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Abstract: The local Principal Component Analysis (PCA) reduces linearly redundant components that 
may present in higher dimensional space. It deploys an initial guess technique which can be utilized 
when the distribution of a given multivariate data is known to the user. The problem in initialization 
arises when the distribution is not known. This study explores a technique that can be easily integrated 
in the local PCA design and is efficient even when the given statistical distribution is unknown. The 
initialization using this proposed splitting technique not only splits and reproduces the mean vector but 
also the orientation of components in the subspace domain. This would ensure that all clusters are used 
in the design. The proposed integration with the reconstruction distance local PCA design enables 
easier data processing and more accurate representation of multivariate data. A comparative approach 
is undertaken to demonstrate the greater effectiveness of the proposed approach in terms of percentage 
error. 
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INTRODUCTION 

 
 Dimension reduction methods are employed in 
statistical pattern classification problem to represent 
higher dimensional embeddings in a lower dimensional 
space by eliminating or removing the redundant 
components that may present in multivariate data so 
that the data loss is minimal. The interpretation of 
multivariate data or feature vectors becomes quite 
unmanageable when the dimension size is high. This 
severely increases the memory/storage requirements 
and augments the problems in pattern classification. It 
then becomes essential to express and understand a 
given high dimensional vector onto a parsimonious data 
space that best describes the feature vectors. The given 
multivariate data can be in the form of image, 
sound/speech, financial data or any statistical data. The 
given data depend upon several characteristics; for 
example, in face recognition, the classification of faces 
depends upon the location of eyes, width and height of 
nose/mouth, length of eyebrows, complexion etc. All 
these characters constitute as one vector of a given 
multivariate data.  
 The conventional technique for dimension 
reduction is PCA also known as Karhunen-Loéve 
technique (KLT)[1]. The objective of PCA is to reduce 
redundant dimensional components subject to minimal 
loss of information. It will find a global linear transform 
of a given data in the feature space. The linear 
transform gives several basis vectors. The first basis 
vector will be in the direction of maximum variance of 
the given data. The second basis vector will be mutually 
orthogonal to the first basis vector. Similarly the 

remaining basis vectors are mutually orthogonal to the 
previous basis vectors and in order, maximize the 
remaining variances subject to the orthogonal 
condition. The principal axes of PCA are those 
orthonormal axes onto which the remaining variances 
under projection are maximum. These orthonormal axes 
are given by the dominant eigenvectors i.e. those 
eigenvectors that corresponds to the largest associated 
eigenvalues. The obtained components in reduced 
dimensional space are optimal in minimum mean 
square error (MSE) sense.  
 Perceiving the constraints involved in PCA, 
researchers have extended the basic PCA model. Oja[2] 
introduced a simple linear neuron model for PCA with 
constrained Hebbian-type modification and derived 
unconstrained learning rules and showed how the 
neuron model extracts the one dimensional principal 
components. Several other neural network algorithms 
for PCA have also been developed[3-9]. Hastie[10] 
introduced principal curves and surfaces as the 
estimates of non-linear generalizations of linear one 
dimensional PCA technique and Tibshirani[11] presented 
an alternative definition of principal curves based on a 
mixture model. Tipping and Bishop[12] demonstrated 
how principal axes of a set of observed patterns are 
determined through maximum likelihood estimation. 
Xu[13], De la Torre and Black[14] and Koren and 
Carnel[15] suggested robust PCA model which can 
perform well under the presence of outliers. A non-
linear form of PCA[16], local linear PCA[17-19] and 
mixture of local PCA[20] have also been developed. In 
the local linear PCA approach a class is partitioned into 
several disjoint regions by vector quantization and then 
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performs local PCA about each cluster. This local PCA 
approach is further extended by utilizing hybrid 
distance measure also referred to as reconstruction 
distance[17], which has been proved to be one of the 
optimal techniques in terms of producing low 
reconstruction error. Local PCA based on hybrid 
distance is a replacement of Euclidean distance, which 
has been proved to be a better distance measurement 
tool in local linear approach for the cluster 
separability[17] (Vector quantization is one of the 
approaches used in removal of redundant feature 
vectors subject to minimal loss of information. This 
technique separates a set of feature vectors into small 
and dense regions known as Voronoi regions[21] and 
estimates the feature vectors in the obtained regions by 
their corresponding mean, referred as codewords. The 
number of Voronoi regions in a given class is known as 
the levels of the quantizer. For further information on 
VQ refer[22,23]). This distance criteria is derived from 
the MSE of the system. The hybrid-distance local PCA 
also known as vector quantization principal component 
analysis (VQPCA) for reconstruction distance deploys 
an initial guess technique[23]. This initial guess 
technique is usually applied to the data when there is at 
least some information about the distribution since an 
arbitrary initialization could lead to poor performance. 
This means that for a known statistical distribution (not 
completely) the reproductive vectors or codewords are 
initially defined by manually placing them in the 
vicinity of the data. The number of codewords 
previously defined will not change during the process 
except the location of codewords, which will be 
updated until the best region or cluster is found. In most 
of the practical cases, statistical distribution is not 
known to the user which augments the problem of 
initialization of codewords. Furthermore, in VQPCA 
some of the codewords if not very carefully selected, 
end up being isolated having no samples associated to 
it. This restricts the performance of VQPCA and thus 
the model is strongly dependent on the selection of 
initial codewords.  
 For VQ algorithms alone, several extensions have 
been developed[24-29] to improve the performance and 
overcome drawbacks. Whereas  in VQPCA direct 
implementation of splitting Linde-Buzo-Gray (LBG) 
technique[23] cannot be integrated with the hybrid-
distance local PCA design since it does not accounts for 
updating and reproducing eigenvectors (directional 
vector) with the corresponding covariance matrix of the 
local regions. To overcome this type of problems 
associated with the hybrid-distance local PCA 
technique, we have presented a splitting initialization 
approach that can be easily integrated in local PCA 
design and is efficient even when the given statistical 
distribution is unknown. The introduced approach not 
only updates centroid (mean) of a cluster but also the 
orientation of components in subspace domain with the 
corresponding covariance matrix, through splitting and 

reproducing code words. Overall one can view this 
proposed approach as an improved hybrid-distance 
local PCA which can efficiently accommodate 
processing and clustering of unknown statistical 
distributed data. For brevity we refer to this approach as 
VQPCA-sp in this study, where the suffix sp denotes 
initialization of VQPCA using splitting technique.  
 

DESIGN MODEL 
 
 Here, it is elaborated that the VQPCA-sp approach 
using hybrid-distance as a distance measurement tool. 
To explain hybrid-distance, suppose in a d-dimensional 
hyperplane, 

im
µ denotes the mean vector of mth cluster 

in ith discrete block (class) and im
k

φ denotes kth 

eigenvector of mth cluster which is in ith class, then 
hybrid-distance is defined as: 
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 Where, 

im
P is a local projection matrix which 

projects the feature vectors onto a subspace orthogonal 
to the local h-dimensional PCA hyperplane[17] i.e. 
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 It is evident from the expression of the hybrid-
distance (equations 1 and 2) that it depends upon 
eigenvector and mean of the local clusters. Thereby 
these two vectors should be taken under consideration 
for the reproduction. 
 In VQPCA-sp approach firstly, the set of feature 
vectors is separated into disjoint regions or clusters by 
applying vector quantization technique for each given 
class(There is a fundamental difference between a class 
and a cluster, class represents a set of feature vectors or 
parameters of a distinct element which can 
accommodate several clusters i.e. a cluster is a subset of 
a class. For example the feature vectors of vowels /a/ 
and /e/ will form two distinct classes. In either of the 
class there could be several small partitions referred as 
clusters) and then local PCA is performed using 
splitting technique about each of the cluster center 
using hybrid-distance. In other words this approach 
segregates data by class and then performs VQPCA on 
each class using splitting technique. If Euclidean-
distance is used in place of hybrid-distance then LBG 
algorithm could simply be integrated for local PCA 
implementation. In this case, the regions or clusters are 
partitioned independently without considering the 
orientation of PCA and thus produces suboptimal 
results. On the other hand, the hybrid-distance as given 
in equation 1 depends not only upon the mean of the 
clusters but also upon the eigenvectors of the 
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covariance matrix of the clusters. In this case a direct 
splitting LBG algorithm or Enhance LBG algorithm[29] 
cannot be integrated in the local PCA design since an 
iterative process is required to reproduce eigenvectors 
as well by updating covariance matrix of the clusters. 
An initial guess technique was utilized[17] for hybrid-
distance local PCA design where codewords are 
initialized to random input vectors from the training 
dataset. If poorly initialized this initialization approach 
may lead some clusters not to be used at all. If a user 
has some prior knowledge about the statistical 
distribution of a given feature vectors then the 
performance (in terms of percentage reconstruction 
error) could improve further. However, this a priori 
information is not always present when the feature 
vectors are given for processing. In many pragmatic 
cases, initial guess technique is not appropriate and thus 
it requires some technique that does not require prior 
knowledge of data distribution. On the other hand 
splitting technique approach does not require any a 
priori information of the data distribution because the 
initialized codeword is the center of the data. Thereafter 
it splits and searches for the region for which the 
expected error is minimum.  Figure 1 depicts splitting 
approach on a given two dimensional data presented in 

an elliptical form. Firstly the initial mean 0µ and initial 

eigenvector, 0
1φ as primary component and 0

2φ  as 
secondary component are computed respectively. These 
reproductive vectors are perturbed using small 
predefined quantity to get a slight variation in the 
values. In the figure two new mean vectors after 

splitting are +µ and −µ and their corresponding local 

eigenvectors are defined as ),( 21
+++ =Φ φφ and 

),( 21
−−− =Φ φφ respectively. Any arbitrary vector P of 

the feature vectors (Fig. 1) is taken into account to 
determine the membership of the vector to one of the 
two separated regions (either +Φ or −Φ ) as defined by 
their reproductive vectors. This will form two new 
clusters and the mean and eigenvector will be updated. 
The reproduction of the two set of vectors will be 
carried iteratively until the distortion in reconstruction 
is smaller than some threshold error (predefined value). 
Once the satisfactory distortion level is achieved, the 
reproductive vectors split again and carry out the same 
above iterative process, until the desired number of 
clusters is obtained. The determination of membership 
of the arbitrary point is done by using hybrid-distance. 
The VQPCA-sp accommodates both of the vectors 
(mean and eigenvector) by updating and reproducing 
them using iterative process which will be discussed 
later. The improved hybrid-distance local PCA could be 
of two types (i) where splitting occurs at random 
without following any particular direction as illustrated 
in Fig. 1 and (ii) where split follows the direction of 
dominating or principal component.  

 
Fig. 1: Splitting initialization process 

 
The principal component refers to the eigenvector for 
which the corresponding eigenvalue is maximum.  
 

IMPLEMENTATION SCHEME 
 
 It deals with the implementation scheme of 
VQPCA-sp using hybrid-distance as a prototype. 
Suppose in a c-class problem a set of class is defined by 

},...,2,1;{ ciW i == ω  where label iω  denotes ith class; 
each class is subdivided into a set of clusters defined by 

},...,2,1;{ NkC i
k

i ==ξ , where pN 2>  denotes the 
total number of desired clusters (levels) that is required 
for each given class and p is any real integer greater 
than or equal to one; i

kC denotes kth cluster in iω . Let d-
dimensional training data in iω  be defined as 
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i

i
j njxx ==  where in is the number of 

samples per given class, )(i
jx denotes any arbitrary 

feature vector. The transformation hdf ℜ→ℜ: is 
from d-dimensional hyperplane to h-dimensional 
hyperplane/plane such that dh < . By considering all 
the mentioned terms above, the VQPCA-sp algorithm 
can be given as follows: 
 
Step 0: Define threshold error 0>ε , initial average 
distortion ∞→1D for class 1ω .   
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Step 2: Apply KLT to obtain dd × eigenvector set 
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is placed in descending order, where im
l

φ is 

any arbitrary eigenvector of iω class and 
i
mC level, for Mm ,...,2,1= . Split the 

reproductive vectors as 
],[ εµεµµ −+=

imimim
and 

],[ εε −Φ+Φ=Φ
imimim

if the direction of 

splitting is allowed to be random, otherwise 

],[
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the splitting is following the direction of 

principal component im
1

φ for which the 

corresponding eigenvalue is maximum. 
Update level MM 2← . 
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Step 4: Iterate step 2 and step 3 until M equalizes the 
value of N. 

Step 5: Follow the same procedure (step 1 – step 4) 
for all the remaining classes 

},...,3,2;{ cii =ω . 
 For the reconstruction of vector, expression 
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is used where 

ci ,...,2,1= and Nm ,...,2,1= . The normalized 
difference between the vector x and the reconstructed 
vector x̂ is the reconstruction error.  

RESULTS 
 
 Several machine learning corpuses have been 
employed for estimating the accuracy of the proposed 
model and the existing model. Figure 2 depicts 
percentage error as a function of dimension reduction at 
levels 2, 4, 8 and 16.  
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Fig. 2: Percentage error as a function of dimension 

reduction at levels 2, 4, 8 and 16 on machine 
learning corpuses 

1 2 3
22

23

24

25

26

27

28

29

30

31

32
TIMIT Database (Vowels)

dimension reduced to

pe
rc

en
ta

ge
 e

rro
r

1 2 3

Level 4

1 2 3

Level 8

1 2 3

Level 16

VQPCA
VQPCA-sp

Level 2 

1 2 3
2

2.5

3

3.5

4

4.5

5
Multi-Feature Digit Dataset - KLC

dimension reduced to
pe

rc
en

ta
ge

 e
rro

r

1 2 3

Level 4

1 2 3

Level 8

1 2 3

Level 16

VQPCA
VQPCA-sp

Level 2 



J. Computer Sci. 2 (1): 53-58, 2006 

 57 

The percentage error obtained by VQPCA and 
VQPCA-sp are represented as small circles (‘o’) and 
asterisk sign (‘*’) respectively. It is observed that at 
some points no results were obtained; this is due to the 
fact that codewords are left out alone, having no feature 
vectors associated to them, which is an erroneous 
situation and has not been considered in the testing 
session. The reconstruction or hybrid distance has been 
used as a prototype for distance measurement in all the 
designs. 
 Figure 2a exhibits a design using Multi-Feature 
Digit Dataset[30,31] of 64 dimensional Karhunen-Loéve 
coefficients. A total of 1500 vectors of 10 distinct 
classes were utilized for training session and a total of 
500 vectors were used for testing the system. For 
VQPCA model codewords are initialized close to the 
centre of samples and updated iteratively until the best 
cluster in terms of minimum mean square error is 
achieved. Dimension is reduced from 64 to 1, 2 and 3. 
It can be observed that VQPCA-sp model demonstrates 
better performance in all the selected levels in terms of 
producing lesser error and greatly overcoming the 
problem of codewords being isolated. For example at 
level-16 no results are obtained for VQPCA model, this 
depicts the strong dependence of VQPCA model on the 
initial selection of codewords, whereas VQPCA-sp 
produces 2.4% error. 
  Figure 2b illustrates a classifier design using 10 
distinct vowels from TIMIT database[32]. A total of 
6000 mel-frequency cepstral coefficients with energy-
delta-acceleration (MFCC_E_D_A)[33] vectors of 
dimension 39 in training session and 2000 
MFCC_E_D_A vectors in testing session were used. 
Dimension   reduction  is   from   39   to 1, 2 and 3. 
Here again VQPCA-sp produces much better 
performance  than VQPCA, producing up to 24.3% 
error  whereas  minimum   error   obtained by VQPCA 
is 28.2%. 
 In Fig. 2c a classification design using Multi-
Feature Digit Dataset[30,31] of 76 dimensional Fourier 
coefficients was undertaken. A sum of 1500 vectors of 
10 distinct classes was utilized to train the classifier. 
Then a separate set of 500 vectors was used for 
validation. Dimension   is    reduced   from 76 to 1, 2 
and 3. Here also VQPCA-sp exhibits better 
performance   than  VQPCA at almost all the levels. 
The lowest   error   noted by VQPCA-sp is 15.4% and 
that by VQPCA is 16.2%. At some points (level-4 
dimension   3,   level-8 dimension 3, level-16 
dimension 1-3) VQPCA is not able to produce any 
result. However, VQPCA-sp produces result at all the 
points. 
 It could be observed from the experiments that 
VQPCA-sp method produces better representation of 
multivariate data and able to overcome up to the greater 
extent the problem related to codewords being isolated 
with no samples associated to it.  
 

CONCLUSION 
 
 This study has described a new splitting technique 
on local PCA approach (VQPCA) utilizing hybrid-
distance as a distance measure tool for cluster 
separation. It was observed from the experiments on 
several machine learning corpuses that the proposed 
approach produces more accurate representation of 
multivariate data in reduced dimensional space. This 
VQPCA-sp approach is efficient even when the given 
distribution of statistical data is unknown. It was also 
experienced that VQPCA-sp was much easier in 
initializing codewords and the probability of codewords 
being left alone was much less as compared to VQPCA. 
The percentage error obtained by VQPCA-sp model is 
independent of initial codeword selection since the 
codewords are selected involuntarily starting from the 
center of the considered data. This method not only 
splits mean but also the orientation of the components 
on a regular iterative basis which was not 
accommodated on VQPCA alone. 
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