 

 
 
Fig. 1: Structure of a bridge for a system with two buses 
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Fig. 2: Control of data path in the case of three buses 
 
Adapter’s synthesis: Our approach consists in 
realizing, starting from the non-coherent interfaces, 
models of adapters for each couple of bus on the level 
of width, control signals and speed. The synthesis 
method is based on models of interfaces for buses 
which are stored in a library envisaged to this end. This 
library contains various models of bus with the 
necessary modes which are sometimes specific for 
them. 
 The design of an adaptation module starts with the 
study of the temporal specifications of the protocols for 

each couple of bus. These specifications contain the 
main part of information which will lead to validate the 
model to be conceived with knowing the relations of 
causality as well as the temporal constraints between 
the different signals. The next step consists in 
extracting the respective finite states machines (FSM) 
of these buses for the chosen mode, from the temporal 
specifications. The finite states machines approach is 
used for modelling sequential protocols. For a complex 
protocol which can be the seat of several states which 
are active simultaneously, the adapted model is the 
extended finite states machines or EFSM[11]. By 
amalgamation of the two FSM corresponding to the two 
incompatible protocols then we generate the FSM of the 
adapter. The technique of amalgamation of the FSM 
was presented[12]. Finally, the FSM of the adapter will 
be transformed into a VHDL description on RTL level 
so that it can be synthesized by the commercial tools. 
 Figure 3a shows result of simulation of the 
adaptation between the PCI/AMBA adapter in read 
mode. Figure 3b shows result of simulation of the PI-
BUS/AMBA adapter in write mode. The signals 
master_size and master_items are combined to maintain 
the signal initially called LOCK in the AMBA interface 
model and this as long as the Count signal did not reach 
zero value, to be compatible with the sending of the 
burst type supported by these two models of bus. 
 

 
(a) 

 
(b) 
Fig. 3: Simulation results of (a): PCI/AMBA buses in 

read mode and (b): PI-BUS/AMBA buses in 
write mode 

 
 The addressing of the components, IP blocks or 
memories present within architecture is done by an 
address bus. The selection of a component present on a 
bus is done while placing an address included in a quite 
precise range, which was affected to it at first. Each 
component will have a range of addresses by which one 
will be able to address it.  
 
FIFO dimensioning: The data path is primarily made 
of FIFOs. This mechanism allows the adaptation of 
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buses having different periods of transfers, different 
widths buses or both at the same time. For example, for 
a bus of 16 bits which communicates with another of 8 
bits width, the transfer will be done in two times (two 
bytes). 
 The buses used can produce data in burst mode. 
The data storage in an intermediate buffer can appear a 
better solution than to make function the whole of the 
system at the frequency of the slowest bus. The data 
can thus be transferred by using a FIFO with two 
possibilities of protocols (blocking or non-blocking). 
The blocking protocol uses the signals Full and Empty 
for synchronization. The non-blocking protocol does 
not use any signal to announce the current state of the 
FIFO. Such a protocol is used when the specifications 
of the consumer and the producer guarantee that none 
of both can overload the other. 
 The width in bits and the depth in words of the 
FIFO must be dimensioned for a minimal loss of 
data[13]. In order to reduce the number of transfers for a 
communication between the two buses, the width of the 
queue bwQ is given by: bwQ = max [bwbus1, bwbus2] 
with bwbus1 and bwbus2 respectively represent the 
width of bus1 and bus2. The depth of the queue Qn 
must be given in a manner to minimize its size by the 
formula: Qn = max (0, Qn-1 + (Pn – Cn)) where Pn and 
Cn represent the quantity of data respectively produced 
and consumed at moment n. 
 
Bridge operating mode: The activation of the various 
modules present in the adapter is controlled by the 
couple arbiter/decoder of addresses. When the adapter 
is not requested, it is in the Idle state (Free), it does not 
activate any of the modules. It waits then for Reset 
signal or a request for exchange coming from one of the 
applicants, the target of the communication is identified 
by the address variable Dest and the state passes then in 
a state where the applicant and the target are both 
activated. The control unit of the bridge communicates 
with the modules of the adapter via two lines of 
acknowledge at 4-phases (Req, Ack). Once selected, a 
module awaits an event on the Req line and carries out 
the control of communication. Data are transferred via 
FIFOs. These FIFOs are controlled, at the wished 
moment, by the control signals. After having finished 
the control of communication, the selected module 
activates the Ack line. As long as they are not selected, 
the other modules put the Ack line in high impedance in 
order to protect this line from a possible conflict. 
Having received the response via the Ack line, the 
control unit de-asserts the Req line and waits until the 
Ack line is de-asserted, so that it de-asserts the function 
in course of operation. Finally, the control unit waits 
until the Grant lines are de-asserted. Indeed, the control 
unit will be activated only when it sees an event on one 
of the Grant lines generated by the arbiter indicating 
that a master gained the access to system bus. The 
decision  to  select  a  block  or  another  is  done  by the  
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Fig. 4: (b) CG associated to the hypothetic system 

presented in (a) 
 
function of control following the address transmitted to 
the bus by the Master who gained the access. When an 
address is not defined in the model of the decoder of 
addresses, an Illegal_Address signal is positioned and 
could be used for a treatment of error. For any other 
value of address there is positioning CS to 1 
corresponding to the specific range of the addressed 
module. 
 During the activation of the Read burst block or 
Write burst block, a signal Mask-Reqs is sent by the 
Master of bus to the module of arbitration so that it can 
answer no applicant of bus during all the duration of the 
transfer. This signal will be de-asserted as soon as the 
transfer in progress is finished and the bus was put in 
high impedance.  
 

ARBITER SYNTHESIS 
 
 The need for an effective arbitration is one of the 
most important constraints in the communication 
synthesis for SoC. It is necessary to synthesize arbiters 
who allow as well as possible to manage the requests 
for access to the various buses in order to optimize the 
latency times between two successive accesses. We 
presented a technique which allows the assignment of 
the priorities to the askers, in a manner which 
minimizes the latency time between two successive 
occupations of the bus[14]. This time represents wasted 
average time so that a component gains the access to 
the bus. The orders of the priorities are assigned while 
being based on a cost function, combination of two 
metric, to minimize. 
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 Algorithm Priority Assignment 

{ /* Internal communication*/ 

For each system bus busj Do {  

read user set parameters /* K1(j), K2(j) */ 

For each component Ci which is allocated to busj Do { 

read the metrics associated with Ci /* faccess(j,i), Ftrans(j,i)*/ 

Internal_H_List(j,i) = K1(j)×faccess(j,i) + K2(j)×Ftrans(j,i) } 

ASSIGN_PRIORITY(Internal_H_List(j), Internal_Priority_List(j)) 

GENERATE_ARBITER_BUSj(Internal_Priority_List(j), Internal_VHDL_Description) } 

/* External communication*/ 

For both bus1 and bus2 Do {  

read user set parameters /* K1(1), K2(1), K1(2), K2(2)*/ 

For each component Ci of system components Do { 

If Ci is allocated to the bus1 Then { 

read the metrics associated with Ci relatively to bus2 /* faccess(2,i), Ftrans(2,i)*/ 

External_H_List(i) = K1(2)×faccess(2,i) + K2(2)×Ftrans(2,i) } 

Elsif Ci is allocated to the bus2 Then { 

read the metrics associated with Ci relatively to bus1 /* faccess(1,i), Ftrans(1,i)*/ 

External_H_List(i) = K1(1)×faccess(1,i) + K2(1)×Ftrans(1,i) }} 

ASSIGN_PRIORITY(External_H_List, External_Priority_List) 

GENERATE_ARBITER_BUS_1_2(External_Priority_List, External_VHDL_Description) } 

GENERATE_MULTIBUS_ARBITER(INTERNAL_VHDL_Description, External_VHDL_Description, Multibus__VHDL_Description)} 

 
 

 
Fig. 5: Algorithm of arbitration synthesis 

 
 The first metric is based on the shared frequency of 
access of   the   requester  to  the bus. The second 
metric is based on the size of the data to transfer by a 
requester  through  the  bus  during  all the lifetime of 
the  system. The   limitation   of   this   technique   lies 
in   the   fact   that we treated the case of only one bus 
by supposing  that  the Masters allocated with this last 
have different sets of priorities. This assumption 
enabled us to generate only an arbiter in fixed priority 
mode. 
 In this work we propose the extension of this 
technique in the case of a SoC by taking account of the 
internal communications within the same bus as well as 
of the external communications between two 
components belonging to different buses. Another 
extension relates to the generalization of the modes of 
the priorities is also made. Indeed, a requester can have 
more priority to reach a bus than another and at the 
same time less priority to reach another bus. A set of 
askers can have as the same set of priorities to reach a 
bus or another, but to profit from a priority different for 
another group of askers, etc. The arbiter to be 
developed must be hierarchical, integrating various 
modes of arbitration which are configurable according 
to each bus. 

Algorithm of arbitration synthesis: The proposed 
algorithm (Fig. 5) in the case of two buses starts while 
having a library of arbitration which gathers the most 
used mechanisms (Fixed, Round-Robin, Daisy-Chain, 
TDMA, First Came First Granted, etc). The second 
parameter is a Communication Graph (CG) which 
brings various information’s necessary for the 
communication of each component with each bus. 
 The basic task of this algorithm consists in the 
generation of an RTL description of a hierarchical 
arbiter to be integrated in the bridge. The assignment of 
the sets of priorities is based on a generalized 
performance index. The richness of the library also 
makes it possible to the user to choose a mode of well 
defined priority without taking account of the cost 
function. 
 A CG is a direct graph made of nodes and arcs. A 
node is associated with each component and an arc (Ci, 
Busj) is directed from the component to the bus. This 
arc utilizes the parameters of communication between 
component Ci and the busj. These parameters are used 
to calculate the cost function H(I, J) = K1(J) × 
faccess(I, J) + K2(J) × Ftrans(I, J). The metric faccess(I, 
J) = 1/T(I, J) represents the access frequency of 
component Ci to the busj. (T(I, J) represents the interval 
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of time which separates two successive accesses). 
Metric Ftrans(I, J) = (1/N(I, J)) × ftrans(I, J) takes 
account of the size of the data to transfer. In this 
expression, N(I, J) and ftrans(I, J) respectively represent 
the number of transfers of the data D(I, J) by 
component Ci through the busj and the frequency of a 
transfer (ftrans (I, J) = 1/TempProt (I, J)). TempProt (I, 
J) represents the total time employed during only one 
transfer. The two parameters K1(J) and K2(J) 
representing the weights of the function are fixed by the 
designer in order to privilege one of the two metric ones 
for the busj. For each bus, the highest priority is 
assigned with the component which have the greatest 
value of the function H(I, J). The components which 
have the same value of the function H(I, J) have the 
same set of priorities. The Fig. 4b, shows an example of 
a communication graph for the hypothetical architecture 
of the Fig. 4a. 
 In the case of the internal communication, the 
algorithm carries out the stage of assignment of priority 
for each busj and arranges the values in a list 
(Internal_H_List(j)). The ASSIGN_PRIORITY 
procedure schedules this list in an order ascending and 
generates a list of priority (Internal_Priority_List(j)). 
After having fixed the sets of priorities, another 
procedure GENERATE_ARBITER_BUSj) will be 
activated in order to generate a synthesisable VHDL 
description of the arbiter for each bus 
(INTERNAL_VHDL_Description). 
 In the case of the external communication, the 
algorithm carries out the stage of assignment of priority 
for the various buses and arranges the values in a list 
(External_H_List). Assignment of the sets of priorities 
and the generation of VHDL description 
(External_VHDL_Description) are realized by the same 
procedures used in the internal communication. 
 The instantiation of the various modules of 
arbitration is carried out by the 
GENERATE_MULTIBUS_ARBITER procedure. The 
output of this procedure is a VHDL description 
Multibus_VHDL_Description which will be integrated 
in the communication bridge. The details of VHDL 
descriptions of different sub-modules from arbitration 
as well as the technique of RTL synthesis are 
presented[12]. The method of instantiation in the case of 
system of Fig. 4a is presented as follows. 
 
Instantiation method of the arbitration modules: In 
the case of a multi-bus system, two possibilities of 
communication are possible for a given initiator. Either 
that the target is on the same bus with the initiator, or 
on a different bus. In the first case (internal 
communication), it is the module of arbitration 
associated with the bus in question which is given the 
responsibility to manage the priorities of the various 
components on this same bus. What improves the 
performances of the system since some of the transfers 
will be done concurrently. The arbiter who includes the 

modules of arbitration associated with each bus is 
called internal level of arbitration. As for the second 
case (external communication), it is the external level 
of arbitration which will manage the communication by 
checking the site of the component emplacement. In the 
suggested example (SoC with two buses), we suppose 
that the assignments cost functions are ordered by the 
arbitration synthesis algorithm like presented in Fig. 6. 
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Fig. 6: Scheduling of the sets of priorities in the case of 

an example of SoC with two buses 
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Fig. 7: Arbitration modules for internal communication 

with bus1 
 
 For the components allocated with the bus1, let us 

suppose that ( h7
1  = h1

1  = h2
1 ) > h5

1  > h12
1 ; where hi

1  
represents the cost function associated with component 
Ci. From this assignment we notice that the applicants 
(1, 2, 7) have the same set of priorities to access bus1. 
A module of arbitration (R(3) in Fig. 7) in round-robin 
priority mode or TDMA mode with identical temporal 
window must be designed. Indeed these modes are 
generally reserved to the applicants of equal priorities. 
Each applicant associated with this module must have a 
set of priorities higher than the component 5 which has 
a priority higher than component 12. Therefore, 
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applicants 5 and 12 are grouped together and will be 
used in fixed priority mode for two applicants (F(2) in 
Fig. 7). Indeed, this mode is generally reserved to the 
applicants of different priorities. As long as applicants 
1, 2 and 7 have a set of priorities which is higher than 
that of applicants 5 and 12, each applicant of the 
module F(2) is only served if there is no request 
deposited with the module R(3). This is assured by the 
fixed priority arbiter with two requesters (F_int(2) in 
Fig. 7). In this figure, Ri

1 and Gi
1 respectively represent 

the signal of request for bus deposited by component Ci 
to the arbiter and the signal of acknowledge sent by this 
arbiter to component Ci. 
 For the components allocated with the bus2, we 

have h10
2  > ( h3

2  = h6
2 ) > ( h4

2  = h9
2  = h11

2 ) > h8
2 . The 

same procedure as in the case of the communication 
through the bus1 is to be followed for the development 
of the module of arbitration. We notice that we cannot 
group the applicants which have different sets of 
priorities but non consecutive in the same module at 
fixed priority (e.g. applicants 10 and 8). The two 
modules of arbitration corresponding to bus 1 and 2 
constitute the internal level of arbitration and can be 
activated simultaneously in the case of an internal 
communication. 
 In the case of an external communication, the 
transfer of the data and control is ensured through the 
bridge. To communicate with an external bus, a given 
component must gain the access to its local bus and the 
external bus. Indeed, we can encounter the case where a 
component allocated with the bus1 wants to 
communicate with a component allocated with the bus2 
and at the same time another component allocated to 
the bus2 wants to communicate with another 
component allocated to bus1. What we call cross 
communication. Thus the components allocated with 
the bus1 and the bus2 must be managed by the same 
level of arbitration like it was envisaged by the 
algorithm of arbitration. In the suggested example, let 

us suppose for example that ( h7
2 = h4

1 = h9
1 = h11

1 ) > 

( h1
2 = h2

2 = h5
2 ) > ( h3

1 = h6
1 = h8

1 = h10
1 = h12

2 ). It would be 
necessary to follow the same steps as in the case of the 
internal communication to generate the modules of 
arbitration corresponding at the external level of 
arbitration. 
 For the instantiation of the various levels of 
arbitration, we suppose that the priority to reach an 
internal bus is higher than the priority giving access to 
an external bus. This is obvious as long as the 
applicants who frequently communicate are allocated 
within same buses[4]. For this reason, the external level 
of arbitration will not be activated that if there is no 
request deposited at the internal level of arbitration. 
This is done by the same principle as in the case of 
instantiation of sub-modules of a given module of the 
internal level of arbitration. The modules of the internal  

level of arbitration are not instantiated as long as they 
can function in a concurrent way. 
 The generated arbiter is hierarchical. The modules 
of arbitration (internal and external) constitute the state 
machines and represent the first level of hierarchy. Sub-
modules of arbitration of each machine constitute the 
macro states and represent the second level of 
hierarchy. The states of each macro-state constitute the 
states on RTL level and represent the lowest level of the 
hierarchy. 
 

AUTOMATION OF THE BRIDGE  
GENERATION TASK 

 
 The proposed approach consists of the use of 
primitives making it possible successively to generate 
the elements of a bridge of communication, to arrive at 
a realization. This approach was integrated in a toolbox 
based environment[14]. Being given that the elementary 
units are modelled on RTL level, the environment 
allows the generation of a synthesisable description by 
the existing tools. This environment can be used with 
other tools for performance analysis, partitioning, 
allocation, architectural synthesis, etc. For a designer, 
the availability of an environment of the toolbox type 
with a set of primitives of communication synthesis 
enables him to concentrate only on fixing the 
parameters related to its application. 
 The extension which one brought to the 
environment interests in the management of the library 
and the synthesis of the bridge of adaptation. The 
management of the library is based on graphic 
concepts. The synthesis of the bridge is done by 
successive stages allowing the generation and the 
instantiation of the various modules until obtaining a 
synthesisable description. Each module of the library is 
independent and has in addition to its specification, 
other information such as the types of data, the generic 
parameters, its name, its interface, etc. The types of 
data are those of the internal elements to description, 
including the inputs and outputs of the component. The 
generic parameters are those quoted in the interface. 
This last includes the list of the generic internal 
parameters, the inputs/outputs of the component and 
their nature (in, out, in/out). The generation of a module 
of adaptation is carried out according to criteria such as 
the sizes of bus, the nature of the modes of 
communication, etc. These parameters also constitute 
an essential part of the library. The parameters related 
to each protocol are put in a file which will be 
accessible only by the manager in order to generate the 
required module of adaptation. The Fig. 8b presents the 
interface which allows the fixing of the choice of the 
selected bus like these parameters. The use of the chart 
of a protocol in the developed environment allows the 
re-use of the protocols for several projects and 
improves the manner of exploitation of a module of 
adaptation  in  a  new  project. This makes it possible to  
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Fig. 8: User interfaces: (a) synthesis of bridge and (b) 

management of the library 
 
the designer to handle graphic symbols to carry out the 
bridge of communication. The selected component 
appears with its symbol, which makes it possible to 
position it on the sheet of edition. Once the component 
placed, it can be adapted and connected to the other 
components. The types of relations and generic 
parameters (width of a bus, depth of a FIFO, etc) are 
read and integrated in the description of the bridge. 
Each element being a repertory and management is 
carried out by handling of files. The Fig. 8a presents the 
user interface which makes it possible to choose the 
buses to be adapted and the mode of transfer to create 
the adapter. The right-hand side zone will accommodate 
the various components in their graphic form, of 
architecture and thus will be able to connect them the 
ones to the others until drawing up the final diagram. 
 

CONCLUSION 
 
 In the proposed approach we studied and 
developed a model and a toolbox based environment of 
communication bridge synthesis. This bridge includes a 
set of elementary modules of adaptations, a hierarchical 
arbiter, an addresses decoder and a data path consisting 
of FIFOs and of multiplexers/demultiplexers.  
 

The various problems concerning the dimensioning of 
FIFOs for the adaptation in width and frequency and 
the minimization of the latency time while being based 
on a cost function were studied. This study enabled us 
to generate a hierarchical arbiter allowing various 
alternatives of arbitration. 
 The model of architecture preached by our work 
seems to be a happy medium between multi-bus 
architectures and the NOC. Indeed, thanks to a 
preliminary phase of exploration, once multi-bus 
architecture is defined, we adopted a step to adapt 
interfaces of the buses brought into play. Those 
carrying the components sharing the most affinities. 
The advantage of such a step is that one benefits from 
the small overall dimensions which one finds in the 
architectures built around a bus and speed of the 
exchanges specific to architectures containing NOC. 
Another advantage of this approach is the possibility of 
having simultaneous exchanges between components 
present on the same bus what will be able appreciably 
to improve the performances of the target system. 
Owing to the fact that each bus has its level of 
arbitration in the bridge, the communications between 
components present on the same bus can be organized 
in a completely independent way, except if resources 
are awaited to continue a transaction on the other bus. 
 Our work could be fully exploited in the high level 
design of the communication in the SoC. It will be 
necessary for that to take care of the design of other 
models of adapters and interfaces which will come to 
enrich those already carried out. Other work of 
communication architectures synthesis containing a 
higher number of buses is much more delicate to treat 
with our approach. It is then necessary to have recourse 
to the NOC as solution for this problem and thus to 
develop the corresponding models of communication. 
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