
Journal of Computer Science 2 (8): 619-626, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Fayed F. M. Ghaleb, Department of Mathematics, Faculty of Science, Ain Shams University
619

A Web-Based E-Learning System Using Semantic Web Framework

1Fayed F. M. Ghaleb, 1Sameh S. Daoud, 2Ahmad M. Hasna, 2Jihad M. Jaam and

2Hosam F. El-Sofany

1Department of Mathematics, Faculty of Science, Ain Shams University
2Department of Engineering and Computer Science, Faculty of Engineering, Qatar University

Abstract: E-learning is being increasing viewed as an important activity in the field of distance and
continuing education. Web-based courses offer obvious advantages for learners by making access to
educational resource very fast, just-in-time and relevant, at any time or place. In this study, based on
our previous work, we present a framework for our web-based e-learning system using the Semantic
Web technology. In addition we present an approach for implementing a Semantic Web-based e-
learning system, which focus on the RDF data model, OWL ontology language and RAP for parsing
RDF documents. Also the use of RAP – a Semantic Web toolkit for developing our application is
discussed in more details.

Key words: RAP, RDF, e-learning, semantic web, ontology

INTRODUCTION

 Increasingly, the WWW is used to support and
facilitate the delivery of teaching and learning materials.
This use has progressed from the augmentation of
conventional courses through web-based training and
distance learning to the web-based and e-learning
education. E-learning is not just concerned with
providing easy access to learning resources, anytime,
anywhere, via a repository of learning resources, but is
also concerned with supporting such features as the
personal definition of learning goals and the
synchronous and asynchronous communication and
collaboration, between learners and between learners
and instructors[1,2].
 One of the hottest topics in recent years in the AI
community, as well as in the Internet community, is the
Semantic Web. It is about making the Web more
understandable by machines. It is also about building an
appropriate infrastructure for intelligent agents to run
around the Web performing complex actions for their
users[3]. Furthermore, Semantic Web is about explicitly
declaring the knowledge embedded in many web-based
applications, integrating information in an intelligent
way, providing semantic-based access to the Internet
and extracting information from texts[4]. Ultimately,
Semantic Web is about how to implement reliable,
large-scale interoperation of Web services, to make
such services computer interpretable – to create a Web
of machine-understandable and interoperable services
that intelligent agents can discover, execute and
compose automatically[5].
 The problem is that the Web is huge, but not smart
enough to easily integrate all of those numerous pieces

of information from the Web that a user really needs.
Such integration at a high, user-oriented level is
desirable in nearly all uses of the Web. Unfortunately,
the Web was built for human consumption, not for
machine consumption - although everything on the Web
is machine-readable, it is not machine-understandable[6].
We need the Semantic Web to express information in a
precise, machine-interpretable form, ready for software
agents to process, share and reuse it, as well as to
understand what the terms describing the data mean.
That would enable web-based applications to
interoperate both on the syntactic and semantic level.
 Note that it is Tim Berners-Lee (inventor of the
WWW, URIs, HTTP and HTML) himself that pushes
the idea of the Semantic Web forward. The father of the
Web first envisioned a Semantic Web that provides
automated information access based on machine-
processable semantics of data and heuristics that use
these metadata[7,8]. The explicit representation of the
semantics of data, accompanied with domain theories
(ontologies), will enable a Web that provides a
qualitatively new level of service - for example,
intelligent search engines, information brokers and
information filters[9].
People from the World Wide Web Consortium (W3C)
already developed new technologies for web-friendly
data description[10]. Moreover, AI people have already
developed some useful applications and tools for the
Semantic Web[11].
 We are introduce an implementation of Semantic
Web concept on the e-Learning environment offered by
our web-based e-learning system[12], which used by the
Qatar University' students. The facilities that the
application will provide include allowing e-learning

J. Computer Sci., 2 (8): 619-626, 2006

 620

content to be created, annotated, shared and discussed,
together with supplying resources such lecture notes,
course description, documents, announcements, student
papers, useful URL links, exercises and quizzes for
evaluation of the student knowledge.
 Recently, several researchers studied the issue of
Web-based application. F. P. Rokou et al. distinguished
three basic levels in every web-based application: the
Web character of the program, the pedagogical
background and the personalized management of the
learning material[13]. They defined a web-based program
as an information system that contains a Web server, a
network, HTTP and a browser in which data supplied
by users act on the system’s status and cause changes.
The pedagogical background means the educational
model that is used in combination with pedagogical
goals set by the instructor. The personalized
management of the learning materials means the set of
rules and mechanisms that are used to select learning
materials based on the student’s characteristics, the
educational objectives, the teaching model and the
available media.
 Many works have combined and integrated these
three factors in e-learning systems, leading to several
standardization projects. Some projects have focused on
determining the standard architecture and format for
learning environments, such as IEEE Learning
Technology Systems Architecture (LTSC), Instructional
Management Systems (IMS) and Sharable Content
Object Reference Model (SCORM). IMS and SCORM
define and deliver XML-based interoperable
specifications for exchanging and sequencing learning
contents, i.e., learning objects, among many
heterogeneous e-learning systems. They mainly focus
on the standardization of learning and teaching methods
as well as on the modeling of how the systems manage
interoperating educational data relevant to the
educational process[14].
 IMS and SCORM have announced their content
packaging model and sequencing model, respectively.
The key technologies behind these models are the
content package, activity tree, learning activities,
sequencing rules and navigation model. Their
sequencing models define a method for representing the
intended behavior of an authored learning experience
and their navigation models describe how the learner
and system initiated navigation events can be triggered
and processed.
 Juan Quemada and Bernd Simon have also
presented a model for educational activities and
educational materials[15]. Their model for educational
activities denotes educational events that identify the
instructor(s) involved and take place in a virtual
meeting according to a specific schedule. Rokou et
al.[16] described the introduction of stereotypes to the
pedagogical design of educational systems and

appropriate modifications of the existing package
diagrams of UML (Unified Modeling Language).
 The IMS and SCORM models describe well the
educational activities and system implementation, but
not the educational contents knowledge in educational
activities. Juan Quemada’s and F. P. Rokou’s models
add more pedagogical background by emphasizing
educational contents and sequences using the taxonomy
of learning resources and stereotypes of teaching
models. But the educational contents and their
sequencing in these models are dependent on the system
and lack standardization and reusability. Thus, we
believe that if an educational contents frame of learning
resources can be introduced into an e-learning system,
including ontology-based properties and hierarchical
semantic associations, then this e-learning system will
have the capabilities of providing adaptable and
intelligent learning to learners.
 The hierarchical contents structure is able to show
the entire educational contents, the available sequence
of learning and the structure of the educational
concepts, such as the related super- or sub- concepts in
the learning contents. Furthermore, some of semantic
relationships among the educational contents, such as
‘equivalent’, ‘inverse’, ‘similar’, ‘aggregate’ and
‘classified’, can provide important and useful
information for the intelligent e-learning system.
 For this purpose, ontology is introduced in our
model. It can play a crucial role in enabling the
representation, processing, sharing and reuse of
knowledge among applications in modern web-based e-
learning systems because it specifies the
conceptualization of a specific domain in terms of
concepts, attributes and relationships. Moreover, the
number of ontology-centered researches has increased
dramatically because popular ontological languages are
based on Web technology standards, such as XML and
RDF(S), so as to share and reuse it in any web-based
knowledge system[17,18]. Thus, we have devised a model
that provides the contents structure using an ontology
for an adaptive and intelligent e-learning system.

Semantic web overview: There are a number of
important issues related to the Semantic Web. Roughly
speaking, they belong to four categories: Semantic Web
languages, ontologies, semantic markup of Web pages
and Semantic Web services.

Semantic web languages: In order to represent
information on the Semantic Web and simultaneously
make that information both syntactically and
semantically interoperable across applications, it is
necessary to use specific languages. It is important for
Semantic Web developers to agree on the data’s syntax
and semantics before hard-coding them into their
applications, since changes to syntax and semantics

J. Computer Sci., 2 (8): 619-626, 2006

 621

necessitate expensive application modifications[19].
There are a lot of such languages around and most of
them are based on XML (eXtensible Markup
Language), XML Schemas, RDF (Resource Definition
Framework) and RDF Schemas, all four developed
under the auspices of W3C and using XML syntax[20].
While HTML is layout-oriented, XML is more
structure-oriented. HTML is based on a fixed set of tags
to format text, while in XML, tags are arbitrary (user-
defined) and bear some semantic information
themselves. Figure 1a and b shows an example of
representing the same piece of information in HTML
and in XML.
 XML Schema provides the necessary framework
for creating XML documents by specifying the valid
structure, constraints, the number of occurrences of
specific elements, default values and data types to be
used in the corresponding XML documents, Fig. 1c.
The encoding syntax of XML Schema is XML and just
like XML itself XML Schema documents use
namespaces that are declared using the xmlns attribute.
Namespaces define contexts within which the
corresponding tags and names apply.

Fig. 1: (a) A piece of HTML code, (b) The same

information in XML code and (c) An example
of XML Schema

 RDF is a framework to represent data about data
(metadata) and a model for representing data about
"things on the Web" (resources). It comprises a set of
triples (O,A,V) that may be used to describe any
possible relationship existing between the data – Object,
Attribute and Value[10]. Alternatively, each RDF model
can be represented as a directed labelled graph, as Fig.
2b, or in an XML-based encoding.
 Regardless of the representation syntax, RDF
models use traditional knowledge representation
techniques order to provide better semantic
interoperability (traditionally, O-A-V triplets are natural
semantic units for representing a domain). Still, an RDF
model just provides a domain-neutral mechanism to
describe metadata, but does not define the semantics of
any application domain. Figure 2a and b shows that
each statement is essentially a relation between an
object (a resource), an attribute (a property) and a value

(a resource or free text). RDF Schema (RDFS) defines
the vocabulary of an RDF model. It provides a
mechanism to define domain-specific properties and
classes of resources to which those properties can be
applied, using a set of basic modeling primitives (class,
subclass-of, property, subproperty-of, domain, range,
type). An RDFS can be specified using RDF encoding,
Figure 2c shows an example. However, RDFS is rather
simple and it still doesn't provide exact semantics of a
domain.

Fig. 2: (a) A simple RDF model and (b) the equivalent

directed labelled graph and (c) An example of
RDF Schema code

Ontologies: Ontology comprises a set of knowledge
terms, including the vocabulary, the semantic
interconnections and some simple rules of inference and
logic for some particular topic[21]. Ontologies applied to
the Web are creating the Semantic Web[22]. Ontologies
provide the necessary armature around which
knowledge bases should be built[23] and set grounds for
developing reusable Web-contents, Web-services and
applications[24]. Ontologies facilitate knowledge sharing
and reuse, i.e. a common understanding of various
contents that reaches across people and applications.
 Technically, an ontology is a text-based piece of
reference-knowledge, put somewhere on the Web for
agents to consult it when necessary and represented
using the syntax of an ontology representation language.
There are several such languages around for
representing ontologies[4] for an overview and
comparison of them. It is important to understand that
most of them are built on top of XML and RDF.
 By 2004, the most popular higher-level ontology-
representation languages were OIL (Ontology Inference
Layer) and DAML+OIL[25,26]. An ontology developed in
any such language is usually converted into an
RDF/XML-like form and can be partially parsed even
by common RDF/XML parsers[10]. Of course, language-
specific parsers are necessary for full-scale parsing.
There is a methodology for converting an ontology
developed in a higher-level language into RDF or
RDFS[9].
 In early 2004, W3C has officially released OWL
(Web Ontology Language) as W3C Recommendation
for representing ontologies[10]. OWL is developed
starting from description logic and DAML+OIL. The

J. Computer Sci., 2 (8): 619-626, 2006

 622

increasing popularity of OWL might lead to its widest
adoption as the standard ontology representation
language on the Semantic Web in the future.
Essentially, OWL is a set of XML elements and
attributes, with well-defined meaning, that are used to
define terms and their relationships (e.g., Class,
equivalentProperty, intersectionOf, unionOf, etc.).
OWL elements extend the set of RDF and RDFS
elements and the owl namespace is used to denote OWL
encoding. Figure 3 shows a piece of a simple ontology
developed using the OWL language.
 In practice, ontologies are often developed using
integrated, graphical, ontology-authoring tools, such as
Protégé-2000, OILed and OntoEdit[27]. They are used to
develop new ontologies and modify existing ones. They
let the author edit and develop ontologies concentrating
on the domain's concepts and relationships, without
worrying much about ontology-representation
languages. The author can choose ontologies from a list,
choose attributes and relations from another list, edit,
add, remove and merge ontologies. The output is
usually produced in a specific high-level ontology-
representation language such as OWL, in RDF/RDFS,
in HTML, or in plain text.

Fig. 3: A simple ontology defined in OWL

Semantic markup: Ontologies merely serve to
standardize and provide interpretations for Web
content, but are not enough to build the Semantic Web.
To make Web content machine-understandable, Web
pages and documents themselves must contain semantic
markup, i.e. annotations which use the terminology that
one or more ontologies define and contain pointers to
the network of ontologies, Fig. 4. Semantic markup
persists with the document or the page published on the
Web and is saved as part of the file representing the
document/page. Services also must be properly marked-
up, to make them computer-interpretable, use-apparent
and agent-ready. They must contain pointers to the
corresponding service ontologies.
 Semantic markup of a Web page, document, or
service might state that a particular entity is a member
of a class, an entity has a particular property, two
entities have some relationship between them and that
descriptions from different people refer to the same
entity. Typically, semantic markup is published using an
XML encoding for a high-level ontology-representation
language syntax[3,28].
 Using ontologies as references in marking-up pages
and services on the Semantic Web enables knowledge-
based indexing and retrieval of services by intelligent
agents, agent brokers and humans alike, as well as
automated reasoning about the services, such as how to

Fig. 4: Semantic markup provides mappings between

Web pages and ontologies (Oi - ontologies)

use them, what parameters to supply and what results to
expect.
 The annotation is done by using appropriate tools.
These tools can be part-of or integrated with ontology-
authoring tools, such as OIL tools[22]. They can also be
standalone tools, such as the Knowledge Annotator
tool[3]. Furthermore, they can operate through a COTS
tool, as in the case of the Briefing Associate tool that
uses MS PowerPoint GUI[28]. Finally, they can be
integrated with specific Semantic Web applications. An
example of this last approach is ITtalks, a fielded
application that facilitates user and agent interaction for
locating talks on information technology[11], which
automatically generates DAML+OIL descriptions
(markup) of user profiles when they register.

Semantic web services: Intelligent, high-level services
like information brokers, search agents, information
filters, intelligent information integration and
knowledge management, are what the users want from
the Semantic Web. They are possible only if a number
of ontologies populate the Web, enabling semantic
interoperation between the agents and the applications
on the Semantic Web, i.e. semantic mappings between
terms within the data, which requires content analysis.
 One specific kind of ontology is necessary to
enable high-level Semantic Web services- ontologies of
services themselves[5]. These ontologies should include
a machine-readable description of services (as to how
they run), the consequences of using the service (e.g.,
the fee) and an explicit representation of the service
logic (e.g., automatic invocation of another service).
Services have their properties, capabilities, interfaces
and effects, all of which must be encoded in an
unambiguous, machine understandable form, to enable
agents to recognize the services and invoke them
automatically.
 Semantic web framework for web-based e-learning
system: In the following subsections, based on the
Semantic Web technology and e-learning standards we
describe our proposed framework for the web-based e-
learning system, illustrated in Fig. 5.

The web-based services: Our model Fig. 5, provides
the student with two kinds of contents, Learning content
and Assessment content. Each content has different
types of services such as:

J. Computer Sci., 2 (8): 619-626, 2006

 623

Learning services: provide registration, online course,
interactive tutorial, course documents (is a repository
for files that the instructor have made available to the
student as a part of your course), announcements
(displays information to the students that the instructors
of the course want him to know), links (displays a list of
useful URL links that have been identified by the course
instructors), student papers (students can post/upload
requests files to the instructor) and Semantic search
(helps the student to search for resources).

Assessment services: provide exercises and quizzes for
evaluation of the student knowledge.
 During the learning process, a dynamic selection
presentation of both contents will be accomplished.
 On other hand, our web-based e-learning system
allows instructors to create his course websites through
a browser and monitoring the student’s performance.
they have many services and tools such as: publish
documents in any format (Word, PDF, Video, ...) to the
students, manage a list of useful links, compose
exercises/quizzes, make announcements and have
students submit papers. To illustrate the services
architecture, we will now go through an e-learning
scenario. A student first searches for an online course:
the broker handles the request and returns a set of
choices satisfying the query. If no course is found, the
user can register with a notification service. Otherwise,
the user may find a suitable course among the offerings
and then makes a final decision about registering for the
course.

Fig. 5: Proposed framework for web-based e-learning

system

 Processing the registration can be seen as a
complex service involving registering with the system,
creating a confirmation notification, creating a student
account (authentication/ authorization) and providing
learning materials. Once all these in place, the student
can start the course. As part of the course, a student will
be logging on and checking his learning agenda (e.g.

Fig. 6: A snapshot of the proposed ontology using

Protégé 2000

next assignment due). This request is answered by
combining several sources of information, such as
course schedule, current date and student progress to
date (e.g. completed units).

The ontology-based model: Before describing our
ontology-based model, we will discuss learning
environments illustrated in Fig. 5. Course sequencing
generally starts with the student entity component that
receives the learning contents, while the student’s
behavior is being observed. The instructor sends queries
to the learning resources to search for learning content
that is appropriate for the student entity component. The
ontological knowledge is added to the learning
resources as a resource for contextual learning and it
may be searched by means of queries. The student’s
performance is measured by the evaluation component
and the result is stored in the student records database.
The data in it can be used by the instructor component
to locate a new content.
 Searching learning resources and sequencing a
course can be done using a knowledge base of learning
resources and a delivery component. To implement the
knowledge base, first of all, the leaning resources have
to be described by means of metadata. The metadata
consists of the contextual knowledge of the learning
resources, i.e., an ontology in our model. It contains the
general representation of the structural knowledge on
specific domains, such as computer science,
mathematics, biology and so on.
 The ontology can be used for adaptive learning to
retrieve the context of a course and to structure the
contents. Also the metadata actually consists of the
framing description of each learning object of a subject,
i.e., the modularized content, which is linked to the
concept of the ontology. For instructors to be able to
sequence courses and create exercises adaptively, the
suitability of different approaches has to be analyzed
based on the relationships between the resources and
their descriptions. Figure 6 shows a snapshot of our
web-based e-learning ontology with the classes and
properties in the Protégé 2000 ontology editor and
Fig. 7 shows a portion of the ontology source in the
OWL language.

J. Computer Sci., 2 (8): 619-626, 2006

 624

Fig. 7: A portion of the proposed ontology in OWL

language

Implementation: The main agents used in our system
are: Student and Instructor, both of them are
implemented as PHP classes, as illustrated in Fig. 5.
Users are served by the appropriate agents, which parse
the metadata and tailor the user interface to satisfy the
user’s needs, whether student or instructor. The agents
interact and communicate between each other by means
of PHP, MySQL database and using the Apache Web
Server. Figure 8, show a snapshot of our proposed
system.
 Users will add any metadata to a document
referenced via the RDF learning resources repository
through dynamic PHP web pages. For the end-user, this
process of annotation is identical to the action of filling
out fields in a Web form. After the user submits the
form, the application automatically converts this
additional information to a set of RDF statements using
the RAP API and then adds them to the existing RDF
statements for this document in the repository. Because
the RDF specifications provide an XML syntax for
writing down and exchanging RDF statements (called
RDF/XML), the repository is implemented as a set of
RDF/XML files. However, the RDF/XML syntax is
quite complex and developing an RDF parser is not a
trivial task.
 Motivated by the need for an RDF parser, we are
using a Semantic Web toolkit called RAP for
developing our application. In the following
subsections, we will illustrate the RAP API in more
details.

What is RAP?: RAP - RDF API for PHP is a Semantic
Web toolkit for PHP developers. It offers features for
parsing, manipulating, storing, querying, serving and
serializing RDF graphs. RAP was started as an open
source project by the Freie Universität Berlin in 2002
and has been extended with code contributions from the
Semantic Web community. The core of RAP are two
implementations of statement storages which hold RDF
graphs either in memory or in a relational database.
Around these storages RAP provides rich programming
interfaces for manipulating RDF graphs on different
abstraction layers. Furthermore, RAP supports RDFS
inference as well as some OWL entailments, allowing
programmers to work with implicit (virtual) statements.
Various tools complement the RAP package: an up-to-
date RDF/XML parser, further I/O modules for
alternative serialization techniques (i.e. N3, N-Triple,
RDF embedded in XHTML), an integrated RDF server

Fig. 8: A snapshot of the proposed system

and a graphical user-interface for managing database-
backed RDF models as well as an implementation of the
RDQL query language.

Working with RDF graphs: In RAP, RDF graphs are
represented as instances of class Model. The elements
within a Model are Statements; each Statement
comprises three Nodes: the subject, predicate and
object. A Node represents a Resource identified by a
URI, a BlankNode (also known as bNode), or a Literal.
RAP offers three programming interfaces for
manipulating RDF graphs: the statement-centric Model
API which allows manipulating an RDF graph as a set
of statements, the resource-centric ResModel API for
manipulating an RDF graph as a set of resources having
properties and the ontology-centric OntModel API
which provides extra functionality for handling
ontologies.

Statement-centric programming interface: The
Model API exposes an RDF graph as a set of RDF
statements. This API is very similar to the statements
storage structure and leads to a very small overhead in
accessing the graph. The core methods for modifying
RDF graphs support adding, deleting and replacing of
single statements inside a graph. StatementIterators
allow sequential access to all statements within a graph.
The most significant part of this API are the find()and
findAsIterator() methods providing a fast and
straightforward way to query RDF statements. The
former method delivers a new model, the latter returns
an iterator over all the statements of the queried model,
which match the triple pattern (S, P, O). S/P/O can
either be instances of the subclasses of Node or be equal
NULL (meaning anything). For example, the pattern (S,
NULL, NULL) with S being an instance of Resource
will match all statements describing this particular
resource S.

Resource-centric programming interface: The
resource-centric API represents an RDF graph as a set

J. Computer Sci., 2 (8): 619-626, 2006

 625

of resources having properties. This interface enables to
manipulate and navigate through an RDF graph in a
much more comfortable way. For example, if a resource
is known to be of type rdf:Collection, then viewing the
corresponding resource as a collection that allows easier
access to its members without having to deal with the
sophisticated list-structure.
 This ResModel API is implemented on top of the
statement-centric interface. Thus, each ResModel
always has an underlying in-memory or persistent
statement store and is only providing a resource-centric
view on this model. To ensure data consistency, there is
no caching being done between the layers. Each method
call is translated into a series of find(), add(), or
remove() calls of the underlying model. Therefore,
working with ResModels is slightly slower than using
the Model API directly, but offers the comfort of
accessing the information about resources in an object-
orientated way. The ResModel API is very similar to
the Jena Model API[29] allowing programmers, which
are used to Jena, to readily write RAP code.

Ontology-centric programming interface: The
ontology-centric API is an extension of the resource-
centric interface. It adds support for ontological
primitives: classes (in a class hierarchy), properties (in a
property hierarchy) and individuals. The properties
defined in the ontology language map to accessor
methods. For example, if a resource is known to be an
rdfs:Class in the given RDF graph it has a method to list
its super-classes which correspond to the values of the
rdfs:subClassOf property. This interface supports not
only the RDF-Schema ontology language but also parts
of OWL by using a loadable vocabulary. Thus, a new
class is generated as an rdfs:Class or an owl:Class
depending on the vocabulary currently loaded.

Storing RDF graphs: The core of RAP are two
implementations of statement storages, which hold RDF
graphs either in memory or in a persistent store.
Working with in-memory models, however, has one
major disadvantage: after finishing the execution of a
PHP script, all models created and manipulated would
be lost, unless saved to a file. But even if serialized to
file, the document containing RDF data would have to
be parsed any time a PHP script would be executed and
additionally the search index built if efficient queries
should be performed. Both processes are rather time-
consuming, especially while working with large in-
memory models. To address this problem RDF API for
PHP supports persistent storage of RDF models in a
relational database. Storing models in a database not
only saves main memory, but moreover allows quick
access to RDF data by using the internal indexing and
query optimization capabilities of the database. The
core of RAP’s database backend is built by two classes:
DbStore and DbModel. The former is used to set the
database connection as well as create, store, list and
retrieve RDF models, whereas the latter provides
methods for manipulating each model.

 In the RAP toolkit there is also RDF DB Utils
included - a graphical user-interface for managing
database-backed RDF models. It allows convenient
browsing through a selected persistent model to view,
edit, or delete statements.

RDQL (RDF data query language): RDQL[30] is a
query language for extracting information from RDF
graphs. Queries are formulated by specifying a
subgraph, with missing parts having assigned variable
names, which is matched against an RDF graph. RDQL
is implemented in several RDF toolkits and has been
submitted to the W3C for standardization[30]. In order to
ensure the greatest possible compatibility RAP’s RDQL
implementation follows the current de facto standard set
by the Jena[29] implementation.
 An RDQL query consists of a graph pattern,
expressed as a list of triple patterns (S, P, O). S/P/O can
either be named variables or RDF values (URIs or
Literals). Literals may additionally be constrained by
their language and datatype. Furthermore, an RDQL
query can have a set of constraints on the values of
query variables. Filter expressions supported by RAP
are: arithmetic conditions, string equality expressions
and Perl-style regular expressions. Multiple constraints
can be combined using logical operators. A list of
variables required in the answer set is specified in the
SELECT clause of an RDQL query. To make the query
easier to read and write for humans, RDQL provides a
way to shorten the length of URIs by defining a string
prefix. Consider the following example:
 SELECT ?student
WHERE (?student, <info:age>, ?age)
AND ?age >= 2o
USING info FOR <http://example.org/people#>

 The above triple pattern matches all statements
having predicate http://example.org/ people#age. The
variable ?student will be bound to the label of the
statement subject, the variable ?age to the literal value
of the statement object. The query returns all values of
?student from statements matching the specified pattern
and having the object value greater or equal 20.

CONCLUSION

 The main contribution of this study was our outline
framework for web-based e-learning system, using the
Semantic Web technology. Our architecture including
various services and tools in the context of a semantic
portal, such as: course registration, uploading course
documents and student assignments, interactive tutorial,
announcements, useful links, assessment and simple
semantic search. A metadata-based ontology is
introduced for this purpose and added to our model.
The OWL language is used to develop our ontologies.
In these ontologies, the actual resources and properties
specified in the RDF models are defined. The Protégé
2000 ontology editor is used to create the e-learning
ontology classes and properties.

J. Computer Sci., 2 (8): 619-626, 2006

 626

 A list of the technologies used in the
implementation of our web-based e-learning system
includes PHP Platform, Apache Web Server, MySQL
database and RAP Semantic Web Toolkit. We believe
that there are two primary advantages of our Semantic
web-based framework. One is that the proposed model,
which contains a hierarchical contents structure and
semantic relationships between concepts, can provide
related useful information for searching and sequencing
learning resources in web-based e-learning systems. The
other is that it can help a developer or an instructor to
develop a learning sequence plan by helping the
instructor understand the why and how of the learning
process.

REFERENCES

1. Barker, P., 2000. Developing Teaching Webs:

Advantages, Problems and Pitfalls. Educational
Multimedia, Hypermedia & Telecommunication
(AACE) Conf., 2000.

2. Drucker, P., 2000. Need to Know – Integrating e-
Learning with High Velocity Value Chains. Delphi
Group White Paper. www.delphigroup.com.

3. Heflin, J. and J.A. Hendler, 2001. Portrait of the
semantic web in action. IEEE Intelligent Systems,
16: 54-59.

4. Gómez-Pérez, A. and O. Corcho, 2002. Ontology
languages for the semantic web. IEEE Intelligent
Systems, 17: 54-60.

5. McIlraith, S.A., T.C. Son and H. Zeng, 2001.
Semantic web services. IEEE Intelligent Systems,
16: 46-53.

6. Lassila, O., 1998. Web Metadata: A matter of
semantics. IEEE Internet Computing, 2: 30-37.

7. Berners-Lee, T., J. Hendler and O. Lassila, 2001.
The semantic web. Scient. Am., 284: 34–43.

8. Berners-Lee, T., M. Fischetti and T.M. Dertouzos,
1999. Weaving the web: The original design and
ultimate destiny of the world wide web by its
inventor. San Francisco: Harper.

9. Decker, S., S. Melnik, F. van Harmelen, D. Fensel,
M. Klein, J. Broekstra, M. Erdmann and I.
Horrocks, 2000. The semantic web: The roles of
XML and RDF. IEEE Internet Computing, 4: 63-
74.

10. W3C site: http://www.w3c.org. (
www.w3.org/XML , www.w3.org/RDF,
www.w3.org/TR/2004/ REC-owl-features-
20040210/) and
http://www.w3.org/2000/10/swap/Primer.html.

11. Scott, C.R., T. Finin, A. Joshi, Y. Peng, C.
Nicholas and I. Soboroff et al., 2002. ITtalks: A
case study in the semantic web and DAML+OIL.
IEEE Intelligent Systems, 17: 40-47.

12. Hosam, F.El-Sofany, A.M. Hasnah, J.M. Jaam and
F.F.M. Ghaleb, 2005. A web-based e-learning
system experiment. Proc. Intl. Conf. E-Business
and E-learning, PSUT, Amman-Jordan.

13. Rokou, F.P. et al., 2004. Modeling web-based
educational systems: process design teaching
model. Educat. Technol. Soc., 7: 42-50.

14. Adelsberger, H. et al., 2003. The Essen model: A
step towards a standard learning process.
http://citeseer.ist.psu.edu/515384.html.

15. Quemanda, J. and B. Simon, 2003. A use-case
based model for learning resources in educational
mediators. Educat. Technol. Soc., 6: 149-163.

16. Merrill, M.D., 2003. Knowledge objects and
mental-models. http://reusability.org/read.

17. Sure, Y. et al., 2002. Methodology for development
and employment of ontology based knowledge
management applications. ACM SIGMOD Record,
31: 18-23.

18. Brewster, C. et al., 2004. Knowledge
representation with ontologies: The present and
future. IEEE Intelligent Systems, 19: 72-81.

19. Wuwongse, V., C. Anutariya, K. Akama and E.
Nantajeewarawat, 2002. XML declarative
description: A language for the semantic web.
IEEE Intelligent Systems, 17: 54-65.

20. Klein, M., 2001. Tutorial: The semantic web-XML,
RDF and relatives. IEEE Intelligent Systems, 16:
26-28.

21. Hendler, J., 2001. Agents and the semantic web.
IEEE Intelligent Systems, 16: 30-37.

22. Fensel, D., F. van Harmelen, I. Horrocks, D.L.
McGuinness and P.F. Patel-Schneider, 2001. OIL:
An ontology infrastructure for the semantic web.
IEEE Intelligent Systems, 16: 38-45.

23. Swartout, W. and A. Tate, 1999. Ontologies, Guest
Editors' Introduction. IEEE Intelligent Systems, 14:
18-19.

24. Devedzic, V., 2001. Knowledge modeling- State of
the Art. Integrated Computer-Aided Engg., 8: 257-
281.

25. Horrocks, I., D. Fensel, J. Broekstra, S. Decker, M.
Erdmann and C. Goble et al., 2002. The ontology
inference layer oil. Tech. Report, Vrije
Universiteit, Amsterdam. Retrieved March 19,
2002.
http://www.ontoknowledge.org/oil/TR/oil.long.html

26. Horrocks, I. and F. van Harmelen, 2000. Reference
description of the DAML+OIL ontology markup
language.
http://www.daml.org/2000/12/reference.html.

27. Protégé, 2000. http://protege.stanford.edu/. OILed:
http://img.cs.man.ac.uk/oil and OntoEdit:
http://ontoserver.aifb.uni-karlsruhe.de/ontoedit.

28. Tallis, M., N.M. Goldman and R.M. Balzer, 2002.
The briefing associate: Easing authors into the
semantic web. IEEE Intelligent Systems, 17: 26-32.

29. Carroll, J. et al., 2003. Jena: Implementing the
Semantic Web Recomandations. Bristol. 2003.
http://www.hpl.hp.com/techreports/2003/HPL-
2003-146.pdf

30. Seaborne, A., 2004. RDQL-A Query Language for
RDF, W3C Member Submission. 9 Jan. 2004.
http://www.w3.org/Submission/RDQL/.

